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 This paper proposes a novel modified single finite Fourier cosine integral transform, which 

determines the elastic buckling loads of moderately-thick, fixed-end beams made of 

homogeneous, isotropic, linear elastic materials. First, such a beam was  modelled with a 

fourth-order ordinary differential equation, according to the first-order shear deformation 

theory. Then, the single finite Fourier cosine integral transform was modified to satisfy all the 

boundary conditions at the fixed ends,using the apriori knowledge, and provide an exact 

buckling mode (shape) function for the beam. Through the modified transform, the boundary 

value problem was converted to an algebraic eigenvalue problem, which canbe described by 

a set of homogeneous algebraic equations. For nontrivial solutions, the characteristic buckling 

equation was drived from the vanishing of the determinant of the coefficient matrix. Solving 

the characteristic buckling equation, the authors obtained the eigenvalues and thus derived 

the buckling loads. The critical buckling load was found to correspond to the first buckling 

mode. The proposed modified transform gave exact expressions for the buckling loads and 

the critical buckling load of the fixed ends, because the integral kernel function satisfies all 

the boundary conditions, and the transform on the domain governing equation satisfies all the 

domain equations. The solutions of our method agree well with the previous studies. 
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1. INTRODUCTION 

 

Several theories have been derived in the literature for beam 

stability problems, where beams are subjected to axial 

compressive forces and it is required to determine the loads at 

which instabilities occur and their modes/shapes [1-5]. The 

Euler-Bernoulli beam theory (EBBT) derived and developed 

using the Euler-Bernoulli hypothesis of orthogonality of the 

beam cross-sections to the middle plane before and after 

deformation has been extensively used to describe thin beam 

flexure and stability problems [6, 7]. The implication of the 

orthogonality assumption of the plane cross-sections to the 

middle plane is the disregard of transverse shear deformation, 

hence constraining the scope and use of the theory to thin 

(slender) beams where elasticity theory prove that transverse 

shear deformation effects are insignificant [8-13]. The EBBT 

thus overestimates the buckling load capacities of moderately 

thick beams since the effects of transverse shear deformation 

substantially impact the stability behaviour. 

Timoshenko derived the Timoshenko beam theory (TBT), a 

first order shear deformation beam theory by assuming a 

relaxation of the orthogonality conditions used in formulation 

of the EBBT [14]. TBT can be formulated using equilibrium 

methods or variational methods. TBT assumes a constant 

transverse shear strain across the thickness, thus violating the 

stress-free boundary conditions on the beam surfaces. It thus 

requires problem defined shear stress modification factors and 

is formulated in terms of two unknown displacement functions, 

rendering the boundary value problem (BVP) complex for 

analysis and solution. 

Further research into buckling analysis have resulted in the 

derivation and development of higher order shear deformation 

theories by Krishna Murty, Levinson, Heyliger and Reddy, 

Ghugal, et al. [13-26]. 

In this study, the elastic buckling problem of moderately 

thick beams of prismatic cross-sections, made of 

homogeneous, isotropic material, modelled as first order shear 

deformable beam was solved, for the first time, using a 

modified single (one dimensional) finite Fourier cosine 

transform method for the case when the beam is fixed at the 

two ends. 

The moderately thick beam studied as shown in Figure 1 for 

elastic buckling behaviour is defined by
2 2,l lx−    

2 2
h hy−    and 

2 2
b bz−    . When the cross-section lies in 

the yz plane and x is the longitudinal axis, l is the beam span, 

while h is the thickness, b is the width. 

 

 
 

Figure 1. Moderately thick beam studied and the coordinate 

system 
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2. THEORY 

 

2.1 Assumptions 

 

The assumptions of the formulation are as follows [8, 9]: 

(i) the transverse displacement field component in the y 

coordinate direction depends only on the position on the 

longitudinal coordinate axis of the beam. 

(ii) the stress strain equations are one-dimensional. 

(iii) the displacements are so small compared to the thickness 

that the resulting strains are infinitesimal. 

(iv) the transverse displacement vt(x, y) is the sum of the 

bending component v(x) and shear component vs(x). 

(v) the material of the beam is homogeneous, linear elastic 

and isotropic. 

 

2.2 Displacement components 

 

The displacement components are: 

 

( , ) ( )xu x y y x= −                               (1) 

 

( , ) ( ) ( ) ( )y y su x y u x v x v x= = +                   (2) 

 

where, θ(x) is the rotation of the cross-section at the neutral 

axis, uy(x) is the displacement field in the y direction, v(x) is 

the flexural component of the transverse displacement, and 

vs(x) is the shear component of the transverse displacement. 

 

( )
( )

dv x
x

dx
 = −                                  (3) 

 

y is the transverse coordinate direction. 

 

2.3 Strain field components 

 

The strain field components are from the small deformation 

elasticity theory, given by: 

 

( )x
xx

u
y x

x


 = = − 


                          (4) 

 

0
y

yy

u

y


 = =


                                (5) 

 

( ) ( )
yx

xy y

uu
u x x

y x


 = + = − 

 
                 (6) 

 

where, εxx, εyy are normal strains in the x and y directions 

respectively, γxy is the shear strain and the primes represent 

derivatives with respect to x. 

 

2.4 Stress fields 

 

The stress fields for plane stress are from the one 

dimensional stress-strain relations, given by: 

 

( )xx xxE Ey x =  = −                          (7) 

 

2 2
( )

1 1
yy xx

E
E y x

 
 =  = − 

−  − 
                 (8) 

( )( ) ( )xy xy ykG kG u x x =  = −                     (9) 

 

where, k is the shear correction/modification factor, σxx, σyy are 

the normal stresses, τxy is the shear stress, μ is the Poisson’s 

ratio, E is the Young’s modulus of elasticity, G is the shear 

modulus or the modulus of rigidity. 

 

2.5 Total potential energy functional, Π 

 

The total potential energy functional is given by: 

 

1 1

2 2
xx xx xy xydv dv =   +   −   

2

0 0

1
( ) ( )

2

l l
y

x y

du
Q dx q x u x dx

dx

 
− 

 
                   (10) 

 

Using the stress-strain relations, Π is given as: 

 

2 21 1

2 2
xx xyE dv kG dv =  +  −   

2

0 0

1
( ) ( )

2

l l
y

x y

du
Q dx q x u x dx

dx

 
− 

 
                  (11) 

 

Using the strain-displacement relations, Π is simplified as: 

 

( )
221

( )
2

Ey x dAdx =  +  

( )
21

( ) ( )
2

ykG u x x dAdx −  −  

2

0 0

1
( ) ( )

2

l l
y

x y

du
Q dx q x u x dx

dx

 
− 

 
                 (12) 

 

Using the Euler-Lagrange condition for the minimization of 

Π, the governing stability equation is obtained for rectangular 

cross-sections with k = 5/6 and q(x) = 0, as: 

 
2 4 2

4 2

( ) ( )
(1 ) 0

5
x x

h d v x d v x
EI Q Q

dx dx

 
− +  + =  

 

      (13) 

 

where, I is the moment of inertia of the beam cross-section, h 

is the beam thickness. 

 

 

3. METHOD 

 

The one dimensional (single) finite Fourier cosine 

transform of a function of one independent variable f(x) 

defined over the finite integral 0 x a   is denoted by Fc(n) 

and is defined as: 

 

0

( ) ( )cos

a

c

n x
F n f x dx

a


=                         (14) 

 

where, n is a nonnegative integer. 

The inverse finite Fourier cosine transform of Fc(n) is given 

by: 
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1

1 2
( ) (0) ( )cosc c

n

n x
f x F F n

a a a



=


= +              (15) 

 

By integration by parts, the finite Fourier cosine transform 

of derivatives of f(x) could be determined. 

 

00

( )
cos ( )cos

aa
df x n x n x

dx f x
dx a a

  
= + 
 

  

0

( )sin

a
n n x

f x dx
a a

 
                         (16) 

 

( )( ) ( 1) ( ) (0) ( )n
c s

n
F f x f a f F n

a


 = − − +        (17) 

 

where, Fs(n) is the single finite Fourier sine transform of f(x). 

If f(x) vanishes at x = 0, and x = a, a simpler expression is 

obtained for Fc(f′(x)) as: 

 

( )
0

( ) ( )cos ( )

a

c s

n x n
F f x f x dx F n

a a

 
 = =         (18) 

 

The expressions for the single finite Fourier cosine 

transforms of higher derivatives of f(x) are obtained by the 

repeated application of the fundamental results for the first 

derivatives. 

 

( )
0

( ) ( )cos

a

c

n x
F f x f x dx

a


 = =  

2

( 1) ( ) (0) ( )n
c

n
f a f F n

a

 
 − − −  

 
              (19) 

 

If ( )
df

f x
dx

=  vanishes at the end points x = 0, and x = a, a 

simpler expression results as follows: 

 

( )
2

( ) ( )c c

n
F f x F n

a

 
 = − 

 
                     (20) 

 

For the fourth order derivative f iv(x), by induction, it is 

obtained for f(x) vanishing at x = 0, and x = a that: 

 

( )
4

4
0

( ) ( )cos

a
iv

c

d n x
F f x f x dx

adx


=                  (21) 

 

( )
2 2

2
0

( )
( ) cos

a
iv

c

n d f x n x
F f x dx

a adx

  
= − = 

 


4

( )c

n
F n

a

 
 
 

(22) 

 

 

4. RESULTS 

 

The governing BVP is represented as the fourth order 

ordinary differential equation (ODE): 

 

4 2
2

4 2

( ) ( )
0

d v x d v x

dx dx
+  =                      (23) 

 

where,  

 

2

2 (1 )

5

x

x

Q

Q h
EI

 =
+ 

−

                       (24) 

 

Following the definition of the single finite Fourier cosine 

integral transform, we modify the Fourier cosine kernel 

function to ensure that it satisfies the fixed-fixed boundary 

conditions as: 

 

2
( ) cos

n x
K x

l


=                              (25) 

 

where, 2 2
l lx−    and the origin is defined at the middle 

of the beam. 

The single finite Fourier cosine integral transform of the 

governing BVP becomes: 

 
/2 4 2

2

4 2
0

( ) ( ) 2
cos 0

l
d v x d v x n x

dx
ldx dx

  
+  =  

 
      (26) 

 

From the linearity property of the finite Fourier cosine 

integral transform, we have:  

 
/2 4

4
0

( ) 2
cos

l
d v x n x

dx
ldx


+  

/2 2
2

2
0

( ) 2
cos 0

l
d v x n x

dx
ldx


 =   (27) 

 
4 /2

0

2 2
( )cos

l
n n x

v x dx
l l

  
− 

 
  

2 /2
2

0

2 2
( )cos 0

l
n n x

v x dx
l l

  
 = 

 
                 (28) 

 

But, 

 
/2

0

2
( )cos ( )

l

c

n x
v x dx v n

l


=                      (29) 

 

where, vc(n) is the single finite Fourier cosine transform of v(x). 

Then, we have: 

 
4 2

22 2
( ) ( ) 0c c

n n
v n v n

l l

    
−  =   

   
         (30) 

 

Simplification yields: 

 
4 2

22 2
( ) 0c

n n
v n

l l

     
 −  =        

            (31) 

 

Simplifying, we have the algebraic eigenvalue problem: 
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2
22

( ) 0c

n
v n

l

  
 −  =    

                    (32) 

 

For nontrivial solutions, vc(n) ≠ 0, and the characteristic 

buckling equation is found as the system of homogeneous 

algebraic equations: 

 
2

22
0

n

l

 
−  = 

 
                          (33) 

 

The eigenvalues are obtained as: 

 
2 2

2 2
4

n n

l l

    
 = =   

   
                     (34) 

 

The eigenvalues are used to obtain the n buckling loads as 

follows: 

 
2

2

2
4

(1 )

5

x

x

Qn

l Q h
EI

 
 = = 

  + 
−

               (35) 

 

Solving, 

 
2

2
2

4

4
1 (1 )

5

x

n
EI

l
Q

n
h

l

 
 
 

=
 

+ +   
 

                    (36) 

 
2

2 2
2

4( )

1 0.8 (1 )

x

n EI
Q

ln
h

l


=

 
+ +   

 

                (37) 

 

For μ = 0.25, 

 
2

2 2
2

2

4( )

1 ( )

x

n EI
Q

h l
n

l


=

+ 

                       (38) 

 
2

2 2
2

2

4
( 1)

1
crx x

EI
Q Q n

h l

l


= = =

+ 

              (39) 

 

For μ = 0.30, 

 
2

2 2
2

2

4( )

26
1 ( )

25

x

n EI
Q

h l
n

l


=

+ 

                        (40) 

 
2

2 2
2

2

4
( 1)

26
1

25

crx x

EI
Q Q n

h l

l


= = =

+ 

               (41) 

 

Values of the critical buckling load for the first order shear 

deformable beam for values of Poisson’s ratio μ given as: μ = 

0.25 and for μ = 0.30 are calculated using Equations (39) and 

(41) for various values of h/l and presented in Table 1 and 2, 

respectively. 

 

Table 1. Critical elastic buckling load Qxcr for first order 

shear deformable beams with Poisson’s ratio μ = 0.25 for 

various values of h/l (fixed ends) 

 

h/l 
Qxcr (μ = 0.25) 

2
EI

l

  
 

 

Exact solution, Onah et 

al. [17], (for μ = 0.25) 

2
EI

l

  
 

 

0.01 39.43949239 39.43949 

0.02 39.32317593 39.32317 

0.05 38.52778267 38.52778 

0.1 35.93206494 35.93206 

0.15 32.30465 32.30465 

0.2 28.30431997 28.30432 

0.25 24.41686668 24.41687 

0.3 20.90725096 20.90725 

0.35 17.87140938 17.87141 

0.4 15.30683408 15.30684 

0.45 13.16563892 13.16564 

0.5 11.38559297 11.3856 

 

Table 2. Critical elastic buckling load Qxcr for first order 

shear deformable beams with fixed ends with Poisson’s ratio 

μ = 0.30 for various values of h/l 

 
h/l Qxcr (μ = 0.30) 

2
EI

l

  
 

 

Exact solution for μ = 

0.30, Onah et al. [17] 

2
EI

l

  
 

 

0.01 39.43793697 39.43793 

0.02 39.31699165 39.31699 

0.05 38.49070863 38.49071 

0.10 35.80341588 35.80341 

0.15 32.07153655 32.07154 

0.20 27.98745363 27.98745 

0.25 24.0498529 24.04985 

0.30 20.52111487 20.52112 

0.35 17.48854188 17.48854 

0.40 14.94091706 14.94092 

0.45 12.82375231 12.82376 

0.50 11.07048294 11.07049 

 

 

5. DISCUSSION 

 

The elastic buckling problem of first order shear deformable 

thick and moderately thick beams represented by the fourth 

order ordinary differential equation, Equation (13) is solved in 

closed form using the modified single finite Fourier cosine 

integral transform method for the case of fixed ends. For the 

elastic buckling problem considered, the integral kernel 

function for the modified single finite Fourier cosine transform 

identically satisfies all the geometric and force boundary 

conditions at the clamped ends. 

Another merit of the method is that the modified single 

finite Fourier cosine transform method can be readily applied 

to obtain the transform of ordinary derivatives of the function 

of an independent variable. The modified single finite Fourier 

cosine transformation is applied to the governing fourth order 

ODE to obtain Equation (26). The use of the linearity property 

of the single finite Fourier cosine transform and simplification 

reduced the problem to an algebraic eigenvalue problem 

represented by Equation (32). For nontrivial solutions of the 
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algebraic eigenvalue problem, the determinant of the 

coefficient matrix is required to vanish resulting in a 

characteristic buckling equation given by the system of 

algebraic equations – Equation (33). The eigenvalues (roots) 

of the characteristic buckling equation are found for all the n 

buckling modes as Equation (34). The n eigenvalues are used 

to find the n buckling loads as Equation (37). For μ = 0.25, the 

n buckling loads are obtained using Equation (38) while for μ 

= 0.30, the n buckling loads are obtained using Equation (40). 

The critical buckling load Qxcr which is the minimum value of 

the buckling loads is found to occur at the first buckling mode 

when n = 1, and found as Equation (39) when μ= 0.25, and 

Equation (41) for μ = 0.30. 

Values of the critical buckling load Qxcr for various values 

of the ratio h/l and for μ = 0.25, and μ = 0.30 for first order 

shear deformable beams were calculated and shown in Tables 

1 and 2, together with exact results obtained by Onah et al [9] 

using closed form/analytical solutions of the boundary value 

problem. 

Tables 1 and 2 reveal that the critical elastic buckling load 

Qxcr obtained by the modified single finite Fourier cosine 

transform method agreed remarkably well with the exact 

solutions obtained by Onah et al [9] using analytical/closed 

form methods of solving the boundary value problem. Tables 

1 and 2 further show that for h/l < 0.02 (for thin (slender) 

beams) the critical elastic buckling load is approximately 

equal to the critical buckling load obtained from the Euler 

Bernoulli beam buckling theory for fixed ends. Tables 1 and 2 

also reveal that for h/l > 0.02 the critical elastic buckling load 

coefficient decreases with increase in h/l, showing that the 

effect of transverse shear deformation is to significantly 

reduce the critical elastic buckling load capacity of the beam. 

 

 

6. CONCLUSION 

 

The conclusions of the study are as follows: 

(i) The modified single finite Fourier cosine integral 

transform method is an effective mathematical tool for 

solving the elastic buckling problem of moderately thick 

shear deformable beams with fixed ends for 

homogeneous isotropic materials. 

(ii) The integral kernel (nucleus) function of the modified 

single finite Fourier cosine integral transform satisfies all 

the geometric and force boundary conditions at the fixed 

ends and is an exact buckling modal function for the 

shear deformable beam with fixed ends for the choice of 

origin of the coordinate system used. 

(iii) The modified single finite Fourier cosine integral 

transform method transforms the governing fourth order 

ordinary differential equation for the problem to an 

algebraic eigenvalue problem given by a system of 

homogeneous algebraic equations. 

(iv) For nontrivial solutions of the system of homogeneous 

algebraic equations, the determinant of the coefficient 

matrix vanishes, yielding the characteristic buckling 

equation. 

(v) The n roots (zeros) of the characteristic buckling 

equation are found as the n eigenvalues of the eigenvalue 

problem. 

(vi) The n buckling loads are found from the n eigenvalues, 

and the minimum elastic buckling load called the critical 

buckling load was found to correspond to the first 

buckling mode for which n =1. 

(vii) The modified single finite Fourier cosine integral 

transform method gave exact expressions for the n 

buckling loads since the exact buckling mode which 

identically satisfied all the boundary conditions was used, 

and the domain governing equation was also satisfied 

identically. 

(viii) For h/l < 0.02, i.e. thin (slender) beams, the critical elastic 

buckling load coefficient is approximately the same as 

the critical elastic buckling load coefficient of Euler-

Bernoulli beam theory. 

(ix) For h/l > 0.02, the critical elastic buckling load 

coefficient decreases as h/l increases, and the effect of 

shear deformation is found to substantially reduce the 

critical buckling loads. 

(x) Shear deformation is an important consideration in the 

evaluation of the critical buckling load capacities of 

moderately thick beams for realistic designs. 
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