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 Bingham fluid through porous parallel plates with Ion-slip and Hall currents has been studied 

numerically. The non-linear PDEs, governing the problem under assumptions, have been 

transformed into dimensionless non-linear PDEs by using usual transformations. The 

obtained dimensionless governing equations have been solved numerically by applying the 

explicit finite difference method (FDM) with the help of MATLAB R2015a tool. The time 

sensitivity test is performed for the steady-state solution and is obtained at dimensionless 

time τ=4.00. It is also observed that the secondary velocity reaches the steady-state more 

gradually than the primary velocity and temperature profiles. The appropriate mesh space 

(m=40 and n=40) is obtained by the mesh sensitivity test. The impact of various interesting 

parameters on the primary velocity, secondary velocity and temperature profiles, also on the 

local Nusselt number and shear stress have been analyzed and discussed through the graph 

in details. Finally, a qualitative and quantitative comparison with the published results has 

been discussed.  
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1. INTRODUCTION 

 

The field of magneto-hydrodynamics (MHD) has been 

concerned with geophysical and astrophysical problems for 

several numbers of years. The consideration of combined heat 

transfer arises due to buoyancy forces investigated by thermal 

diffusions. To affect a flowing stream of an electrically 

conducting fluid the MHD is used and which is for the 

resolution of thermal protection, braking, propulsion, and 

control. The MHD Bingham fluid flows are used in many 

geological and industrial materials as a common mathematical 

model of, mud flow in drilling engineering, handling of 

painting oil, cement, slurries, lava, etc. The Bingham fluid is a 

special class of viscoplastic fluid that begins to flow after 

certain stress and that exhibits a linear performance of shear 

stress against shear rate. The inventor of Bingham fluid is E.C. 

Bingham [1], in 1916 who described it. In recent times, the 

Bingham fluid with or without the magnetic field, Hall current, 

suction or injection, and flowing through parallel plates have 

been examined by several characters.  

In this regard, an exact description of friction loss for 

Bingham plastics through laminar pipe flow has been first 

published by Buckingham [2]. The physical and chemical 

properties of the Bingham fluid have been described by 

Bingham [3]. The general boundary layer equations of 

Bingham fluid for continuous surfaces have been analyzed by 

Sakiadis [4]. The flow past a continuously moving surface 

such as hot rolling, metal and plastic extrusion, glass fiber, 

continuous casting including paper production, the steady heat 

transfer flow beyond a continuously moving plate with 

variable temperature have been analyzed by Soundalgekar and 

Murty [5]. Darby and Melson [6] developed an experimental 

formulation to prophesy the friction factor for a flow of 

Bingham plastics. Attia and Sayed-Ahmed [7] studied the 

influences of Hall current on unsteady MHD laminar Couette 

flow and heat transfer on Bingham fluid with Hall Current, 

suction and injection. The slow spreading of a sheet of 

Bingham fluid on an inclined plane has been established by 

Liu and Mei [8]. Naik et al. [9] studied the effect of Hall 

current on the MHD free connective laminar Couette flow of 

Bingham fluid with thermal radiation. The unsteady viscous 

incompressible MHD Bingham fluid flowing through parallel 

plates with hall current and suction has been studied by Parvin 

et al. [10]. Rees and Bassom [11] discussed the unsteady flows 

of a Bingham fluid in a porous medium. The influence of Hall 

and Ion-slip currents MHD free convection and mass transfer 

flow through a vertical oscillatory porous plate in a rotating 

porous medium with heat source has been investigated by 

Hossain et al. [12]. Islam et al. [13] mentioned the comparison 

criteria of the obtained result with the published result. Mollah 

et al. [14, 15] studied the Hall and Ion-slip effects on unsteady 

MHD Bingham fluid flow with suction. They also discussed 

the Bingham fluid flow in different cases, like, considering the 

laminar flow between two Riga (a combination of stable 

magnets and alternating electrodes) plates [16], considering 

oscillation on the upper plate of the porous channel [17]. Islam 

et al. [18] studied the Bingham fluid through parallel plate, 

they didn’t consider the magnetohydrodynamic (MHD) 

phenomena while in previous research the MHD phenomena 

are considered [14-17].   

Now the question arises: What are the flow characteristics 

while the Bingham fluid is flowing through a porous parallel 

plate in the presence of Hall and Ion-slip current? In the 

present study, in order to answer this question, the numerical 
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study has been performed to discuss the MHD generalized 

Couette flow and heat transfer on Bingham fluid through 

porous parallel plates with Ion-slip and Hall currents. The 

governing equations are concerned with the generalized 

Ohm’s law including Hall and Ion-slip currents, porous 

medium and Rheology of the Bingham fluid. The explicit 

finite difference technique has been used to find out the 

solution of dimensionless governing PDEs. The obtained 

outcomes have been shown in the graph. 

 

 

2. MATHEMATICAL MODEL 

 
Figure 1 describes the physical configuration of the study, 

where the viscous incompressible flow of Bingham fluid is 

considered to be flowing among a couple of infinite parallel 

porous plates which are positioned at y h=  planes and 

lengthen from 𝑥 = 0 to ∞ . 𝑈0  be the uniform velocity at 

which the upper plate is moving and the rest plate is motionless. 

2T  be the temperature of upper plate and 
1T  temperature is for 

the lower plate, where 
2 1T T . A constant pressure gradient 

𝑑𝑝

𝑑𝑥
 

is emploied on the fluid along the X -direction and the body 

force is neglected. A uniform magnetic field 
0B is applied 

along the Y-direction which is undisturbed as the induced 

magnetic field is ignored by considering a very small magnetic 

Reynolds number. Due to the attention of Hall Effect, a Z-

element for the velocity is supposed to begin. Thus, the fluid 

velocity vector is given as u v w= + +q i j k . 

 

 
 

Figure 1. The physical configuration of the problem 

 

Within the basis of the above assumptions, the equations, 

for this unsteady 2D problem, are governed by the system of 

coupled non-linear PDEs, are given in vector form as follows: 

 

Continuity Equation:         
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Momentum Equation:  
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Energy Equation:  
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Also the corresponding conditions can be expresssed as 

follows: 

 

10, 0,     0,     t u w T T = = =      everywhere  

1

1

0 2
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It is required to transform the above governing equations 

into dimensionless form, as the solution of Eqns. (1 to 3) 

subject to the above conditions will be based on the finite 

difference scheme for numerical solution. The dimensionless 

quantities that have been used are given as follows:   
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            (4) 

 

Also the dimensionless quantities are given as follows: 

 Bingham number or dimensionless yield stress, 𝜏𝐷 =
𝜏0ℎ

𝐾𝑈0
; 

Reynolds number, 𝑅𝑒 =
𝜌𝑈0ℎ

𝐾
; Prandtl number, 𝑃𝑟 =

𝜌𝑐𝑝𝑈0ℎ

𝑘
 

and Eckert number, 𝐸𝐶 =
𝑈0𝐾

𝜌𝑐𝑝ℎ(𝑇2−𝑇1)
;  

Hartmann number, 𝐻𝑎 = √
𝜎

𝐾
𝐵0ℎ and  

Permeability of porous medium, 𝑘0 =
𝜐2

𝑘𝑈0
2  

The obtained dimensionless non-linear PDEs are given as 

follows: 

 

0
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And the dimensionless initial and boundary conditions are 

given as follows: 

 

0, 0, 0, 0U W  = = =      everywhere           (10) 
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Furthermore, the shear stress at moving plate has been 

studied from the velocity profile. The local shear stress in X-

direction for moving plate is 𝜏𝑤 ≡ [�̄�√(
𝜕𝑈

𝜕𝑌
)

2

+ (
𝜕𝑊

𝜕𝑌
)

2

]
𝑌=1

. 

Also the Nusselt number at moving plate has been studied 

from the temperature profile. The local Nusselt number in X-

direction for moving plate is 𝑁𝑢 ≡
(

𝜕𝑇

𝜕𝑌
)

𝑌=1

−(𝑇𝑚−1)
; where, 𝑇𝑚 =

∫ 𝑈𝜃𝑑𝑌
1

−1

∫ 𝑈𝑑𝑌
1
−1

. 

 

 

3. NUMERICAL TECHNIQUE 

 
The finite difference method (FDM) is chosen to solve the 

dimensionless system (5-9) subject to the boundary conditions 

(10 and 11). Many scholars use the same FDM numerical 

technique [19, 20], as of them the division is made inside the 

area of boundary layer by the lines perpendicular to axes to 

make the wel-known mesh space as shown in Figure 2. 

Consider the maximum length of the plate ( )max 40X =  i.e. 

for the numerical calculation, dimensionless length X  ranges 

from 0 to 40. Since the boundary condition shows that the 

plates are placed at 1Y = −  and 1Y =  i.e. the distance between 

two plates 
max 2Y = , thus for the numerical calculation, 

dimensionless lenght Y  ranges from 0 to 2. Consider suitable 

m  and n  known as number of grid spacing in the X  and Y  

directions respectively. The suitable values are choosen 

(m,n)=(40,40), see the section 5.1.  It is assumed that X and 

Y  are constant mesh sizes along X and Y directions 

respectively and taken as follows, 

( )max 1.0 0 40X X m X = =    and 

( )max 0.05 0 2Y Y n Y = =   with the smaller time-step, 

0.0001 = (chosen arbitrarily small).  

 
 

Figure 2. Finite difference grid space 

 

Within the above discussed values the FDM calculation is 

performed by the MATLAB 2015a tool to achive the steady-

state solution which is described in the later section. 

 

 

4. RESULTS AND DISCUSSION  

 

To evaluate the physical configuration of the developed 

problem, the numerical values have been computed for the 

dimensionless primary velocity (U), secondary velocity (W) 

and temperature ( )  distributions inside the boundary layer. 

First of all, the appropriate grid space is computed (see 

section 4.1) and the grid space, (m,n)=(40,40) can be chosen 

as the appropriate mesh size.  Then the steady-state solution 

is calculated for the velocity and temperature profiles (see 

section 4.2), and is obtained for the dimensionless time  =

4.00. After that; the impact of Hall parameter (𝛽𝑒), Ion-slip 

parameter (𝛽𝑖) and Reynolds number ( )eR on velocity 

including temperature distributions also on the local shear 

stress (𝜏𝑤)  and local Nusselt number (𝑁𝑢)  at the moving 

plate are discussed in section 4.3. For brevity, the effect of 

other parameters such as Hartmann number (𝐻𝑎), Prandtl 

number (𝑃𝑟) , Eckert number (𝐸𝑐) , Permeability of porous 

medium (𝑘0)  and Bingham number (𝜏𝐷)  are not shown. 

Finally, a qualitative and quantitative comparison of the 

current study with the published results of Mollah et al. [14] 

has been discussed in section 4.4. 

 

4.1 Calculating appropriate grid space 

 

The mesh sensitivity test is applied here. To obtain the 

appropriate grid space i.e. to obtain the appropriate values of 

m  and n  the calculations have been continued for  three 

different grid spaces such as (m,n)=(40,40); (m,n)=(60,60) and 

(m,n)=(80,80) (see Figure 3), where 3.00,e =  3.00,i =  

3.00,aH =  3.00,eR =  0.01,cE =  0.30,rP =  
0 0.50k =  and 

0.10D = . The obtained curves are smooth and shows 

negligible changes between them. Thus, (m,n)=(40,40) can be 
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chosen as the appropriate mesh size. According to this 

situation, the further calculation have been carried out for the 

mesh size (m,n)=(40,40). 

 
 

Figure 3. Justifying grid space 

 

 
4(a) 

 

 
4(b) 

 

 
4(c) 

 

Figure 4. Illustration of time variation for (a) Primary 

velocity, (b) Secondary velocity and (c) Temperature 

distributions, where 3.00,e =  3.00,i =  3.00,aH =  

3.00,eR =  0.01,cE =  0.30,rP =  
0 0.50k =  and 0.10D =  

4.2 Steady state solutions 

 

The time sensitivity test is applied here. To find out the 

steady state values of this research, the calculations have 

been continued for eight different time step sizes such as  =  

0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50 and 4.00. It is observed 

that, the result of computations for different profiles shows 

negligible changes after  = 3.50. Thus the solutions for all 

variables at dimensionless time  = 4.00 are taken as the 

steady-state solutions. The time illustrations for primary, 

secondary velocity and temperature distributions are shown in 

Figure 4. 

Figure 4 shows that the primary velocity, secondary 

velocity and temperature profiles reach their steady state 

monotonically. The secondary velocity reaches the steady 

state more gradually than the primary velocity and temperature 

profiles. 

 

4.3 Effect of parameters 

 

To clarify the conception of physical configuration of this 

research, the effects of some important parameters on velocity 

and temperature distributions also on the local shear stress 

and local Nusselt number at moving plate are discussed 

graphically. The effects are discussed for  Hall parameter 

( )e , Ion-slip parameter ( )i , and Reynolds number ( )eR  

in the presence of Hartmann number (𝐻𝑎 = 3.00) , Prandtl 

number (𝑃𝑟 = 0.30), Eckert number (𝐸𝑐 = 0.10), Permeability 

of porous medium (𝑘0 = 0.50) and Bingham number (𝜏𝐷 =
0.10) , see Figures 5 to 10. Where the constant values of 

different parameters are chosen by trial and error mechanism 

that gives the best fit.  

The effect of Hall Parameter ( )e  on primary velocity, 

secondary velocity, temperature distributions also on the local 

shear stress including local Nusselt number at moving plate 

have shown in Figures 5 and 6. From Figure 5(a,b,c),  it is 

observed that the primary velocity and temperature profiles 

increases with the increase of 
e  while the secondary velocity 

profile decreases with the increment of 
e . Furthermore, the 

Figure 6(a,b), shows that  the local Nusselt number decreases 

with the increment of 
e  while the local shear stress increases 

with the increase of 
e  at moving plate. 

Again, the effect of Ion-slip parameter ( )i on primary 

velocity, secondary velocity also temperature distributions as 

well as local shear stress including local Nusselt number at 

moving plate have shown in Figures 7 and 8. From Figure 

7(a,b,c), it is observed the primary velocity and temperature 

profiles increases with the raise of 
i  while the secondary 

velocity profile decreases with the increment of 
i . Also, the 

Figure 8(a,b), shows that  the Nusselt number decreases with 

the increment of 
i  elsewhere the local shear stress increases 

with the raise of 
i  at moving plate. 

Furthermore, the effect of Reynolds number
eR  on primary 

velocity, secondary velocity hereafter temperature 

distributions as well as local shear stress and local Nusselt 

number at moving plate have displayed in Figures 9 and 10. 

From Figure 9(a,b,c), it is found that the primary velocity, 

secondary velocity also temperature profiles increases with the 

486



 

raise of 
eR . It is observed from Figure 10(a,b), that the local 

Nusselt number decreases with the raise of 
eR  while the local 

shear stress increases with the forward movement of 
eR  at 

moving plate. 

 

 
5(a) 

 

 
5(b) 

 

 
5(c) 

 

Figure 5. Effects of Hall Parameter ( )e  on (a) Primary 

velocity; (b) Secondary velocity and (c) Temperature 

distributions; where, 3.00,i =  3.00,aH =  3.00,eR =  

0.01,cE =  0.30,rP =  
0 0.50k =  and 0.10D =  at time

4.00 =  (Steady State) 

 

Figure 5 shows that the primary velocity and temperature 

profiles increases with the raise of 
e  while the secondary 

velocity profile decreases with the increment of 
e .  

Figure 6 shows that the local Nusselt number decreases with 

the increment of 
e at moving plate while the local shear 

stress increases with the raise of 
e  at moving plate. 

 

 
6(a) 

 

 
6(b) 

 

Figure 6. Effects of Hall Parameter ( )e  on (a) local 

Nusselt number and (b) local shear stress at moving plate; 

where, 3.00,i =  3.00,aH =  3.00,eR =  0.01,cE =  

0.30,rP =  
0 0.50k =  and 0.10D =  at time 4.00 =  (Steady 

State) 

 

 
7(a) 

 

 
7(b) 
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7(c) 

 

Figure 7. Effects of Ion-slip Parameter ( )i  on (a) 

Primary velocity; (b) Secondary velocity and (c) 

Temperature distributions; where, 3.00,e =  3.00,aH =  

3.00,eR =  0.01,cE =  0.30,rP =  
0 0.50k =  and 0.10D =  at 

time 4.00 =  (Steady State) 

 

Figure 7 shows that the primary velocity and temperature 

profiles increases with the increase of 𝛽𝑖 while the secondary 

velocity profile decreases with the increment of 𝛽𝑖.   

 

 
8(a) 

 

 
8(b) 

 

Figure 8. Effects of Ion-slip Parameter (𝛽𝑖) on (a) local 

Nusselt number and (b) local shear stress at moving plate; 

where, 3.00,e =  3.00,aH =  3.00,eR =  0.01,cE =  

0.30,rP =  
0 0.50k =  and 0.10D =  at time 4.00 =  (Steady 

State) 

 

Figure 8 shows that the local Nusselt number decreases with 

the rise of 
i at moving plate while the local shear stress 

increases with the raise of 
i  at moving plate. 

 
9(a) 

 

 
9(b) 

 

 
9(c) 

 

Figure 9. Effects of Reynolds number (𝑅𝑒) on (a) Primary 

velocity; (b) Secondary velocity and (c) Temperature 

distributions; where, 3.00,e =  3.00,aH =  3.00,i =  

0.01,cE =  0.30,rP =  
0 0.50k =  and 0.10D =  at time

4.00 =  (Steady State) 

 

 

 
10(a) 
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10(b) 

 

Figure 10. Effects of Reynolds number ( )eR  on (a) local 

Nusselt number and (b) local shear stress at moving plate; 

where, 3.00,e =  3.00,aH =  3.00,i =  0.01,cE =  

0.30,rP =  
0 0.50k =  and 0.10D =  at time 4.00 =  (Steady 

State) 

 

Figure 9 shows that the primary velocity, secondary velocity 

also temperature profiles increases with the increase of 𝑅𝑒. 

Figure 10 shows that the local Nusselt number decreases 

with the rise of 𝑅𝑒 at moving plate while the local shear stress 

increases with the forward movement of 𝑅𝑒 at moving plate. 

 

4.4 Comparison  

 

Finally, a qualitative and quantitative comparisons of the 

current results with the published results of Mollah et al. [14] 

are presented in Figures 11(a,b). 

 

 
11(a) In the case of porous plate 

 

 
11(b) In the case of flat plate 

 

Figure 11. Comparison with published results 

Figure 11 shows that, both the researches show 

qualitatively quite same results. Quantitatively, the present 

results are little different due to the consideration of porous 

plate. 

 

 

5. CONCLUTIONS 

 

The MHD generalized Couette flow and heat transfer on 

Bingham fluid through porous parallel plates with Ion-slip and 

Hall currents has been investigated numerically by explicit 

finite difference scheme. The mesh sensitivity and time 

sensitivity tests are performed for obtaining appropriate mesh 

size and the steady-state solution respectively. The results 

were discussed for some important parameters such as Hall 

parameter (𝛽𝑒) , Ion-slip parameter (𝛽𝑖)  and Reynolds 

number (𝑅𝑒) and their effects on the flow behaviour. The most 

important outcomes of this investigation can be concluded as 

follows: 

1. The steady-state solutions are obtained for the 

dimensionless time,  = 4.00. 

2. The obtained appropriate mesh size is ( ) ( ), = 40,40m n . 

3. The primary velocity and temperature profiles increases 

with the increment of 
e , 

i  and 
eR . 

4. The secondary velocity increases with the increment of 

eR  while it decreases with the rise of  
e  and 

i both. 

5. The local Nusselt number decreases with the increment 

of 
e , 

i  and 
eR .  

6. The local shear stress increases with the increase of 
e , 

i  and 
eR . 
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NOMENCLATURE 

,u w primary and secondary velocity components 

1 2,  T T temperatures at lower and upper plates 

mT non-dimensional mean fluid temperature 

 density of the fluid 

0B Uniform magnetic field  

 Viscosity 

 electric conductivity of the fluid 

'k magnetic permeability 

 thermal conductivity 

pc specific heat at the constant pressure 

,U W dimensionless Primary and secondary 

velocity components  

 dimensionless temperature 

 dimensionless time 

w dimensionless local shear stress at moving 

plate 

uN dimensionless local Nusselt number at 

moving plate 

D Bingham number or dimensionless yield 

stress 

e Hall parameter  

i Ion-slip parameter 

eR Reynolds number 

rP Prandtl number 

CE Eckert number 

Ha Hartmann number 

0k permeability of porous medium 
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