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 A numerical study of mixed convection in a square enclosure from a heating element to a 

cold moving wall is performed under the isothermal heating conditions. The heater is placed 

at the bottom boundary and the cold upper wall moves horizontally towards right side with 

constant velocity. The lateral walls are insulated. The study includes the thermal 

performance of nanofluid for various shaped obstacles kept at center of the enclosure. The 

application of hydro-magnetism with uniform and constant magnetic intensity throughout 

the bottom wall is considered. The heat convection is studied at two Richardson number 

(0.01 and 10), four percentage volume of silver nanoparticles (0%, 2%, 5%, and 8%) and 

four Hartmann number (0, 10, 20, and 50). Grashof number, Prandtl number, and Reynolds 

number have a constant value of 104, 6.2 and 100 respectively. The obtained results indicate 

the suppression of heat fluxes with increasing intensity of magnetic field whereas it increases 

with increasing Richardson number and percentage volume of the nano-material in the base 

fluid. 
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1. INTRODUCTION 

 

Magnetism associated with the flowing fluid which is 

studied under magneto-hydrodynamics (MHD) has a 

substantial interest in the industrial field with applications 

comprising MHD power generators and pumps, cooling of 

nuclear reactors, liquid metal flow control, heat dissipation 

from electronic devices, the solidification of binary alloys etc. 

Due to its extensive applications, the heat convection due to 

MHD flow has been researched by many scholars in recent 

time. The effect of magneto-hydrodynamics and Joule heating 

parameter (N) on the heat transfer is studied by Rahman et al. 

[1] and concludes that streamlines and isotherms changes with 

the change in N and Hartmann number (Ha). They have also 

shown how the obstacle influences mixed convection. 

Chatterjee et al. [2] in their investigation of MHD leads to the 

conclusion that heat transfer suppresses in the presence of 

stronger magnetic intensity. Saha et al. [3] after solving the 

problem related to magneto-hydrodynamics shows the effect 

of Reynolds number (Re), Grashof number (Gr) and Ha on the 

local Nusselt number (Nu) and concludes that larger wavy 

surface amplitude is one of the important parameters to go 

through. Numerical study of MHD mixed convection by Farid 

et al. [4] with a heated circular hollow object inside the cavity 

showed that a fall in the flow velocity was observed with the 

increase in Hartmann number. The concluding statements put 

forward by Mahalakshmi et al. [5] in a lid-driven problem with 

a heater placed at the center came up with the conclusion that 

heater length and nanoparticles volume fraction can be 

increased to enhance mixing. Oztop et al. [6] in a partly heated 

wavy wall showed the consequences of magnetic field on Nu. 

A decrease in the Nusselt number was observed with increase 

in the Hartmann number. The numerical simulation of mixed 

convection with MHD done by Selimefendigil et al. [7] 

keeping side walls of the enclosure elastic in nature and with 

heat generation concludes that heat transfer is affected by the 

change in parameters like Ha, Rayleigh number (Ra) and 

volume percentage of nanoparticles. The study of the 

generation of entropy is done by Hussain et al. [8] where the 

fluid is under the combined influence of forced and free 

convection shows that for a fixed Ri as Hartmann number 

increases average Nu and entropy generation decreases. 

Gangawane et al. [9] located a heated triangular shaped block 

at the centreline at three positions and their solution tells that 

heat transfer inside the system is enhanced when high Prandtl 

number (Pr) fluids are used. They have also clarified the need 

of placing the block at the center. Sagheer et al. [10] addresses 

about the increase of average temperature in the square cavity 

inside which an obstacle is kept and heated isothermally. They 

showed the influence of Eckert number on the temperature 

distribution. Zhou et al. [11] in a double lid-driven enclosure 

having a linear, uniform and sinusoidal heat sources show that 

for the different type of heat sources heat transfer is different. 

The numerical study conducted by Sharma et al. [12] by 

changing the parameters e.g. Ri, ɸ, and the size of heaters 

found that at higher Ri natural convection is more predominant 

on heat transfer. Mayor et al. [13] showed the effect of 

different shaped obstacles placed inside nanofluid and 

observed that thermal boundary conditions of these obstacle 

(as a conductor or insulator) does not affect heat transfer much 

inside the cavity. 

The present investigation illustrates the effect of magnetism 

on the flow field and thermal variation inside the considered 

domain for different shaped obstacle at different Ri and Gr.  
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2. METHODOLOGY AND GOVERNING EQUATIONS 

 
The problem considered for analysis is drawn schematically 

in Figure 1. The figure depicts an enclosure of square shape 

with side L having a conducting obstacle of thermal 

conductivity Ks kept inside. 

 

 

 
 

Figure 1. Schematic sketch of the problem with applied 

boundary conditions 

 

The fluid taken for the experiment is water and is considered 

capable of conducting electric current. The top cold wall 

moves at a constant velocity U0 horizontally towards the right 

side. Both the side walls are kept in adiabatic condition with a 

heater at the bottom wall. The uniform magnetic strength B0 

is applied in vertically upward direction. The initial 

temperature of the bottom and top wall is Th and Tc 

respectively. 

The fluid and conducting obstacles are taken in such a way 

that their properties remain constant except the fluid density. 

The Boussinesq approximation is considered for free 

convection.  

Discretization of the governing equations are done by Finite 

Volume Method (FVM) and are simulated by commercially 

available software ANSYS FLUENT [14]. The continuity, 

momentum and energy equations considering negligible 

dissipation in energy for the interested domain are given 

below: 
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Table 1. Base fluid and conducting obstacles properties 

 
 Base fluid obstacles 

Material water Titanium 

density (kg. m-3) 998.2 4850 

specific heat capacity (J. kg-1. K-1) 4182 544.25 

thermal conductivity(W. m-1. K-1) 0.6 7.44 
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For conducting obstacle inside the cavity, governing 

equation for heat conduction is given by 
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where, the dimensionless parameters P, Re, Ri, Gr, Pr, N, and 

Ha representing modified pressure, Reynolds number, 

Richardson number, Grashof number, Prandtl number, 

Interaction parameter, and Hartmann number respectively are 

formulated as 
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Length, velocity, and temperature in non-dimensionalized 

form are mentioned as- 
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2.1 Boundary conditions 

 

The non-dimensional boundary conditions are expressed 

mathematically as 

At X1=0 and X1=1(i.e. at both the left & right wall): U1=U2=0 

& 0





=


 

At X2=0 (i.e. at bottom wall): U1=U2=0 & 1 =  

At X2=1 (i.e. at top wall): U1=U0, U2=0 & 0 =  

At fluid and obstacle conjunction surface: 

f s

f s
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 

 

    
=   
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 and the domain of the boundary are 

X1= [0, 1] & X2= [0, 1] (here η denotes the normal to the referred 

boundary) 

 

2.2 Effective properties of the nanofluid 

 

The effective properties of nanofluid are calculated with 

different empirical relations and equations given by various 

researchers. Eqns. 19-22 show the calculation of thermal and 

flow properties of nanofluid. The effective density of 

nanofluid is 

 
(1 )   = − +f s        (19) 

 

The heat capacitance is given by 
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And by using equation 10, effective viscosity of nanofluid 

is found out to be 
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The resultant conductivity of the fluid is solved by 

Maxwell-Garnett’s [15] approximation model. It is assumed 

that the nano-particles are of spherical shape. 
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The local Nusselt number for the cold wall can be defined 

as 
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The average Nusselt (Nuavg.) number at the cold wall is 

 
1

2

0

.Nu Nu dX=          (24) 

 

For model validation, the present numerical study is 

compared with Rahman et al. [1] and Chatterjee et al. [2] by 

keeping Re at 100, Pr at 0.71, Ri at 1 and without considering 

the joule heating parameter. The obtained result is close to their 

results. 

 

 
 

Figure 2. Comparison of Nuavg with past work 

 

2.3 Grid independence test 

 

The grid independency is performed at different grids size 

and Nuavg is calculated at those grid counts. The cases are 

simulated for Ri=0.1 and Gr=104 with six various types of 

mesh. The average Nu is plotted at 25x25, 51x51, 75x75, 

101x101, 125x125 and 151x151. It is observed that the 

variation in the result is within 0.003% up to 125x125 grids. 

Thus, further investigations are made at 125x125 nodes. 

Figure 3 shows the detailed mesh and the results obtained after 

performing computation at six different grid configurations. 

 

 

3. RESULTS AND ANALYSIS 

 

Heat transfer inside the cavity is studied by varying 
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Richardson number (Ri), Volume concentration of 

nanoparticle (ɸ), and the strength of magnetic field. Figure 4 

and 5 shows the variation in streamline patterns for different 

shaped obstacles with Hartmann number at Ri 0.01 and 10 

respectively. It can be seen that streamline changes their course 

greatly with increasing Ri. At lower Ri, only two type of 

streamlines is there, one circulating about the obstacle and the 

other above the obstacle making a concentric cyclic type of 

pattern. With increasing Ri it can be observed that the number 

of circulating patterns increases. At Ri 10 we have four types 

of patterns with one circulating about the obstacle whereas the 

other three are adjacent to the obstacle. 

 

 
 

 
 

Figure 3. Grid validation using non-uniform mesh and 

average Nu with different number of nodes 

 

The Eddie present at the top seems to get flattered with size 

enlargement by increasing Ha. Hence the circulation of fluid 

from the heater to the cold moving wall is getting disturbed. At 

Ri=0.01 the isotherm lines closer to the cold moving wall are 

flatter and thus showing the entrapment of the hot fluids which 

leads to more heat transport to the cold wall of the enclosure 

with a vertical rectangle as compared to the other shapes. As a 

result, maximum heat transfer is taking place with a vertical 

rectangle at each Ha among all shapes. For Ri=10 it can be seen 

from the streamlined contour that for a given shape as Ha is 

increasing, the size of the cavity present at the bottom on the 

right-hand side and circulating around the obstacle is 

increasing. This phenomenon is highly governed by the natural 

free convection. With the increase in cavity size, it provides 

more restriction to heat flow taking place from bottom to top 

and resulting in a reduction of heat transport to the upper wall. 

At Ri=0.01, only one Eddie can be seen near the top wall. But 

in the case of Ri=10, three eddies are present. This is due to the 

enhancement in thermal expansion coefficient (β) at Ri=10. and 

leads to higher Nu at the upper wall for higher Ri as the 

velocity of the lid is constant at both the Ri. 

 

 
 

Figure 4. Streamlines and isotherms contours for constant 

Ri=0.01 and φ=0 with varying Ha and shape of the obstacles 

 

The rise in β at lower Ri results in dominance of the free 

convection. At Ri=0.01 it can be noted that isotherm lines 
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transferring the heat from the bottom wall mainly heating the 

left part of the cold moving wall. This results in differential 

heating of the cold moving wall. The numerical analysis 

performed at both the Ri shows that due to the applied 

magnetic field as Ha increases flow stabilization takes place 

due to which a particular isotherm line gets more and more 

deviated from reaching the cold wall. This results in the 

reduction of avg. Nu at the cold moving wall. 

Figure 6 shows the comparison of streamline patterns at a 

particular Hartmann number (Ha=50) to show the variation in 

heat flow with increase in nanofluid volume fraction. It can be 

seen that at a particular Ri streamline patterns are almost 

identical at all φ for the different shape of the obstacle which 

implies that the effect of the nanofluid is very negligible in 

presence of magnetic field. 

 

 
 

 
 

Figure 5. Streamline and isotherms for constant Ri=10 and 

φ=0 with varying Ha and shape of the obstacles 

 

Figure 7 shows the streamline contours to analyze the heat 

transfer phenomenon with variation in Ha as well as φ at a 

particular shape of the obstacle. It is observed that for a 

particular shape with an increase in Ha the Eddie present at the 

top is getting bigger which results in the reduction of heat 

transfer but with an increase in φ streamline patterns remains 

almost identical. This shows that the MHD flow predominates 

the effect of φ. 

 

 
 

Figure 6. Streamline at different Ri, Ha and φ for the 

horizontal rectangle and square shaped obstacles 

 

 
 

Figure 7. Streamline at different Ri, Ha, and φ for the 

vertical rectangle shaped obstacle 

 

 
 

Figure 8. Variations in streamline and isotherm contours 

without considering MHD 

 

Figure 8 shows streamlines and isotherms for the square 
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obstacle without the application of MHD. At Ri=0.01 it can be 

noted that isotherm lines transferring the heat from the bottom 

wall mainly heating the left part of the cold moving wall. This 

results in differential heating of the cold moving wall. The 

numerical analysis performed at both Ri shows that as φ 

increases the heat transport capacity of nanofluid enhances 

because the conductivity of base fluid rises with the addition 

of nano-materials. This results in the increment of avg. Nu at 

the cold moving wall. 

To distinguish heat transfer in any system Nu is the key 

parameter to analyze the efficiency of the heat transport 

phenomena. Figures 9 and 10 show the average Nu variation 

on the cold wall for different shaped obstascles at Ri 0.01 and 

10 respectively. Average Nu decreases with the increase in Ha 

due to the flow stabilization. Increased thermal expansion 

coefficient results an increase in the value of heat transfer at 

higher Ri. 

 

 
 

Figure 9. Nuavg. of the cold wall for various shaped obstacles 

at Ri=0.01 

 

 
 

Figure 10. Nuavg. of the cold wall for various shaped 

obstacles at Ri=10 

4. CONCLUSIONS 

 

The study conducted illustrates the effect of governing 

parameters on the thermal and flow field using MHD. The 

motion of the lid, heaters and applied magnetic field are 

responsible for changes in heat transfer inside the cavity and 

few concluding statements can be put forward as: 

 

• For each shape of obstacle the Nuavg at the cold wall 

decreases as the Ha increases. 

• The Richardson number variation is obtained by 

changing the thermal expansion coefficient. At 

Ri=0.01, in case of a vertical rectangle, maximum Nu 

is obtained for all Ha as the increase in the horizontal 

flow field is maximum in case of a vertical rectangle. 

At Ri=10, due to the increase in thermal expansion 

coefficient the maximum Nuavg is obtained in the case 

of a square rectangle. 

• MHD flow predominates the effect of percentage 

volume of nanoparticles for a particular shape of 

obstacle inside the cavity. 
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NOMENCLATURE 

B0 Magnetic field strength [kg. s-2. A-1] 

Cp   Specific heat at constant pressure [J. kg-1. K] 

g  Gravitational acceleration [m. s-2] 

Re   Reynolds number 

Ha   Hartmann number 

J   Joule heating parameter 

K  Thermal conductivity [W. m-1. K-1] 

Gr   Grashof number 

L          Length of the square enclosure [m] 

N  Interaction parameter 

Nu  Nusselt number 

Pr  Prandtl number 

Ri    Richardson number 

T           Temperature [K] 

u1,u2  Velocity components [m. s-1] 

U1,U2 Dimensionless velocity components 

U0          Lid velocity [m. s-1] 

x1,x2  Cartesian coordinates [m] 

X1,X2     Dimensionless Cartesian coordinate 

Greek symbols 

µ    dynamic viscosity [kg. m-1. s-1] 

α  Thermal diffusivity [m-2. s] 

β   Thermal expansion coefficient [K-1] 

η  Normal direction 

θ             Dimensionless temperature 

ρ  Density of fluid [kg. m-3] 

σ             Electrical conductivity [S. m-1] 

υ             Kinematic viscosity of the fluid [m2. s-1] 

Subscripts 

avg. average 

c  cold 

f  fluid 

h  hot 

s  solid 
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