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 In pharmaceutical research, a recent hotspot is the study of the activity of bioactive compounds 

and drugs with computational intelligence. The relevant studies often adopt machine learning 

techniques to speed up the modelling, and rely on bioassay to evaluate the effect and potency 

of a compound or drug. This paper aims to design an efficient and accurate method to assess 

the activity of bioactive compounds and drugs. First, the authors performed virtual screening 

on the data on bioactive compounds and drugs, eliminating the imbalanced classes and high 

dimensionality of drug descriptors. Next, eight machine learning algorithms, namely Bayes 

Net, Naive Bayes, SMO, J48, Random Forest, AdaBoost, AdaBag and logistic regression, were 

trained by the virtually screened data, and used to predict the activity or inactivity of a drug 

through bioassays. The synthetic minority oversampling technique (SMOTE) was employed 

to solve the numerous imbalanced datasets in bioassay. On this basis, the ensemble machine 

learning model of random forest was optimized. Experimental results show that the optimized 

random forest machine learning framework achieved better results than the other ensemble-

based machine learning methods. The research provides an effective way to perform bioassays 

on high-dimensional imbalanced data.  

 

Keywords: 

machine learning, ensemble, bioassays, 

SMOTE, drug prediction 

 

 

 
1. INTRODUCTION 

 

Pharmaceutical drugs substantially affecting the life of 

people. A human requires drugs for the prevention of disease 

or to help in diagnosis or illness. But the process of drug design 

and development is quite expensive to buy. Computational 

Intelligence can help to reduce the cost of the drug 

development process [1]. The report of Global view Research 

in 2018 implies that global drug discovery market estimation 

in 2016 was $713.4 million and it is anticipated to the progress 

at a CAGR (Compound Annual Growth Rate) of 12.6% by 

2025. Artificial intelligence and machine learning noble 

techniques have helped many researchers in finding cost 

effective solution in diverse domains like drugs discovery, 

audits, etc. [2-4]. By using Artificial Intelligence in drug 

discovery, it increases the drugs market rapidly. By 2028, 

Bekyle indicates that Artificial Intelligence has the power to 

save $70 million in drug discovery [1].  

Virtual screening is the computational technique of 

biological compounds and supplements the HTS procedure, 

used in drug discovery to search libraries of small molecules. 

It automatically evaluates very large libraries of compounds 

using computer programs. There are two types of compounds 

present in the bioassays. The compounds which are used for 

the prevention of disease are called active drugs and other 

compounds that are used for balancing the drug molecules and 

power of drugs, are called inactive drugs [5]. 

PubChem is a public source database of chemical molecules 

and their activities against the organic assays [6]. It is kept up 

by the National Center for Biotechnology Information (NCBI), 

a segment of the National Library of Medicine, which is a 

piece of the United States National Institutes of Health (NIH) 

[7]. The discovery of new drugs required High-Throughput 

Screening (HTS) and it is a very tedious task that takes 10-15 

years to bring drugs into the market. In HTS, the number of 

compound batches are screened against bioassay to examine 

the compound capability to combine the objective. The 

strenuous efforts are required to process such high-

dimensional virtual screening data with class imbalance issues. 

It means that there are numerous features in the data and the 

number of active compounds is very less than inactive 

compounds [5]. 

In this paper, the machine-learning framework is proposed 

to overcome the high dimensionality and class imbalance 

problems in virtual screening data and to predict the active and 

inactive compounds in BioAssays. To handle high 

dimensionality issues, feature selection is employed. Gini 

index ranker is used to extract the important features and 

remove the irrelevant ones. For class balancing SMOTE 

algorithm is used. This algorithm balances the imbalance 

classes by taking the nearest neighbors and generates the same 

features for the target class [8]. 

Rest of the paper organized as follows: Section 2 briefly 

describes various methods and the related work. Section 3 

defines the dataset used and the tentative view of the 

frameworks. Section 4 describe dataset description and 

experimental settings. Section 5 shows the results and 

comparison of the framework. Finally, Section 6 conclusion of 

the paper. 

 

 

2. RELATED WORK 

 
Most part of the research has concentrated regarding the 

issue of drug discovery over virtual screening by different 

strategies with the point of discover active chemicals. Daniel 
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P. Russo et al. proposed an automated extraction using a 

computational method for bioassay data from a public source 

library and predict the toxicity in animals using a novel bio 

profile-based read-across approach. In this work, the relevant 

toxicity mechanism and acute oral toxicity were identified by 

using a novel subspace-clustering algorithm [9]. Conrad Stork 

et.al proposed a machine-learning model in which they use 

some silico methods for the prediction of the frequent hitters 

or problematic compounds. The models were taken from the 

PubChem BioAssay database consisting of 311k compounds 

[10]. Manole-Stefan Niculescu proposed an automated optical 

method experimented on a Siemens Dimension EXL200 

analyzer. This method is used for improving the accuracy of 

biochemical assays. It has a cuvette window, which is used to 

examine the quantity of analyte from the cuvette. The cuvette 

window analyzes the samples for every time to maintain some 

assay conditions [11]. Ming Hao el.al proposed an algorithm, 

GLM Boost that combines with SMOTE to get the better 

results of the problem of several mismatch datasets from 

PubChem BioAssay. By applying the proposed model, those 

samples have poor results generated can be detected as high 

balance accuracy [12]. Bin Chen et.al proposed predictive 

models that enabled “virtual screens” to identify compounds 

in a large dataset. In this paper, they examine the quality of 

Naive Bayesian predictive models constructed using BioAssay 

data [6]. 

 

 

3. PROPOSED WORK 
 

Figure 1 presented the abstract view of the prediction model. 

The BioAssay Data, which contains Virtual Screening Primary 

and Confirmatory BioAssays is given to the machine learning 

framework. In the machine learning framework first, it splits 

that data into two parts training and testing. The given data is 

highly imbalanced and has many features. Therefore, for 

balance the unbalanced data SMOTE algorithm is applied. In 

the next step, the Gini index is applied to the training data. It 

aims to choose the best subset features which are useful and 

good relation with the target feature. After selecting important 

features, examine different classifiers on the training data by 

validating with the test data and in last check the overall 

performance of the model, which classifier gives the best 

results. 

 

 
 

Figure 1. Abstract view 

3.1 Class balancing by SMOTE algorithm 

 

Preprocessing means preparation of data before training the 

classifier. In our dataset, the biochemical composites used in 

virtual screening are imbalanced classes of active and inactive 

compounds. Therefore, to balance the dataset Synthetic 

minority Oversampling Technique (SMOTE) is applied, 

which increases the number of minority classes until the data 

was balanced. 

SMOTE algorithm is used to solve the problem of an 

imbalance of data. It is the oversampling method, which 

generates the virtual training records for the minority class. 

These records are generated by randomly for selecting the 

nearest neighbors by using k-nearest neighbor’s algorithm for 

the minority class. After this, the information is remade and 

few classification models can be applied for the processed 

information [6]. 

 

Algorithm 1. SMOTE algorithm 

Comment: {rand (0, 1) denotes the random numbers 

between zero and one.} 
1. Set the minority class N for each x ∈ K. The k-

nearest neighbor is calculating the Euclidean distance 

between x and in set N. 
2. The imbalanced proportion sets the testing rate k. 

For each x ∈ K, K samples are casually chosen from its k-

nearest Neighbor and they build the set N1. 
3. Every sample xr ∈ N1(r = 1,2,3,....N), this is 

used to generate the new sample x = x + rand(0,1) ∗ |x–xr| 

[6]. 
 

3.2 Feature selection 

 

It is the most significant preprocessing stage that applied 

before the training classifier. It aims to pick the subset features, 

which are extra important and have a good relationship with 

the target. In this paper, the Gini index is applied to the training 

data to select the best features from the highly imbalanced data. 

Gini (D) is defined as: 

 

Gini (D) =1-                          (1) 

 

pj =  
count of specific class label

total count of D
 

 

where, pj describes the relative frequency of class j in D [13]. 

 

3.3 Ensemble classification 

 

The machine learning framework is proposed for the 

extrapolation of active and inactive compounds in BioAssay 

data. There are eight distinct models namely, Bayes Net (BN), 

Naive Bayes (NB), Logistic Regression (LR), Support Vector 

Machine (SVM/SMO), Random Forest (RF), Adaboost, 

Adabag, and J48 are used. The Bayes Net classifier is related 

to the Direct Acyclic Graph whose knobs represent variables 

in the Bayes Net perception [14]. Naive Bayes classifier are a 

collection of algorithms where each algorithm has the same 

principle. It is based on the Bayes Theorem [15]. The purpose 

of using Logistic Regression is to model probability of events 

like true/false, binary 0/1, pass/fail, win/loose alive/dead or 

healthy/sick [16]. The Support Vector Machine (SVM/SMO) 

is used to solve the quadratic optimization problems during 

train the support vector machine [17]. 
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Random Forest is ensemble classifier and is made by a 

combination of multiple decision trees. It requires more 

computer memory as compared to other classifiers [18]. 

Adaboost is the combination of multiple classifiers into a 

single classifier and it is used to solve both classification and 

regression problems [19]. Adabag is the combination of 

individual classifiers that built in the training sets of the 

bootstrap copies [20]. J48 labeled the input data and based on 

that data it creates a decision tree that is used for classification 

[21]. After analyzing these algorithms, optimize the best 

machine learning algorithm to improve the results. 

 

 

4. EXPERIMENTAL INVESTIGATION  

 

This segment briefly explains the dataset description and 

experimental view of the model. 

 

4.1 Dataset description 

 

21 data set were created using High Throughput Screening 

(HTS) technology. Each dataset has 21 training and 21 testing 

subsets in the database. The further whole dataset is divided 

into two parts, primary and confirmatory in which 7 datasets 

are of primary screening, 10 datasets are of confirmatory 

screening and four datasets are both primary and secondary 

(confirmatory) screening [5]. The primary screening of 

bioassay allows direct high throughput binding measurement 

of small compounds without classifying it. On the other hand, 

mistakes occur during primary HTS for that secondary 

screening performs on the primary screening data. It is 

designed to confirm successes competence by a series of 

useful assays. The major role of secondary screening is to 

identify the useful response of composites somewhat creating 

it be a high throughput format [22]. 

In this research, the primary dataset is taken for the 

prediction of bioassays. The dataset contains 4279 compounds. 

The biological compounds are selected on the basis of 

preliminary virtual screening of approximately 480,000 drug-

like small molecules from the Chemical Diversity 

Laboratories. It contains 144 features of 3423 of different drug 

instances. The parameters include binary features that help in 

the prediction of active and inactive drugs. This dataset is 

taken from the UCI machine learning repository [23]. 

 

4.2 Experimental setting 

 

Various dissimilar model building methods are executed 

using R language. The main goal of this experiment is to 

calculate the accuracy and make predictions of the classifier. 

The dataset is divided into two forms training and testing data. 

To train the model, training data is fed to the classifier after 

preprocessing the data. Then it is validated by using test data. 

To evaluate results of the anticipated framework numerous 

evaluation metrics such as accuracy, TP rate, FP rate, F-

measure, MCC, SAW score, and ROC are used. 

 

 

5. RESULT AND DISCUSSION 

 

This segment describes the results, performance estimation, 

and comparison of the framework on benchmark dataset. 

 

5.1 Performance evaluation 

 

The performance of the proposed framework is tested using 

various metrics [24] like Accuracy, TP Rate, FP Rate, F-

Measure, MCC, and AUC presented in Table 1. It shows the 

performance comparison of optimized Random Forest with 

other classifiers. On the basis of Table 1, various graphs are 

plotted to show the comparative analysis of different 

classifiers. In Figure 2, a performance comparison of the 

machine learning framework is presented graphically. Figure 

2(a) shows the accuracy of different classifiers. In this Figure, 

Optimized Random Forest has the highest accuracy among all 

because it is an ensemble tree-based structure model that is 

made up of many trees. It creates different small models by 

taking two or more features randomly and make a final model 

based on their results. Figure 2(b) shows the ROC curve, 

which means how classifiers are performing generally. It plots 

the true positive rate against the false positive rate. The model 

which has a higher positive rate gives better performance. In 

this, Optimized Random Forest has the highest ROC among 

all classifiers. Figure 2(c) shows the TP Rate, which means the 

correctly classified instances. Optimized Random Forest, 

Adabag and Bayes Net perform good to classify the instances 

correctly because Random Forest and Adabag bothe are 

ensembled algorithms and Bayes Net is the type of 

probabilistic graphical model that uses bayesian inferences. 

Figure 2(d) shows the FP Rate, which means falsely classified 

instances. Bayes Net perform well to falsely classify the 

instances among all because it is a graph-based model that uses 

the concept of probability distribution and probability theory 

for predictions [20].  

These metrics performed on different classifiers like Bayes 

Net (BN), Naive Bayes (NB), Logistic Regression (LR), 

SVM/SMO, Random Forest (RF), Adaboost, Adabag, and J48 

[2]. In all these classifiers, it can be observed that Random 

Forest gives the highest accuracy and Adaboost has the lowest, 

which is 71%. The ROC curve value of Naive Bayes and 

Random Forest is highest among others. 

 

 

Table 1. Performance comparison of optimized random forest with other classifiers 

 

Classifier 
Bayes 

Net 
Naive 

Bayes 
SVM J48 Adaboost Adabag 

Logistic 

Regression 
Random 

Forest 
Optimized Random 

Forest 
Accuracy(%) 98.60 76.52 87.62 96.26 71.49 98.71 90.89 98.94 99.81 

TP Rate 0.99 0.77 0.88 0.96 0.72 0.99 0.91 0.99 0.99 
FP Rate 0.99 0.00 0.41 0.58 0.42 0.49 0.58 0.58 0.66 

F-Measure 0.99 0.85 0.92 0.97 0.82 0.99 0.94 0.99 0.99 
MCC 0.32 0.21 0.16 0.25 0.08 0.52 0.14 0.54 0.54 
AUC 0.22 0.91 0.73 0.70 0.78 0.79 0.73 0.87 0.92 

SAW Score 0.78 0.74 0.78 0.85 0.72 0.92 0.82 0.97 1.00 
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(a) Accuracy 

 
(b) ROC 

 
(c) TP Rate 

 
(d) FP Rate 

 

Figure 2. Comparison chart of machine learning framework 

with classifiers using accuracy, ROC, TP rate, and FP rate 

 
 

Figure 3. SAW Comparison graph 

 

 
(a) Threshold curve of random forest 

 
(b) Threshold curve of random forest with SMOTE 

 

Figure 4. Threshold curve of random forest (class value 

active) 

 

In Figure 3, represents the comparison of machine learning 

algorithms and compute the SAW score for all of them, which 

is displayed in the Table 1. In SAW comparison, the graph 

shows that the optimized Random Forest has the highest SAW 

score. Adabag also shows a good score as it is an inbuilt 

ensemble classifier. The purpose of computing SAW score is 

to explore the comprehensive performance of the machine 

learning models and to give the best prediction comparison 

with the other models. In Figure 4, a threshold curve is 

represented in which the line describes the probability of 

positive instances which are higher than 0.50. The graph is 

drawn between the False Positive Rate and True positive Rate. 

Figure 4(a) displayed the Threshold curve of Random Forest 

for active instances. Figure 4(b) presented the Threshold curve 

of Random Forest with SMOTE for the active instances. 

 

5.2 Performance comparison of optimized ensemble on 

benchmark dataset 

 

This section shows the comparison of the proposed 

optimized ensemble on a benchmark dataset available at UCI 
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machine learning repository [21]. The results are presented in 

the Table 2. The evaluation metrics namely [20] TP Rate, FP 

Rate, Precision, and Accuracy of the proposed model is 

compared with the results of the past research work on the 

same dataset. In the previous work, the researcher has 

implemented Naive Bayes, Random Forest, SMO, and J48 for 

training the model. Highest accuracy of 85.16% has been 

achieved by J48 algorithm. Random forest gave an accuracy of 

81.19% only. The proposed optimized version of Random 

forest in the present research work worked more efficiently 

than the past research work after the employment of pre-

processing techniques like feature selection and class 

balancing. It has been observed that the proposed Optimized 

Random Forest gives the highest accuracy and better 

predictive performance as compared to the other models. 

 

Table 2. Comparison of proposed ensemble with methods 

implemented on benchmark dataset 

 

Classifier 
TP 

Rate 
FP 

Rate 
Precision Accuracy(%) 

Naive Bayes 0.75 0.19 0.99 80.84 
Random Forest 0.83 0.18 0.99 81.19 

SMO 0.75 0.14 0.99 84.93 
J48 0.75 0.14 0.99 85.16 

Optimized 

Random 

Forest(Proposed) 
0.99 0.66 0.98 99.00 

 

 

6. CONCLUSION 

 

In this paper, an efficient ensemble machine learning 

framework is proposed to train a high dimensional and highly 

imbalance virtual screening Bioassay data. The most popular 

feature selection ranker namely, the Gini index is employed to 

find the best and relevant features for training the 

computational model. Additionally, the SMOTE algorithm is 

implemented to balance the active and inactive classes in the 

training data. On testing the proposed model using the 

benchmark dataset, the accuracy, TP rate, FP rate, F-Measure, 

MCC, AUC are found to be 98.94%, 0.99, 0.66, 0.99, 0.51, 

and 0.92 respectively. This efficient framework based on 

ensemble machine learning algorithm can also be used as a 

decision system for the extrapolation of active and inactive 

compounds. In the future, the machine-learning framework 

will be enhanced by applying it to various big data techniques 

like Hadoop, Spark, etc. 
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