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The gas outburst in coalmines is influenced by multiple factors. These influencing factors are 

highly uncertain and have complex nonlinear relationships. Considering these features, this 

paper puts forward a gas outburst prediction model based on data mining and information 

fusion. On the feature level, the backpropagation neural network (BPNN) was selected to set 

up a gas outburst identification model, thanks to its strong self-learning ability, and then 

optimized by the improved particle swarm optimization (IPSO); then, the outputs of the 

optimized BPNN were taken as the identification results, and used to establish a feature 

database. On the decision level, the Dempster-Shafter (D-S) theory of evidence was introduced 

to fuse the identification results in the time domain and the spatial domain, and make decisions 

on the gas state of the coalmine based on the fused data. Finally, the proposed model was 

applied the predict the gas outburst in a coalmining area of a coalmine in Shanxi Province, 

China, using the data collected from the workface, intake airway, return airway and transport 

roadway. Our model fuses the data on two layers, namely, the time domain and the spatial 

domain, and reduces the prediction uncertainty to zero. The results show that our model can 

optimize the prediction parameters, enhance the accuracy of gas monitoring information, and 

improve the correctness of decisions concerning gas outburst in the coalmine. 
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1. INTRODUCTION

China is a world-leading coal producer. Roughly 30% of its 

coalmines either have a high gas content or face a high risk of 

gas outburst. In China, gas outburst accidents occur from time 

to time, posing a serious threat to work safety of coalmines [1]. 

Gas outburst refers to the sudden and violent ejection of coal 

and gas from the coal seam (rock mass). It is an extremely 

dangerous dynamic phenomenon in the coalmining process. A 

gas outburst often brings heavy casualties and property losses, 

and may induce secondary incidents like fire and gas explosion 

[2, 3]. 

As coalmines get deeper, the risk and damage of gas 

outburst are soaring, under the high geo-stress and high gas 

pressure. Being a complex dynamic phenomenon in coal 

mining, gas outburst is formed under the action of multiple 

factors. Thus, the data on gas outburst are a collection of 

numerous parameters, various objectives and intricate 

information. Currently, there is a huge amount of data on gas 

outburst. However, the data are inaccurate, difficult to model, 

and dynamically changing. To predict gas outburst and ensure 

coalmine safety, it is imperative to extract valuable 

information out of the massive data. Many experts and 

scholars have explored deep into gas outburst, and proposed 

many hypotheses on its formation mechanism. Some 

hypotheses attribute the gas outburst to the action of a single 

factor, and some ascribe it to the action of multiple factors [4-

6]. 

The single-factor hypotheses emphasize on the dominant 

role of a single factor in the formation of gas outburst, such as 

gas, geo-stress and chemical reactions. The multi-factor 

hypotheses consider gas outburst the result of combined 

effects of stress, gas pressure and physical-mechanical 

properties of coal. Most scholars at home and abroad have 

accepted the multi-factor hypotheses, because these 

hypotheses consider both the forces and media at the gas 

outburst. As a result, a series of indices about stress, gas 

pressure or the physical-mechanical properties of coal have 

been adopted for the prediction of gas outburst, giving birth to 

many effective prediction methods. The most popular methods 

fall into comprehensive index prediction (CIP) and non-

contact prediction (NCP). 

The CIP boasts excellent prediction results. This prediction 

strategy makes use of indices like gas pressure, gas content, 

geo-stress, coal seam thickness, firmness coefficient of coal 

and damage type of coal. Many advanced mathematical 

approaches have been integrated into the CIP, namely, neural 

network (NN), fuzzy comprehensive evaluation (FCE), gray 

system theory (GST), support vector machine (SVM) and data 

fusion. Meanwhile, the NCP relies on methods like gas 

emission characteristic method, acoustic emission, 

electromagnetic radiation and micro-seismic monitoring, and 

has been applied in many coalmines [7]. 

2. LITERATURE REVIEW

Gas outburst is a dynamic phenomenon induced and 

influenced by multiple complex factors. For many years, 

domestic and foreign researchers have extensively explored 

the mechanism and evolution of gas outburst, and predicted its 

occurrence, yielding fruitful results [8-18]. For instance, An et 
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al. [8] provided a method to calculate the gas expansion energy 

for outburst initiation, according to the effect of coal damage 

and the change of environmental pressure for desorption, and 

applied the method to predict the gas state in coalmines. 

Inspired by data mining, Nilufer and Mustafa [9] established a 

gas disaster information fusion model based on fuzzy-rough 

set data mining algorithm, and thus improved the prediction 

accuracy of gas outburst. Chen et al. [10] designed a gas-

driven gas outburst test system, which can predict the gas 

outburst for standard coals and raw coals at different 

temperatures and gas pressures. Liu et al. [11] combined the 

fuzzy neural network (FNN) and Dempster-Shafter (D-S) 

theory of evidence to determine the level of gas outburst risk 

of coalmine workface, took the NN output as the basic belief 

assignment function, and predicted the gas outburst after 

fusing information twice.  

Data mining and information fusion are two techniques to 

process massive data and extract useful knowledge. The 

former mainly extracts the unknown and potentially usable 

patterns hidden in a large amount of incomplete, noisy, and 

fuzzy data, while the latter aims to produce new meaningful 

information through multi-level, multi-faceted and multi-layer 

processing and combination of the data collected by several 

groups of sensors [9]. The two techniques complement each 

other, and can be integrated deeply to analyze complex data in 

real-world applications. Therefore, it is very meaningful to 

apply data mining and information fusion to prediction of gas 

outburst in coalmines. 

Tu et al. [12] established an experimental device to simulate 

the gas outburst of coal seam, and studied the influence of 

abnormal gas distribution on the outburst. Liu et al. [13] 

developed a hybrid prediction method based on genetic 

algorithm (GA) and backpropagation neural network (BPNN), 

and optimized the weights and thresholds of the NN with the 

global search ability of the GA. To predict gas outburst, 

Papalexakis et al. [14] optimized the mainly parameters of the 

SVM with differential evolution-distributed estimation 

algorithm, and improved the training speed and accuracy of 

the prediction model. Tu and Yan [15] created an early-

warning method for gas outburst based on wavelet packet 

entropy and data fusion, in which the data from multiple 

sensors are processed through mean-based batch estimation 

and fusion and the features are extracted according to the 

number of layers of wavelet packet decomposition based on 

reconstructed signal energy; the early-warning method was 

proved to be effective through experiments. To sum up, the 

above studies have presented rather good methods to predict 

the gas outburst in coalmines. However, there are still several 

defects with these methods: First, the NN faces problems like 

overlearning and slow convergence; the classification effect of 

SVM models depends on the selection of kernel function and 

penalty parameters, which are difficult to choose rationally.  

According to the above review, the existing prediction 

strategies for gas outburst cannot always issue correct early 

warning of gas outburst, for they often overlook how sensitive 

the outburst indices respond to gas outburst, or manually 

assign weights to the indices. To solve the problem, this paper 

fully integrates data mining with information fusion to predict 

gas outburst in coalmines. Firstly, the BPNN, an NN with self-

learning ability, was adopted to construct a gas outburst 

identification model, and optimized by the improved particle 

swarm optimization (PSO); the outputs of the optimized 

BPNN were taken as the identification results, and used to 

establish a feature database. Next, the D-S theory of evidence 

was employed to fuse the identification results in the time 

domain and the spatial domain, and make accurate decisions 

on the gas state in the coalmine based on the fused data. 

 

 

3. METHODOLOGY 

 

3.1 Gas outburst prediction model 

 

The gas outburst is a severe natural disaster that bottlenecks 

work safety in coalmines. The existing gas monitoring system 

mainly performs local monitoring and management, such as 

judging whether the local data have surpassed the limit, and 

outputting the data collected at the same point. There is a lack 

of effective processing or interpretation of the monitoring data, 

making it difficult to predict or prewarn gas outburst [16-18]. 

To make matters worse, gas outburst is influenced by various 

factors. It is irrational to make accurate predictions based on a 

single factor or by a single method. To overcome the above 

defects, this paper integrates data mining and information 

fusion to predict gas outburst. The merits of the two techniques 

were combined to improve the prediction accuracy. 

Our gas outburst prediction model was established in two 

steps. First, on the feature level, the BPNN was selected to set 

up a gas outburst identification model, thanks to its strong self-

learning ability, and then optimized by the IPSO; then, the 

outputs of the optimized BPNN were taken as the 

identification results, and used to establish a feature database. 

Second, on the decision layer, the D-S theory of evidence was 

employed to fuse the identification results in the time domain 

and the spatial domain, and make decisions on the gas state of 

the coalmine based on the fused data.  
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Figure 1. Gas outburst prediction model based on data mining and information fusion 

 

On the feature level, the main operations are data mining 

and modelling. The raw data were analyzed, and then the 

features were extracted from the data. Based on normal and 

abnormal information, a feature database was set up for 
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modelling. Several self-learning modelling methods based on 

data mining are often adopted to learn and recognize the 

decision-making rules and construct classifiers: rough set 

theory (RST), decision tree (DT), multilayer perceptron (MLP) 

and BPNN. 

On the decision layer, the decision-making and reasoning 

were conducted based on the information fusion method and 

the model established based on data mining. The decisions 

could be made by the D-S theory of evidence, the RST or NN. 

The established prediction model for gas outburst in coalmines 

is as shown in Figure 1 above. 

 

3.2 Data mining algorithm of gas outburst information 

 

In the coalmine, the underground environment is extremely 

complex. Thus, most of the data collected by the gas 

monitoring system are noisy, incomplete and stochastic. To 

make accurate prediction of gas outburst, the useful patterns 

should be fully mined out of the collected data, providing a 

strong support to risk control and decision-making of gas 

outburst risk. 

There are two types of learning methods for data mining: 

supervised learning and unsupervised clustering. Supervised 

learning is to estimate unknown correlations from known input 

and output samples, establish a classification model, and use 

the model to classify the instances of unknown sources [19]. 

The BPNN is a typical supervised learning method. During 

BPNN-based self-learning modeling, the free parameters can 

adjust themselves adaptively to the changing environment. 

However, the BPNN is slow in convergence and prone to the 

local optimum trap.  

Proposed by Eberhart and Kennedy, the PSO is an 

evolutionary algorithm based on swarm intelligence, which 

mimics the movement behavior of bird flock or fish swarm. 

The PSO has been widely adopted to solve optimization 

problems, because it enjoys a powerful global search ability, 

adopts the real number code and has a few parameters to be 

adjusted. It is easy to train any NN and improve its 

convergence speed with the PSO [20-22]. Therefore, this paper 

integrates the PSO and the BPNN, giving full play to the 

global search ability of the PSO and the local search ability of 

the BPNN. The integration mainly optimizes the connection 

weights and topology of the BPNN. 

 

3.2.1 BPNN 

The BPNN is one of the most popular and mature NNs. This 

network contains three or more layers of neurons. There is 

usually an input layer, one or more hidden layers and an output 

layer [18]. Once a learning sample is inputted to the network, 

the activation value of each neuron on the input layer will to 

the output layer via the intermediate hidden layers. Then, the 

neurons on the output layer will respond to the input. The 

response will be backpropagated to the input layer via the 

intermediate hidden layers, with the aim to minimize the error 

between actual output and desired output. In this way, the 

connection weights are corrected layer by layer. As the error 

backpropagation continues, the BPNN can make increasingly 

correct responses to the inputs. Figure 2 illustrates the 

structure of a three-layer BPNN.  

Let n, p and q be the number of neurons on the input layer, 

hidden layer and output layer of the BPNN, respectively, m be 

the number of learning samples, Ak=(a
k 

1 ,a
k 

2 ,…,a
k 

n )(k=1,2,…,m) 

be the input vector and Yk=(y
k 

1 ,y
k 

2 ,…,y
k 

q ) be the corresponding 

output vector. Suppose each hidden layer is activated by 

Sigmoid function. 

 

 
 

Figure 2. The structure of a three-layer BPNN 

 

Then, the output b
k 

j of hidden layer neuron j can be expressed 

as: 
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n
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j
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− =                 (1) 

 

where, ωij is the connection weight between input and hidden 

layers; θj is the threshold of the hidden layer. 

The output of output layer neuron t can be expressed as: 
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k k

t jt j t

j

c f v b t q
=
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where vjt is the connection weight between hidden and output 

layers; γt is the threshold of the output layer. 

The generalized error of each output layer neuron can be 

expressed as: 

 

= , 1,2, ,k k k

t t td y c t q− =                          (3) 

 

The error function can be established as: 

 

2

1

= ( ) 2
q

k

k t

t

E d
=

                                        (4) 

 
This paper designs a three-layer BPNN containing six 

neurons on the input layer and five neurons on the output layer. 

The input layer neurons represent the influencing factors of 

gas outburst, including the initial velocity of gas diffusion, 

type of coal failure, gas pressure and geological structure; the 

output layer neurons represent the existence or severity of 

abnormality, namely, safe, mild, medium, severe, extremely 

severe. The selection of hidden layer neurons is the key to the 

successful simulation of the BPNN. The number of hidden 

layer neurons directly hinges on the problem requirements, the 

inputs and the outputs. This number is generally determined 

empirically or through tests. The weights of the BPNN were 

adjusted to desirable levels through iterative training of the 

BPNN by the IPSO. 

 
3.2.2 BPNN optimization by the IPSO 

The PSO is a swarm intelligence algorithm inspired by the 

migration and aggregation behaviors of a bird flock in the 

foraging process. The algorithm is simple and easy to realize, 

and has been widely applied in various fields [23]. 

Suppose there exists a swarm of m particles in a D-

dimensional space. Let xi=(xi1,xi2,…,xiD)T, i=1,2,…,m be the 

position of particle i, vi=(vi1,vi2,…,viD)T be the velocity of 

particle i, pi=(pi1,pi2,…,piD)T is the best-known position of 
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particle i at time t, and pg=(pg1,pg2,…,pgD)T is the best-known 

position of the swarm at time t. During the optimization in free 

space, each particle updates its velocity and position by: 

 

1 1 2 2( 1) ( ) [ ( )] [ ( )]iD iD iD iD gD iDv t v t c r p x t c r p x t+ = + − + −   (5) 

 

                     (6) 

 

where, ω is the inertia coefficient; r1and r2are random numbers 

in [0, 1]; c1and c2are learning factors. The intervals of the 

position and velocity of a particle can be set properly to control 

its movement.  

In the PSO, each particle gradually approaches the 

individual and global extremes. However, it is very likely that 

all the particles converge to and stop at an extreme value, 

resulting in a decline of convergence. To solve the problem, 

Xu proposed the sub-dimension (s-d) PSO, which iteratively 

updates each dimension of a particle and evaluates the fitness 

in each dimension after the update. By the s-dPSO, the updated 

position of particle i can be expressed as: 

 

( )
' ( ) ( ) ( ) ( 1) ( 1)

1 2

t t t t t t

i i i id id imx x x x v v+ += + +                   (7) 

 

Then, is compared with x
t 

i  in fitness, and the one with the 

higher fitness is selected 
't

ix for the next iteration. After all the 

dimensions have been updated, x
(t+1) 

i =x
(t) 

i . Since the fitness of 

each dimension is always improved through the update, the 

updated value of each particle must be the best-known value 

since the start of the iterative process. In the IPSO, the velocity 

of each particle is updated by: 

 

 ( )( 1) ( ) ( ) ( )

1 1

t t t t

id id gd idv v c r p x+ = + −                        (8) 

 

The degree of particle aggregation in each dimension can 

be described by the dimension diversity d(j): 

 

( ) ( )
2

,

1

1 n

i j j

i

d j x x
n =

= −                         (9) 

 

The value of d(j) of a dimension is negatively correlated 

with how many particles aggregate in that dimension. Then, 

the particles are sorted by d(j), and the top-ranking particles 

are subjected to mutation: the value of each particle in that 

dimension is redefined to disrupt the aggregation of particles. 

The BPNN optimized by the IPSO can be implemented in 

the following steps: 
Step 1: Determine the structure and parameters of the 

BPNN based on the IPSO. 

The number of input layer neurons I and the number of 

output layer neurons O of the BPNN are determined according 

to the length of input vector and that of output vector, 

respectively. The number of hidden layer neurons H is selected 

by experts in an empirical manner. The size of particle swarm 

N, the initial and final inertia weights ωstart and ωend, the 

learning factors c1 and c2, and the maximum number of 

iterations Gmax are set up in turn. In addition, the values of ωij, 

vjk, θj and ψk are randomly initialized within (0, 1). 

Step 2: Establish the mapping between particles in the IPSO 

and the parameters to be optimized in the three-layer BPNN. 

Note that these parameters should be expressed as 1D matrices. 

Step 3: Compute the fitness matrix. 

A fitness matrix should be established to evaluate the 

quality of each particle in the swarm. During the training, the 

sum squared error (SSE) and mean squared error (MSE) 

between the actual outputs and desired outputs of the BPNN 

can be respectively computed as: 

 

( )
0

2

1 1

p

k k

p k

SSE y c
= =

= −                           (10) 

 

( )
0

2

1 1

1 p

k k

p k

MSE y c
p = =

= −                        (11) 
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Figure 3. The workflow of the optimization of the BPNN by the IPSO 
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Step 4: Update the individual and global best-known values. 

If the current fitness of a particle is better than the individual 

best-known fitness Pbest, then Pbest should be replaced with the 

current fitness; If the best fitness among all particles is better 

than the global best-known fitness Gbest, then Gbest should be 

replaced with that value. 

Step 5: Update the velocity and position of each particle. 

The velocity and position of each particle should be updated 

by the said formulas, and the velocity should be constrained in 

a reasonable interval. 

Step 6: Terminate the algorithm and output the optimal 

network. 

According to the termination conditions, the algorithm 

should be terminated to output the optimal solution, if the 

maximum number of iterations is reached or the training error 

falls below a specified level. 

Figure 3 explains the flow of the optimization of the BPNN by 

the IPSO. 

 

3.2.3 Decision-level fusion based on D-S theory of evidence 

In the D-S theory of evidence [24-27], the set of all possible 

propositions is defined as a universe X={x1,x2,…,xn}, and the 

basic belief assignment function is defined as m:2X→[0,1], 

which satisfies: 

 

  

A

m( ) 0

0 m(A) 1, A x

m(A)=1
X






=


   





                        (12) 

 

Each subset of propositions is bounded by two values, belief 

(Bel) and plausibility (pl): 

 

( ) ( )
B A

Bel A m B


=  , A X                    (13) 

 

( ) 1 ( ) ( )
B A

pl A Bel A m B
 
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Suppose there are two belief functions Bel1 and Bel2 in the 

same universe. The basic belief assignments of the two belief 

functions are respectively m1 and m2, while the focal elements 

of the two functions are A1,A2,…,Ak and B1,B2,…,Bn, 

respectively.  

If ( ) ( )1 2 1
i j

i j

A B

m A m B
=

 , then the combined basic belief 

assignment m:2X→[0,1] can be expressed as: 
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                     (15) 

 

The intersection of the cores of Bel1 and Bel2 is the core of 

the combined basic belief assignment. The direct sum of Bel1 

and Bel2 is denoted as Bel1Bel2. Suppose there are multiple 

belief functions Bel1,Bel2,…,Beln in the universe X, whose 

basic belief assignments are m1,m2,…,mn. If there exits 

Bel1Bel2Beln, then the combination of the n belief 

functions can be expressed as: 

 

( ) 1 2 3 nBel Bel Bel Bel Bel=                      (16) 

 

 

4. SIMULATION AND RESULTS ANALYSIS 

 

4.1 Simulation of BPNN optimized by IPSO 

 

Before the simulation, the parameters of the BPNN and the 

IPSO were configured as follows: size of particle swarm, 

N=20; number of dimensions of each particle, 2; learning 

factors, c1=1.5and c2=1.7; the maximum number of iterations, 

300; the desired error of training, 0.00001 (MSE); number of 

hidden layer neurons, 8. The number of hidden layer neurons 

was determined through several training experiments. The 

BPNN structure is 6-8-5, i.e. six input layer neurons, 8 hidden 

layer neurons and 5 output layer neurons. Then, both the 

BPNN and the BPNN optimized by the IPSO were simulated. 

The results in Figures 4 and 5 show that the optimized BPNN 

achieved much more stable fitting results than the original 

BPNN, which relies on empirical values or expert scoring. 

Therefore, the local minimums are effectively avoided through 

the iterative optimization of the BPNN by the IPSO. 

 

 
 

Figure 4. The fitting curve of the original BPNN 

 

 
 

Figure 5. The training error curve of the BPNN optimized by 

the IPSO 
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4.2 D-S-based decision-making 

 

The outputs of the optimized BPNN were normalized and 

taken as the basic belief assignments for the D-S theory of 

evidence. The evidence set was divided into several unrelated 

parts. Then, two deductions were carried out based on the D-S 

theory of evidence: data fusion in the time domain (the 

information collected at different time from the same location 

was fused to improve the diagnosis accuracy for that location), 

and then data fusion in the spatial domain (the identification 

results under the same state from different locations were 

fused in the spatial domain to improve the correctness of the 

final decision). 

Two sets of real-time data were collected from four 

locations, namely, the workface, intake airway, return airway 

and transport roadway, in a coalmining area of a coalmine in 

Shanxi Province, China. The collected data were inputted to 

the optimized BPNN, creating a three-layer network with 6 

input layer neurons, eight hidden layer neurons and five output 

layer neurons. The outputs of the network were taken as the 

predicted risk of gas outburst. The hazard of gas outburst was 

divided into five level: safe (level 0), mild (level 1), medium 

(level 2), severe (level 3) and extremely severe (level 4), 

denoted as {F1, F2, F3, F4, F5}. The predicted level was 

adopted as the basic belief assignment function for decision-

making based on D-S theory of evidence. Table 1 shows the 

values of the basic belief assignment functions. 

Then, the information collected at different time from the 

same location was fused. The results are displayed in Table 2. 

As shown in Table 2, the information in the workface and 

the intake airway was fused well, indicating that the two 

locations are safe. However, the basic beliefs of the return 

airway and transport roadway were not clearly distinguishable, 

especially in the return airway (two levels of risk were 

obtained here: mild and medium). This calls for further fusion 

in the spatial domain. Thus, the results under the same state 

from different locations were fused. The fusion results are 

shown in Table 3 below. 

Through the fusion in the spatial domain, the result shows 

that the coalmine has a mild risk of gas outburst. In this case, 

the uncertain is approximately zero. 

 

Table 1. The values of the basic belief assignment functions 

 

Location 
Basic belief assignment functions 

F1 F2 F3 F4 F5 Uncertainty 

1 
0.987301 0.004380 0.008124 0.998905 0.007823 0.006729 

0.981257 0.008764 0.004231 0.973218 0.006237 0.003219 

2 
0.007691 0.983785 0.003481 0.006372 0.998733 0.004623 

0.003789 0.989836 0.006341 0.004125 0.975479 0.005432 

3 
0.003817 0.004870 0.993872 0.005698 0.006321 0.008726 

0.003287 0.005128 0.977863 0.002437 0.004328 0.006584 

4 
0.007612 0.798321 0.003218 0.851283 0.007987 0.007983 

0.005436 0.842318 0.004356 0.821872 0.008794 0.009546 

 

Table 2. The results of data fusion in the time domain 

 

Location 
Basic belief assignment functions 

F1 F2 F3 F4 F5 Uncertainty 

1 0.005436 0.842318 0.004356 0.006231 0.009987 0.000954 

2 0.006231 0.832183 0.009987 0.003219 0.007612 0.000712 

3 0.004328 0.007634 0.821981 0.003298 0.006326 0.001235 

4 0.005431 0.005348 0.812768 0.003214 0.004321 0.002543 

 

Table 3. The results of data fusion in the spatial domain 

 
Basic belief assignment functions 

Result 
F1 F2 F3 F4 F5 Uncertainty 

0.00001 0.43652 0.0001 0.0000 0.0000 0.0000 F2 

 

 

5. CONCLUSIONS 

 

The gas outburst in the coalmine is affected by various 

complex factors. It is difficult to predict the hazard by a single 

nonlinear method. To solve the problem, this paper combines 

data mining with information fusion to predict the level of gas 

outburst of coalmines. The combined method overcomes the 

difficulty in modelling of information fusion systems, and 

improves the system’s prediction accuracy of gas outburst. The 

main conclusions are as follows: 

(1) Considering the ability of data mining in self-learning 

modelling, the author established an identification model for 

gas outburst information based on the BPNN, and optimized 

the weights and parameters of the BPNN by the IPSO. The 

optimization enhances the global search ability and 

convergence speed of the entire system. 

(2) The D-S theory of evidence was introduced to fuse the 

identification results on gas outburst, and make decisions on 

the gas state of the coalmine. The outputs of the optimized 

BPNN were adopted as the values of the basic belief 

assignment functions, eliminating the subjectivity in the 

assignment process of the D-S theory of evidence. Then, the 

proposed model was applied the predict the gas outburst in a 

coalmining area of a coalmine in Shanxi Province, China, 

using two sets of real-time data collected from the workface, 

intake airway, return airway and transport roadway. The results 

show that our model reduced the uncertainty to zero, and 

improved the accuracy in the prediction of gas outburst in 

coalmines. 

(3) Gas outburst is a hazardous dynamic phenomenon, 
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which is influenced and induced by various complex factors. 

The future research will further explore the formation 

mechanism of this hazard, and improve the prediction of gas 

outburst. 
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