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In the present study, analytical solutions for conservative solute transport, originating from a 

plane input source, along and against the flow is studied in form of two cases through a three-

dimensional semi-infinite porous media which is bounded between two infinitely spread 

planes. Also, flow is considered from one plane to another. In first case, concentration 

gradient perpendicular to the plane which is free from input is considered zero i.e. (𝐷ℎ. 𝛻𝑐) ∙

𝑛
∧
= 0 while in second case concentration gradient perpendicular to the plane which is free 

from input is assumed to be proportional to concentration at that plane i.e. (𝐷ℎ. 𝛻𝑐) ∙ 𝑛
∧
∝ 𝑐.

Here 𝐷ℎ is second order tensor represents dispersion coefficient and 𝑛
∧
 is unit normal vector 

to the corresponding plane. In both cases, initially the aquifer is supposed to be uniformly 

polluted. The temporarily dependent dispersion is assumed proportional to the groundwater 

velocity. The analytical solution of the advection-dispersion equation is obtained using 

Laplace Transformation Technique. A transformation is used to change the time-dependent 

advection-dispersion equation into constant coefficients. Such results may be very useful in 

predicting the concentration pattern in real scenario where the solute material is injected 

through a plane in a medium. The prosed model may be used to predict concentration profiles 

of solute in the laboratory as well as in the field.   
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1. INTRODUCTION

Contamination of groundwater by excessive use of 

pesticides in agriculture, unplanned storage of municipal 

garbage and unplanned urbanization is a major threat to 

environment. There are several aspects of solute transport in 

subsurface even in surface that still be poorly addressed by 

researchers. Mathematical modelling is the best tool to predict 

the solute transport in groundwater and in the assessment of its 

effect to human health and environment.  

 Advection-dispersion equation is commonly used to 

describe solute transport in an aquifer due to combine effect of 

diffusion and dispersion. Dispersion relate to the 

dissemination of contaminants in aquifers is dominated by the 

special structure of the geological formation. The 

mathematical studies suggest that the dispersion coefficients 

vary temporally and specially due to inhomogeneity of the 

medium.  

Human made system may be helpful for illustrating the 

solution for temporal dependent input function. Majority of 

analytical solutions available in the literatures are either for 

constant velocity and dispersion coefficient or unsteady 

velocity and variable dispersion coefficient with different 

boundary conditions. Fried [1] and Rumer [2] derived 

longitudinal dispersion coefficient for one-dimensional flow 

experimentally within a certain range of Reynolds numbers. In 

geological formations, dispersivity may change with position 

or time for uniform flow in large subsurface Matheron and 

Marsily [3]. Huang et al. [4] developed an analytical solution 

for one-dimensional solute transport in heterogeneous 

geological formation with a scale-dependent dispersion. Singh 

et al. [5] studied the solute transport phenomenon with time 

dependent velocities of sinusoidal, asymptotic and 

exponentially decreasing natures. Time dependent input 

function plays a crucial role in description contaminant 

transport through a natural system in which the inlet at a 

boundary is some function of time Logan [6], Zlotnik  and 

Ledder [7]. Ellsworth and Butters [8] employed Green’s 

function for solute transport with arbitrary boundary 

conditions. Batu [9] provided two-dimensional analytical 

solution for solute transport in bounded aquifer using Fourier 

analysis and Laplace transform Technique. Aral and Liao [10] 

developed two-dimensional analytical solutions for 

temporarily dependent dispersion coefficients in an infinite 

porous domain. Zoppou and Knight [11] presented analytical 

solutions for advection-diffusion equations for conservative 

solute dispersion being proportional to the square of the 

velocity and position variable. Van Genuchten et al. [12] 

developed one and multi-dimensional solutions for solute 

transport with and without terms accounting for zero-order 

production and first-order decay. Mahato et al. [13] obtained 

analytical solution for two-dimensional solute transport 

problem in a saturated porous media. Previous studies 

ordinarily considered solute transport subject to a different 

type of temporarily dependent inlet boundary conditions. Batu 

[9], Batu [14] have studied the two-dimensional analytical 

solutions for plane sources with the first and second type 

boundary conditions. Park and Zhan [15] derived general form 

of analytical solutions of solute transport from three-

dimensional sources in a finite thickness aquifer using Green 

Function Method. Zamani and Bombardelli [16] proposed 

analytical solutions of nonlinear advection-dispersion 
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equation with spatially and temporally dependent dispersion 

coefficient and velocity. Kumar et al. [17] obtained solution 

for a two-dimensional solute transport problem with spatially 

varying dispersion and groundwater velocity. Yadav and Roy 

[18] studied solute transport phenomena with curved line and 

curved surface sources in two- and three- dimensional semi-

infinite porous media respectively by using Laplace 

Transformation Technique. Thakur et al. [19] obtained exact 

solutions for two-dimensional solute transport with unsteady 

dispersion and groundwater velocity in homogeneous and 

heterogeneous porous media and compared the concentration 

distribution patterns in the considered media. Pandey et al. [20] 

explored solute transport phenomena in a heterogeneous 

porous media with Dirichlet type boundary condition by 

obtaining the solution using Duhamel’s Principle.  

To the best of our knowledge; currently very few analytical 

solutions to advection-dispersion equation with a plane 

surface are available for demonstrating temporally dependent 

solute transport problems. The objective of this study is to 

extend the work of Singh and Chatterjee [21] and derive 

analytical solution to the advection-dispersion equation with a 

constant uniform plane input source for conservative solute. 

Constant uniform plane input sources applied in direction and 

against the flow for a porous medium lying between two 

parallel planes of infinite length are studied in separate cases. 

Flow velocity is time dependent and dispersion is considered 

proportional to flow velocity. A mathematical formulation of 

the solute transport problem is presented in two sections to 

explore the impact of transport parameters within the porous 

domain. As particular cases, solution for line and point source 

in one and two-dimensional advection-dispersion equation are 

also discussed. The effects of the colony of dispersion with 

time and the other parameters of the porous domain on the 

solute transport are studied and illustrated separately with the 

help of graphs. 

 

 

2. MATHEMATICAL FORMULATION AND 

SOLUTION OF PROBLEM  
 

The general geometry of the problems considered in this 

study can be described as shown Figure 1 (a) & Figure (b). The 

aquifer is assumed to be of semi-infinite length in the x, y and 

z directions. The aquifer is considered without curvature. The 

groundwater flow transporting the solute is considered to have 

components along the x, y, z axes. Temporal distribution of 

groundwater flow that enters the domain mainly affects the 

solute migration. We consider the transport of a contaminant 

through a homogeneous semi-finite aquifer bounded between 

two infinitely long planes. Direction of flow is assumed from 

left plane to right plane. Input is applied at one plane while 

second boundary condition is considered at other plane i.e., 

present article deals with two cases namely (1) input in the 

direction and (2) against the flow.  

Initially, it is assumed that the porous domain is uniformly 

polluted for both the cases. The governing equation of solute 

transport can be expressed by three-dimensional advection-

dispersion equation (ADE) Bear [22], Yadav et al. [23] as 

follows:  

 

.
( ) ( )

( ) ( )

, , , , , ,

, , , , , ,

xx x

yy y

c c
R D x y z t u x y z t c

t x x

c
D x y z t u x y z t c

y y

   
= − + 

   

  
− + 

  

. 

( ) ( ), , , , , ,zz z

c
D x y z t u x y z t c

z z

  
− 

  
           (1) 

 

where,
 

3( , , , )c x y z t ML−    is concentration with position 

[ ]x L , [ ]y L , [ ]z L and at time [ ]t T  in liquid phase, 

2 1 ,xxD L T −    2 1

yyD L T −  
 and 2 1

zzD L T −  
 are components of 

dispersion coefficients while 1

xu LT −   , 1

yu LT −    and 

1

zu LT −    are components of groundwater velocity of the 

medium in direction of coordinate axes ,x y  and z  

respectively.
 

R  is the retardation factor which is a 

dimensionless quantity. It should be noted that retardation 

process may also happen when solute enters the porous 

domain. 

 

 
(a) Cross section of the Modeled System for along the 

flow input 

 
(b) Cross section of the Modeled System for against the 

flow input 

 

Figure 1. Geometry of plane source contamination 

 

Dispersion coefficient and velocity along x , y  and z  

directions are considered as follows: 

 

( )0xx xxD D f mt= ; ( )0yy yyD D f mt= ; ( )0zz zzD D f mt= ; 

( )0x xu u f mt= ; ( )0y yu u f mt= ; ( )0z zu u f mt=               (2)

 

                                            

 

where, 0 0 0, ,xx yy zzD D D  and 0 0 0, ,x y zu u u  are constants. m  

is an unsteady parameter having dimension inverse of time. 

Function ( )f mt  defines time dependency of dispersion and 

velocity components. The obtained results are also discussed 

for two sub cases namely line and point source.  

 

2.1 Case 1. Input in direction the flow 

 

The geometry of the present case is shown in Figure 1(a). 

The initial and boundary conditions considered herein may be 

given as: 
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( ) 1 1 1 1 2, , , ; , 0ic x y z t c f a x b y e z f t=  + +  =        (3) 

 

( ) 0 1 1 1 1, , , ; , 0c x y z t c a x b y e z f t= + + =           (4) 

 

( ) 1 1 1 2. . 0 , 0hD c n at a x b y e z f t


 = + + =        (5a) 

 

where, n


 is normal to the plane P2. The Eq. (5a) takes the 

following form (pp 251 Bear [22], pp71 Bear and Verruijt 

[24]). 

 

0 1 0 1 0 1 0;xx yy zz

c c c
D a D b D e

x y z

  
+ + =

  
at

1 1 1 2 ,a x b y e z f+ + =

0t  ,                                         (5b) 

 

The boundary condition Eq. (5a) and (5b) in three-

dimensional flow is corresponding to Case II condition of 

Jaiswal et al. [25] in one-dimensional flow. i.e. taking 

0 0 0yy zzD D= =  and 0 0 0y zu u= =  in Eq.(5b) it reduces to 

condition of boundary condition against the flow Jaiswal et al. 

[25]. 

where, 
ic , 

0c
 
are initial and reference concentrations. Also

( )1 0a   L ,
1b  L ,

 1e  L and 
1 2,f f  ( )1 2f f are real 

numbers. 
1 2,f f  are dimensionless. Throughout the study we 

denote plane 
1 1 1 1a x b y e z f+ + =  and 

1 1 1 2a x b y e z f+ + = by 

P1 and P2 plane respectively. 
hD is second order tensor 

represents dispersion coefficient where

, , , ,ijD such that i j x y z=  ( 0ijD when i j=   and

0xx xxD D=  , 0yy yyD D=  , 
0 )zz zzD D=  is called principal axis 

of dispersion [22, 24]. Eq. (5a, 5b) represents boundary of exit 

to the atmosphere The Seepage flow may serve as an example 

[24]. Introducing a new time variable T  to reduce the Eq. (1) 

into constant coefficient. The variable T  may be defined as 

Crank [26]: 

 

( )
0

t

T f mt dt=                              (6) 

 
 

With this time variable T , Eq. (1) and Eqns. (3-5) convert 

into following form:  
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 
  (7) 

 

( ) 1 1 1 1 2, , , ; , 0ic x y z T c f a x b y e z f T=  + +  =      (8) 

 

( ) 0 1 1 1 1, , , ; , 0c x y z T c a x b y e z f T= + + =           (9) 

 

0 1 0 1 0 1 0;xx yy zz

c c c
D a D b D e

x y z

  
+ + =

  
at 1 1 1 2 ,a x b y e z f+ + =

0T  ,                                      (10) 

 

In order to reduce the Eq. (7) into one-dimensional or single 

space variable, we introduce a new transformation as Singh 

and Chatterjee [21]: 

 
 

1 1 1

1 1 1

b e f
Z x y z

a a a
= + + −                                (11) 

 
 

Using transformation Eq. (11), Eqns. (7-10) takes following 

form: 

 
2
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where, 
2 2
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0 0 02 2
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b e
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= + +  and 

0 0 0

1 1

1 1

x y z

b e
U u u u

a a
= + +  

 

( ), ;0 , 0ic Z T c Z L T=   =                          (13) 

 

( ) 0, ; 0, 0c Z T c Z T= =                             (14) 

 

0; , 0
c

as Z L T
Z


= = 


                          (15) 

 

where, 2 1

1

f f
L

a

−
= . 

We further use following transformation to eliminate 

convective part of Eq. (12) 

 

( ) ( )
2

, , exp
2 4

U U
c Z T k Z T Z T

D RD

 
= − 

 
            (16) 

 

Eqns. (12-15) reduce into following form: 

 
2

2
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R D

T Z
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 
                                        (17) 

 

( ),k Z T = ( )expic Z− ; 0 Z L  , 0T =              (18) 

 

( ),k Z T = 2

0 expc T   ; 0Z = , . 0T  .            (19) 

 

0
2

k U
k

Z D
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
; at Z L= , 0T                       (20) 

 

where,

 

2

4

U

RD
 =  and 

2

U

D
 = . 

Applying Laplace Transform Technique to Eqns. (17-20), 

one can get the solution of the present problem. For this 

purpose, we take Laplace Transform of Eqns. (17-20). 

 

( ) 
2

2
expi

d k pR R
k c Z

D DdZ
− = − −                  (21) 

 

( )
( )

0

2
, ; 0

c
k Z p Z
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−
                      (22) 
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0;
2

dk U
k at Z L

dZ D
+ = =                           (23) 

 

General solution of Eq. (21) may be written as:  
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( )

( )
1 2 2
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Using Eqns. (21, 22) along with Eq. (23), we get 
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where, 
pR

M
D

= and 2D

R
 = . 

Taking inverse Laplace transform of Eq. (25) and then using 

Eq. (16), solution of present case may be written as Jaiswal et 

al. [25]:  
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where, 
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and, 
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  ( ) 5 cosh ( ) sinh ,G L Z L Z   = − + −  
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where,
n  is the positive root of cot( ) 0n n L  + = . 

Also, R D =  and R D =  

 

 

 

2.2 Case2. Input in against the flow 

 

The geometry of the present case of the problem is 

elaborated in Figure 1(b). In the present study, solute transport 

originating from a plane source P2 against the directions of 

groundwater flow keeping the geometry of aquifer unaltered. 

Present case may be represented mathematically by replacing 

Eqns. (4, 5a, b) with Eqns. (27a, b and 28) as: 
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1

. . .
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hD c n u n c
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 =  
 

at
1 1 1 1,a x b y e z f+ + =  0t      (27a) 

 

where, n


 is normal to the plane P1. The Eq. (27a) takes the 

following form: 
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( ) 0, , , ;c x y z t c= 1 1 1 2 ,a x b y e z f+ + = 0t          (28) 

 

Initial condition is taken similar to previous case i.e. Eq. (3). 

The boundary condition Eq. (27) in three-dimensional flow is 

corresponding to Case I condition Jaiswal et al. [26] in one 

dimensional flow. i.e. taking 0 0 0yy zzD D= =  and 

0 0 0y zu u= =  in Eq. (27b) it reduces to condition of boundary 

condition against the flow Jaiswal et al [26], Yadav et al. [27], 

Yadav et al. [28]. 

Applying transformations in Eqns. (6, 11, 16), Eqns. (27b, 

28) convert into following form:  
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where,

 

2

4

U

RD
 =  and 

2

U

D
 = . 

Taking Laplace Transformation of Eqns. (29, 30), we get, 
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Using above conditions Eq. (31, 32), the solution of Eq. (24) 

may be written as: 
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where, 
pR

M
R

= and 2D

R
 = . 

Taking Inverse Laplace Transform of Eq. (33) and then 

using Eq. (16), the desired solution may be written as Jaiswal 

et al. [26], Yadav et al. [27], Yadav et al. [28]: 
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      
 

2

2 2 2 21
;

2
G D n RL  

   
= + +  

   

 

( )1

1
1 sin ;

2

n Z L
I n

L


 −    
= − +    

    
 

2

2 2 2 21
;

2
I D n RL  

   
= + +  

   

 

 

Also R D =  and R D = , where,
n is the 

positive root of cos( ) 0n = i.e.
1

2
n n 

 
= + 
 

. 

Parallel plane concept is used to obtain the closed-form 

solution for various dispersion functions including line source 

in two-dimension and   point source in one-dimension as 

special cases. 

Now considering
0 0zzD = , 

0
0zu =  and

 1 0e = in Eq. (26, 

34), we obtained solution of two-dimensional ADE for a line 

source in the direction of the flow in an infinite porous domain 

bounded between two infinite long lines line L1:

1 1 1a x b y f+ = and line L2:
1 1 2a x b y f+ = for along and against 

the flow. 

Similarly, Putting, 0 0 0yy zzD D= = ,
0 0

0y zu u= = , 1 1a = ,

1 0b = ,
1 0e =  and 

1 0f =
 
 in  Eq.(26, 34), solution of one-

dimensional ADE for point source in a finite length of  porous 

domain for along and against the flow.  

 

 

3. RESULT AND DISCUSSION 

 

Various scenarios are considered to demonstrate the solute 

migration with temporarily dependent dispersion coefficient. 

In all scenarios, solute migration along and against the flow 

with a constant uniform input plane sources are considered. In 

order to present several graphical illustrations, numerical 

values of parameters, which are considered on the basis of 

some available literatures, are given as: Initially, aquifer is 

considered uniformly polluted with concentration 

10 /ic mg l= . Yadav et al. [23]. The source plane is 

considered at concentration 
0 1000 /c mg l=  in both 

considered cases Singh and Chatterjee [21]. Dispersion 

coefficient and groundwater velocity in medium are 

considered exponentially decreasing function of time i.e., 

( ) ( )expf mt mt= − with value of unsteady parameters is taken 

( )1 0.1m year − = . The components of groundwater velocity 

along ,x y  and z axes directions are respectively

( )
0

10.0121xu km year−= , ( )
0

10.030yu km year−=  and 

( )
0

10.070zu km year−= . The value of temporally dependent 

groundwater velocity is taken within the groundwater velocity 

range from 2m per day to 2m per year Todd [29]. Further, the 

components of dispersion coefficients along ,x y and z  and 

z  axes directions are respectively𝐷𝑥𝑥0 = 0.01(𝑘𝑚2𝑦𝑒𝑎𝑟−1), 
𝐷𝑦𝑦0 = 0.04(𝑘𝑚2𝑦𝑒𝑎𝑟−1), 𝐷𝑧𝑧0 = 0.09(𝑘𝑚2𝑦𝑒𝑎𝑟−1) 

Analytical solutions given by Eqns. (26) and Eqns.(34) in the 

domain 
1 1 1 1 2 ,f a x b y e z f + +   for three dimensional porous 

medium lying between two infinite parallel planes described 

by 
1 1 1 11; 2; 3; 2.4a b e f= = = =  and 

2 3.4f = . 

  

3.1 Case1. Input in direction of flow 

 

Figure 2 is drawn to understand the concentration 

distribution in Figure 3. From point P on plane P1 three lines 

PQ, PR and PS having direction cosines / ratios (d.r.) (l1,m1,n1), 

(l2,m2,n2) and (l3,m3,n3) respectively are shown where points 

Q, R and S lie on the Plane P2. Following Figure 3 exhibits 

concentration pattern along three directions mentioned in the 

figure. 

The point represented in blue circle denotes level of 

concentration at point P ( )0.1,1.0,0.1  on the plane P1 and 

points in yellow are representing concentration level at points 

Q, R, S on plane P2. The direction ratios of PQ, PR and PS 

lines are ( ) ( )1,2,3 , 3,2,1  and ( )1,3,2  respectively. 

Concentration pattern is evaluated along these mentioned 

directions PQ, PR and PS at times ( ) 0.08t year =  and 0.5 . 

Since plates are of infinitely long, concentration distribution 

on planes at a particular time must be same. It may be observed 

that level of concentration is same at plane P2 irrespective of 

directions approached from point P on plane P1 to plane P2. 

Different values of components dispersion and groundwater 

velocity give rise to different concentration patterns in 

different directions from a point on plane P1 .Concentration at 

time ( ) 0.08t year =  and 0.5  are represented by solid and 

dashed line in all the three directions. Concentration level 

starts from constant on plane P1 and proceeds to its lowest 

level at plane P2. As time increases, contaminant 

concentration increases inside the domain.  
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Figure 2. Representing the method of graph plotting in figure 

3 

 

 
 

Figure 3. Concentration pattern obtained with Eq. (26) for 

plane source along three different directions at times 

( ) 0.08, 0.5t year =  

 

Figure 4, Figure 5 and Figure 6 illustrate the solute 

concentration profiles along ,xy yz  and zx  plane of the 

medium starting from the point M ( )0.8,0.8,0 on plane P1, 

described by the solution in Eq. (26)  at time ( ) 0.08t year = . 

Concentration profile demonstrated in figure 4 in xy  plane 

for a fixed z  coordinate at 0z = . The dimensionless 

concentrations 0/c c  is constant at point ( )0.8,0.8,0 on source 

plane P1 and varies on moving way from this plane P1 for 

fixed z . Surface plot represents an exclusive pattern of 

concentration in observed plane. It may be noticed that the 

decreasing rate of concentration is faster along y  axis in 

comparison to x  axis from plane P1. This pattern of 

concentration is with similar plot done in Singh and Chatterji 

[21] at large extant. Concentration reduces to its lowest at 

point ( )1.13,1.13,0  on plane P2 at time ( ) 0.08t year = .  

The Figure 5 explores concentration distribution in yz  

plane for a fixed x  coordinate at 0.8x = . Since source plane 

P1 is at fixed concentration, the concentration injected through 

plane P1 disperses in the medium and reaches to plane P2. It 

is noticed that the concentration level decreases on moving 

away from point M ( )0.8,0.8,0 on the plane P1. On moving 

equal distance from point M along y  and z  axes, we observe 

concentration level drops faster along z  axes in comparison 

to same along y  axes. In yz  plane concentration is recorded 

lowest at point ( )0.8,1.13,0.11  which is on plane P2. 

 
 

Figure 4. Surface plot of concentration obtained with Eq. 

(26) for plane source at time ( ) 0.08t year =  in xy  plane 

 

 
 

Figure 5. Surface plot of concentration obtained with Eq. 

(26) for plane source at time ( ) 0.08t year =  in yz  plane 

 

 
 

Figure 6. Surface plot of concentration obtained with Eq. 

(26) for plane source at time ( ) 0.08t year =  in xz  plane 

 

In present Figure 6, a surface plot demonstrates the  

concentrations pattern in xz  plane for a fixed y  coordinate at 

0.8y = . The point ( )1.13,0.8,0.22  which is diagonally 

opposite to point M is on the plane P2 is at lowest level of 
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concentration. The dimensionless concentration 
0/c c  is 

constant and equal to input concentration 1  at point 

( )0.8,0.8,0 on source plane P1. Like pattern of Singh [21], 

concentration reduces more rapidly with distance along z  

axis in comparison to x  axis. 

 

3.2 Input in against the flow 

 

Like Figure 2, the Figure 7 is plotted to demonstrate the 

concentration plotting of Figure 8 from point P on plane P1 

along three lines PQ, PR and PS having direction ratios 

(l1,m1,n1) ,(l2,m2,n2) and (l3,m3,n3),where points Q, R and S lie 

on the Plane P2.  In Figure 8, concentration pattern along three 

mentioned direction is obtained for an input against the flow 

i.e. from plane P2 to P1. 

 

 
 

Figure 7.  Representing the method of graph plotting in 

figure 8 

 

 
 

Figure 8. Concentration pattern obtained with Eq. (34) for 

plane source along three different directions at times 

( ) 0.08, 0.5t year =  

 

The points depicted in blue circle express the level of 

concentrations at point P (0.1,1.0,0.1) on the plane P1 while 

yellow circles are representing concentration levels at points 

Q, R, and S on plane P2. The positions of Q, R and S are 

defined same as it is defined in figure 3. Since solute is injected 

against the flow from Plane P2 concentrations levels at Q, R 

and S are constant i.e., 0/ 1c c = . Concentration decreases on 

moving from plane P2 to P1. Concentrations at time 

𝑡(𝑦𝑒𝑎𝑟) = 0.08 and 0.5  are represented by solid and dashed 

line respectively in all the three directions. Similar to above 

case, the concentrations increase with time inside the domain. 

Concentration throughout the planes P1 and P2 is at same level 

at a particular time. Comparing the solution pattern at time 

𝑡(𝑦𝑒𝑎𝑟) = 0.5  of present case with pattern corresponding 

figure of previous case. It is observed concentration level 

inside the domain as well as plane other than the input in 

against the flow is less in comparison to same of along the flow. 

Surface plots in Figure 9, Figure 10 and Figure 11 give view 

of concentration distribution generated from Eq. (34) along the 

plane xy ,
 

yz  and zx inside the medium starting from the 

point M(0.8,0.8,0) on plane P1, at time ( ) 0.08t year = . 

In Figure 9, concentration profile demonstrated in xy  plane 

for a fixed z coordinate at 0z =  with a surface plot. The 

dimensionless concentration 
0/c c  is constant i.e., 

0/ 1c c =  at 

point ( )1.13,1.13,0  on source plane P2. It shows that the 

concentration level decreases on traversing towards plane P1. 

It recorded  that on moving from point  ( )1.13,1.13,0  on 

source plane P2 toward plane P1, concentration decreasing 

rate along y axis is faster in comparison to x axis. 

 

 
 

Figure 9. Surface plot of concentration obtained with Eq. 

(34) for plane source at time ( ) 0.08t year =  in xy  plane 

 

 
 

Figure 10. Surface plot of concentration obtained with Eq. 

(34) for plane source at time ( ) 0.08t year =
 
 in yz  plane 

 

Figure 10 is drawn to exhibit concentration profile through 

a surface plot demonstrated in yz  plane for a fixed x  

coordinate at 0.8 .x =  The value of dimensionless 
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concentrations 
0/c c  is 1  at point ( )0.8,1.13,0.11  on source 

plane P2. On moving toward plane P1 from this point 

concentration decreases slight faster along z  axis comparison 

to y  Concentration is measured lowest at plane P1.  

In Figure 11, concentration profile as a surface plot for 

depth i.e., z  axis and x  axis is presented in xz  plane for a 

fixed y  coordinate at 0.8y = . Point ( )1.13,0.8,0.22  on the 

source plane P2. Is at concentration 
0/ 1c c = . The 

concentration level decreases faster on traversing equal 

distances along z  axis in comparison to x  axis from plane P2 

toward plane P1. Variations in concentration pattern  along z  

and x  axes is due to different values of components of 

dispersion and groundwater velocity in these directions. 

 

 
 

Figure 11. Surface plot of concentration obtained with Eq. 

(34) for plane source at time ( ) 0.08t year = in xz  plane 

 

 

4. CONCLUSION 

 

The analytical solutions, of three-dimensional advection-

dispersion equation (ADE) in an infinite region of aquifer 

bounded between two infinite parallel planes, are evaluated by 

using Laplace Transformation Technique. Source of the 

pollutant entered through left plane in case of along the flow 

while in against the same is entering through right plane as 

shown in Figure 1(a) and Figure 1(b). Laplace transformation 

technique has been used to get the analytical solutions.  The 

variable coefficients of the advection–diffusion equation are 

converted into constant coefficients with the of new 

independent variables introducing through different 

transformations. A new independent variable introduced 

through the transformation in equation (6) serves as a new time 

variable. Though the analytical solutions have illustrated for 

( ) ( )expf mt mt= −  i.e. exponentially decreasing function of 

time but the result may also hold for linear functions, quadratic 

or sinusoidal expressions. It is found that the contaminant 

concentration decreases as distance increases from the source 

plane in both the directions i.e., along and against the flow and 

achieves slowly to its lowest level at another non-source 

infinite plane. For both type of flow i.e., along and against the 

solutions are obtained for line and point sources in one-and 

two-dimensional ADE respectively.  The result may be helpful 

to compare the contaminant level at any position and time of 

transport when source is applied in the direction and against 

the flow. 
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NOMENCLATURE 

 

c  concentration of the solute, kg m-3  

xxD  components of dispersion coefficient along x   

axis, m2s-1 

yyD  components of dispersion coefficient along y   

axis, m2s-1 

zzD   components of dispersion coefficient along z   

axis, m2s-1 

xu  components of groundwater velocity along x   

axis, ms-1 

yu  components of groundwater velocity along y   

axis, ms-1 

zu  components of groundwater velocity along z   

axis, ms-1 

0xxD  initial dispersion coefficient along x  axis, 

m2s-1,  

0yyD  initial dispersion coefficient along y  axis, 

m2s-1 

0zzD  initial dispersion coefficient along z  axis, 

m2s-1
 

0xu  initial groundwater velocity along x axis,  

ms-1 

0yu  initial groundwater velocity along y axis, 

ms-1 

0zu  initial groundwater velocity along z axis 

ms-1 

0c  reference / source concentration 

ic  initial concentration 

x  distance measured x axis, m  

y  distance measured y axis, m  

z  distance measured z axis, m  

t  time, s 

m  unsteady parameter regulates dispersion and  

groundwater velocity, s-1 

R  dimensionless retardation factor 

1 1 1

1 2

, , ,

,

a b c

f f
 constants those determine the planes  
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