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 This paper aims to overcome two major defects with the traditional rock image classification 

framework based on convolutional neural network (CNN), namely, slow training and poor 

classification accuracy. First, the causes of the two defects were analyzed in details. Through 

the analysis, the slow training is attributable to the information redundancy in the original 

image, and the classification error to the lack of differentiation of rock features extracted from 

the spatial domain. Therefore, the original image was divided into multiple blocks of equal 

size, and the discrete cosine transform (DCT) was introduced to process each block. After the 

transform, ten or fifteen frequency coefficients in the upper left corner of the 2D frequency 

coefficient matrix were retained, and added to the traditional CNN framework for image 

classification. Experimental results show that the proposed DCT-CNN framework 

outperformed the CNN framework in training time and classification accuracy. 
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1. INTRODUCTION 

 

Rock is a very complex porous medium. It is very difficult 

yet meaningful to analyze the structural features of rock. If 

extracted and recognized effectively, the rock features will 

enable scholars and engineers to better study, explore and 

develop mineral resources. The classification of rock images 

is an important prerequisite for recognition of rock features. 

Image classification [1, 2] is a way to distinguish different 

kinds of images by the features extracted from them. In general, 

image classification involves three steps: First, the original 

images are preprocessed through enhancement, restoration, 

and denoising, aiming to meet the requirements of the 

classification algorithm. Second, the features are extracted 

from the preprocessed images. Third, the original images are 

classified by the classification algorithm based on the 

extracted features.  

The most critical step of image classification is feature 

extraction. This step determines the effect and performance of 

the classification algorithm. Figure 1 shows the three main 

categories of image feature extraction methods.  

 

 

 
 

Figure 1. Three methods of image feature extraction 

 

Shallow learning techniques are often applied to image 

classification. Mahapatra et al. [3] found that some single-

layer networks can learn features effectively with a few 

parameters. Zhao et al. [4] introduced a single-layer network, 
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which is trained by unsupervised learning to learn and extract 

features. Single-layer networks have also been trained by 

unsupervised learning algorithms to learn mapping functions 

from k-means clustering (KMC) [5, 6], sparse coding [7], 

sparse filtering [8], independent component analysis (ICA) [9], 

automatic coding machine [10], and sparsely constrained 

Boltzmann machine [11]. 

In contrast to the single-layer network, deep learning 

requires a multilayer network structure [12,13]. The most 

popular deep learning frameworks are based on restricted 

Boltzmann machine (RBM0, deep belief network (DBN) and 

convolutional neural network (CNN). Singh et al. [14] 

constructed a deep learning network to process and analyze 

basalt images, and successfully recognized the texture features 

of minerals in basalt. Zhang et al. [15] proposed a method to 

segment and quantify the computed tomography (CT) scan 

images of rocks based on deep learning. Li et al. [16] trained 

micro-images of sandstone through deep learning, and 

obtained an accurate classification model for these micro-

images.  

In this paper, an automatic recognition framework for rock 

images is established based on the deep learning technique 

CNN and the discrete cosine transform (DCT). This 

framework gives full play to the good recognition ability of 

deep learning, while solving two main defects of the CNN in 

rock image classification: slow training and poor classification 

effect. 

 

 

2. METHODOLOGY 

 

2.1 CNN 

 

Dedicated to processing 2D images, the CNN is a multi-

layer neural network. There are three main types of layers in 

the network, including convolutional layer, sampling layer, 

and output layer. These layers are arranged in the feedforward 

structure: each convolutional layer is followed in turn by a 

sampling layer, a fully connected layer and an output layer. 

The convolutional and sampling layers are two-dimensional, 

while the output layers are one-dimensional. Each 2D layer 

consists of multiple planes, each of which has a 2D array of 

neurons. The structure of a typical CNN is shown in Figure 2, 

where C1 and C3 are convolutional layers and S2 and S4 are 

sampling layers. 

In a convolutional layer (feature extraction layer), each 

plane is connected to one or more feature maps of the previous 

layer. The connection(s) is/are associated with a kernel or 

mask, i.e. a 2D matrix of adjustable entries called weights. 

Each plane calculates the convolution between its 2D input 

and its kernel for the first time. The convolution outputs are 

summed up and then added to the adjustable scalar. Finally, 

the activation function is applied to process the result to obtain 

the plane output, which is a 2D matrix called feature mapping. 

Each sampling layer (feature mapping layer) has the same 

number of planes as the previous convolutional layer. The 

sampling plane divides its 2D input into non-overlapping 

blocks. For each block, the total value of four pixels is 

calculated, multiplied by an adjustable weight, and then added 

with a bias. Finally, the activation function is called to 

generate the result: an output of 2×2 blocks. Obviously, each 

sampling plane halves its input size along each dimension. The 

weights of neurons are the same in the plane of the feature 

mapping layer, and the feature map in the sampling layer is 

connected to one or more planes in the next convolutional 

layer. 

An output layer is usually set up based on a sigmoid 

function or radial basis function (RBF). Here, the former is 

selected to build up the output layer. The outputs of this type 

of layers are considered the output of the entire CNN. In visual 

pattern classification, these outputs indicate the class of the 

input image. 

The convolution and sampling process of the CNN is 

explained in Figure 3. It can be seen that the convolution 

process is to input the filter 𝑓𝑥 , add a bias 𝑏𝑥  to the filtered 

result, and compute the convolution result 𝑐𝑥  by sigmoid 

function. The sampling process is to combine the adjacent four 

pixel values into a single value based on 𝑏𝑥, and apply weight 

𝑤𝑥+1 and bias 𝑏𝑥+1 to the value. The sampling result 𝑠𝑥+1 is 

obtained by sigmoid function. 

 

 
 

Figure 2. Structure of a typical CNN 

464



 

 
 

Figure 3. Convolution and sampling of the CNN 

 

 
 

Figure 4. Activation functions with different slopes 

 

 
 

Figure 5. The operation of the convolutional layer 

 

The sigmoid function, a common activation function of 

artificial neural networks (ANNs), can be expressed as: 

 

𝑓(𝑥) =
1

1+𝑒−𝑎𝑥 , 0 < 𝑓(𝑥) < 0                     (1) 

 

where, 𝛼  is the slope of the function. Different activation 

functions have different slopes. 

Figure 4 shows three activation functions with different 

slopes: the threshold function on the left, the sigmoid function 

in the middle and the hyperbolic tangent function on the right. 

The sigmoid function is adopted for this research. 

The operation of the convolutional layer can be summed as 

follows: First, the feature map from the previous layer is 

convoluted by the kernel, and the result is processed by the 

sigmoid function, creating the final feature map. The 

convolution formula can be expressed as: 

 

𝑥𝑗
𝑛 = 𝑓(∑𝑖∈𝑗 𝑥𝑖

𝑛−1 ∗ 𝑘𝑖𝑗
𝑛 + 𝑏𝑛)                   (2) 

where, 𝑛 is the number of network layers; 𝑘 is kernel; 𝑏𝑛 is the 

bias of each layer. 

As shown in Figure 5, the operation of the convolutional 

layer is essentially to obtain neuron 𝑥𝑛𝑗 of this layer using the 

kernel near neuron 𝑥𝑛−1  of the former layer, i.e. derive the 

feature map of this layer from that of the upper layer. 

As shown in Figure 6, the operation of the sampling layer is 

to merge the adjacent pixels. The merging of neuron 𝑥 can be 

described as: 

 

𝑥𝑗
𝑛 = 𝑓 (

1

𝑚
∑𝑖∈𝑗 𝑥𝑖

𝑛−1 + 𝑏𝑛)                    (3) 

 

where, 𝑚 is the size of the sampling window. 

 

2.2 DCT 

 

The DCT was introduced to shorten the training time and 

enhance the accuracy of the CNN in classification of rock 
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images. The DCT, the real part of Fourier transform, 

approximates an image with a set of cosine functions (basis 

functions), which differ in frequency and amplitude [17]. 

Therefore, the DCT can be regarded as a simplified Fourier 

transform. 

For time series 𝑓(𝑥) , where 𝑥 = 0,1, … , 𝑁 − 1 , the 1D 

DCT can be defined as: 

 

𝐹(𝑢) = 𝛼0𝑐(𝑢) ∑ 𝑓(𝑥) 𝑐𝑜𝑠
(2𝑥+1)𝑢𝜋

2𝑁

𝑁−1
𝑥=0               (4) 

 

where, 𝑢 = 0, 1, … 𝑁-1; 𝛼0 =
2

√𝑁
;  𝑐(𝑢) = {

1

√2
𝑢 = 0

1 𝑢 ≠ 0
. 

The DCT is an orthogonal transform, capable of 

transforming an image from spatial domain to frequency 

domain. It can simplify the convolution operation, because the 

image is difficult to process in the spatial domain. Through the 

transform, the computing load is reduced and the processing 

speed is improved. 

Through the DCT, a 2D frequency coefficient matrix can be 

obtained with the same size as the input image. In the matrix, 

the input image is represented as the linear weighted sum of a 

series of basis functions, which correspond to the components 

of the input data with different frequencies.  

For an 8 × 8 2D frequency coefficient matrix (Figure 6), 

there are 64 basis functions, which continuously increase in 

frequency in both horizontal and vertical directions. Therefore, 

after DCT transform, the lower right corner of the image is the 

high-frequency part, while the upper left corner is the low-

frequency part. 

The DCT was applied to transform an original rock image 

(Figure 7(a)). The image of 2D frequency coefficient matrix 

thus obtained is shown in Figure 7(b)). As mentioned before, 

the upper left corner and lower right corner of Figure 7(b) are 

the low-frequency part and high-frequency part, respectively. 

The DCT transforms the image from the time domain to the 

frequency domain. Although the energy remains the same, the 

energy distribution was changed through the transform. As 

shown in Figure 7(b), most of the energy gathered in the low-

frequency part after the transform. After normalization, the 

high-frequency part contains lots of zero coefficients, 

revealing the good energy aggregation effect of the DCT. 

 

 
 

Figure 6. An 8 × 8 2D frequency coefficient matrix 

 

 
 

Figure 7. DCT of the original rock image 

 

 

3. ROCK IMAGE CLASSIFICATION FRAMEWORK 

BASED ON CNN AND DCT 

 

To reduce the classification error of rock images, it is 

necessary for the classification framework to learn high-level 

features and reduce the information redundancy in the rock 

images.  

There are lots of redundant spatial information in rock 

images. The pixels of a rock image are correlated to different 

degrees in horizontal or vertical direction. Figure 8 is the 

histogram of neighborhood pixel difference in the horizontal 

direction of Figure 7(a), where the x-axis is the difference of 

neighborhood pixels in the horizontal direction, and the y-axis 

is the number of pixels with the same neighborhood pixel 

difference. Obviously, 72.6% of the pixels in the rock image 

have a neighborhood pixel difference smaller than 20. This 

means the rock image has strong correlations between pixels 

in the horizontal direction. 

According to the description of the DCT, the rock image can 

be transformed into the frequency domain through the DCT. 

Then, most information will gather in a few low-frequency 

coefficients in the upper left corner of the 2D frequency 

coefficient matrix. In fact, a few low-frequency coefficients 

are enough. To reduce the information redundancy of the rock 

image, only a few coefficients representing the image were 

extracted in the frequency domain, and taken as the inputs to 

the feature extraction module of the classification framework. 

As shown in Figure 9, a 1D vector was obtained by traversing 

the 2D frequency coefficient matrix in a zig-zag manner. 

Compared with the original image, the low-frequency 

coefficients of the 1D vector helps the CNN to learn better 

high-level features in the frequency domain, laying a good 

basis for accurate classification. In this way, the redundancy 

of image information is reduced, and the DCT-CNN 

classification framework for rock images becomes more 

efficient. 
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Figure 8. Histogram of neighborhood pixel difference in 

horizontal direction of a rock image 

 
 

Figure 9. The zig-zag scan of the 2D frequency coefficient 

matrix 
 

 
 

Figure 10. The structure of DCT-CNN classification framework for rock images 

 

Figure 10 presents the structure of the DCT-CNN 

classification framework for rock images. The framework can 

be established and trained in the following steps. 

Step 1. Load a 120×480 training image into the input layer, 

and remove the hue and saturation information, leaving the 

image brightness only, that is, convert the RGB image into a 

grayscale image. Then, convert the grayscale image into a 

binary image, and decompose it into twenty 6×8 blocks. 

Perform DCT on each block and retain only the few frequency 

coefficients in the upper left corner in the 2D frequency 

coefficient matrix. The complete image after the DCT of each 

block is 120 × 160 in size. 

Step 2. Forward the frequency coefficients to the first 

convolutional layer C1, which consists of six 5 × 5 neurons, a 

step size of 5, and a random kernel ∈ [-1, 1]. The original 

image is convoluted from left to right and from top to bottom, 

a bias b (set to 0) is added to the convolution result, and six 

116×156 feature maps are generated by sigmoid function. 

Each feature map contains the feature information of the 

original image. 

Step 3. The nonoverlapping 2×2 sub-blocks in layer C1 are 

aggregated by a 2×2 filter, multiplied by a random weight w ∈ 

[-1, 1], added a bias b (set to 0), and six feature maps of 

sampling layer S2 are generated by sigmoid function. Each 

map is half the size of that of layer C1. 

Step 4. Forward the feature maps to convolutional layer C3, 

which consists of six 5×5 neurons, a step size of 5, and a 

random kernel ∈ [-1, 1]. Each feature map is convoluted from 
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left to right and from top to bottom, a bias b (set to 0) is added 

to the convolution result, and twelve 2 54×74 feature maps are 

generated by sigmoid function. 

Step 5. The nonoverlapping 2×2 sub-blocks in layer C3 are 

aggregated by a 2×2 filter, multiplied by a random weight w ∈ 

[-1, 1], added a bias b (set to 0), and twelve 27×37 feature maps 

of sampling layer S4 are generated by sigmoid function.  

Step 6. Arrange the pixels of each of the 12 features of layer 

S4 from left to right and from top to bottom, and arrange 12-

column pixels of the 12 maps in the order of the map. In this 

way, generate the fully-connected layer L5 containing 11,988 

neurons. Each neuron corresponds to a pixel. 

Step 7. Fully connect the 11,988 neurons of layer L5 with 

the five neurons of the output layer O6. The final outputs are 

00001, 00010, 00100, 01000 and 10000. The, assign the 

corresponding rock images to categories 1~5, respectively. 

The first step is equivalent to preprocessing the rock images 

by the DCT. Thus, the input layer and the DCT are the 

preprocessing module of the framework. Steps 2~5 are about 

feature extraction. Thus, layers C1~S4 constitute the feature 

extraction module. Steps 6 and 7 mainly classify the rock 

images, indicating that layers L5~O6 form the classification 

module. Through the seven steps, the working signals is 

propagated forward, completing the initialization and 

pretraining of the framework. 

 

 

4. EXPERIMENT AND RESULTS ANALYSIS 

 

According to the study on the effect of DCT frequency 

coefficients on the quality of JPEG image, the fewer frequency 

coefficients being retained, the higher the compression ratio of 

the original image, yet the worse the quality of the 

reconstructed image. To ensure the reconstruction accuracy 

and control information redundancy, the number of frequency 

coefficients being retained should neither be too large or too 

small. Since the original image is split into multiple 6 × 8 

blocks, the DCT needs to be performed on each block. In the 

2D frequency coefficient matrix of each block, only the 15 

frequency coefficients in the upper left corner were nonzero. 

Thus, only these coefficients are truly needed. 

 

 
 

Figure 11. 2D frequency coefficient matrices of 6  8 blocks 

 

In our experiment, only 10 or 15 frequency coefficients are 

retained from the upper-left corner of the 2D frequency 

coefficient matrix of each 6 × 8 block (Figures 10 and 11), 

and inputted to the DCT-CNN framework for training and 

testing. 

Table 1 shows the test results of our framework with 10 

frequency coefficients. It can be seen that our framework 

reduced the average error of CNN rock image classification 

framework by 4%.  

 

Table 1. The test results of our framework with 10 frequency 

coefficients 

 

Image preprocessing 
Error of 

test 1 

Error of 

test 2 

Error of 

test 3 

No preprocessing 

(original image) 
5.03% 4.92% 5.97% 

Brightening 5.25% 5.19% 5.15% 

Darkening 5.85% 5.05% 5.20% 

Translation  5.35% 5.10% 5.16% 

Revolving 5.15% 5.18% 5.22% 

Mirror transform 5.20% 5.16% 5.20% 

Adding 0.01 intensity 

Gaussian noise 
10.30% 10.20% 10.00% 

Adding 0.02 intensity 

Gaussian noise 
15.15% 15.06% 15.17% 

Adding 0.01 intensity 

salt-and-pepper noise 
11.73% 11.78% 11.60% 

Adding 0.02 intensity 

salt-and-pepper noise 
17.10% 16.85% 17.95% 

 

Table 2 provides the test results of our framework with 15 

frequency coefficients. It can be seen that our framework 

reduced the average error of CNN rock image classification 

framework by 1.85% on the original image. 

 

Table 2. The test results of our framework with 15 frequency 

coefficients 

 

Image preprocessing 
Error of 

test 1 

Error of 

test 2 

Error of 

test 3 

No preprocessing 

(original image) 
2.25% 2.30% 2.25% 

Brightening 2.65% 2.62% 2.70% 

Darkening 2.60% 2.55% 2.55% 

Translation  2.45% 2.50% 2.45% 

Revolving 2.55% 2.65% 2.62% 

Mirror transform 2.70% 2.65% 2.70% 

Adding 0.01 intensity 

Gaussian noise 
7.35% 7.30% 7.40% 

Adding 0.02 intensity 

Gaussian noise 
11.65% 11.60% 11.75% 

Adding 0.01 intensity 

salt-and-pepper noise 
15.20% 15.28% 15.30% 

Adding 0.02 intensity 

salt-and-pepper noise 
12.20% 12.25% 12.35% 

 

As shown in Table 2, the error after brightness adjustment 

or geometric transform of the test image was almost equal to 

that for the original image. 

Whichever the number of frequency coefficients, our 

framework consumed a similar length of training time, about 

5/11 of the time consumed by the CNN rock image 

classification framework. Thus, our framework can greatly 

shorten the training time. 

However, the average error of our framework changed 

marked after the Gaussian noise or salt-and-pepper noise was 

added to the original image. The error change is positively 

correlated with the intensity of the additive noise. This is 

because the image has a poor quality if the noise is intense, 

and the extracted features are quite ineffective. However, the 

error change is much smaller than that of CNN rock image 

classification framework, under the same conditions. 
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5. CONCLUSIONS

There are two defects with the CNN rock image 

classification framework: slow training and poor classification 

accuracy. The former arises from the information redundancy 

of the original image, and the latter comes from the lack of 

differentiation of rock features extracted from the spatial 

domain. To overcome the defects, this paper establishes a 

DCT-CNN classification framework for rock image, which 

introduces 10 to 15 frequency coefficients after the DCT to the 

CNN framework. Experimental results show that our 

framework always consumed a shorter training time and 

output a more accurate classification result than the CNN rock 

image classification framework. This means the DCT can 

greatly reduce the redundancy of image information. 
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