
 

  

  

GA-Based Optimization of SURF Algorithm and Realization Based on Vivado-HLS 
 

Hüseyin Özdemir, Refik Sever, Övünç Polat* 

 

Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey 

 

Corresponding Author Email: ovuncpolat@akdeniz.edu.tr 

 

https://doi.org/10.18280/ts.360501 

  

ABSTRACT 

   

Received: 5 June 2019 

Accepted: 18 August 2019 

 The aim of this study is realization of SURF algorithm based on Vivado-HLS tool for FPGA 

platform. The SURF algorithm is a method which is used in image processing that is not 

affected by feature changes such as size, color and contrast. Genetic algorithm is used to 

determine the optimum values of the parameters affecting the success of the SURF algorithm 

in this work. It has been observed that when the parameter values determined using the 

optimization algorithm is used, the success rate significantly increases. The proposed method 

has been tested for character recognition application with fixed font which is independent from 

rotation and character size. In this work, the tests were carried out with images formed from 

numbers. Reference and test pictures for each number were created. The test images consist of 

images of different sizes and rotations. Optimal parameter values were used in HLS after being 

determined by proposed approach. Using the proposed optimized SURF structure, high success 

rates were obtained. 

 

Keywords: 

speeded-up robust features, high-level 

synthesis, genetic algorithm, 

optimization, character recognition 

 

 

 
1. INTRODUCTION 

 

The SURF (Speeded-Up Robust Feature) algorithm tries to 

determine the best features of an object that is desired to be 

detected on the image and can quickly resolve the result. The 

SURF algorithm provides the advantage of being invariant 

against both changes and rotations [1-2]. 

In this study, the SURF algorithm was implemented with 

the Vivado-HLS tool. Using HLS, algorithms can be 

implemented by using C, C++, etc languages without using 

hardware description languages (verilog, VHDL, etc.). The 

SURF algorithm was implemented with the C-language in this 

work. 

Bay et al. [2] aims to develop a detector that does not 

compromise performance, can perform fast calculations, find 

enough distinguishing features and reduce the descriptor size 

and complexity. The SURF detector is based on the Hessian 

matrix. Integral images were used to reduce the calculation 

time. For this reason, it is expressed as a Fast-Hessian detector. 

In the literature, the SURF algorithm is implemented with 

C code using HLS by Faliagkas [3], and "float" and "integer" 

are selected as the data types used when defining the registers. 

The system has been optimized using the directives available 

in HLS. The system is designed to work with Microblaze. 

In this study, fixed-point data type was chosen for the 

identification of the caches. Since the SURF algorithm 

supports rotation instability up to ± 15 degrees by default, it is 

aimed that the system can work faster by removing the 

structure related to the rotation in the algorithm. In addition, 

the threshold value and octave - 1 values used in the SURF 

algorithm are optimized with the genetic algorithm and used 

with the values that have the greatest success so that the 

success rate is more in the SURF algorithm. The parameters 

obtained here are aimed at establishing the best success rate 

using HLS. Cai et al. [4] have presented a SURF algorithm for 

hardware implementation, which combined several 

optimization techniques in literature and three approaches 

(word length reduction, sampling radius reduction and low bits 

abandon). The computation operations of the simplified and 

optimized SURF were reduced by 50% compared with the 

unoptimized SURF algorithm. In referred study, the optimized 

design of SURF has been realized by using TSMC 65 nm 

process. Oliveira et al. [5] have presented a new approach to 

retarget images based on both genetic algorithm and a high-

performance scale and rotation-invariant interest point 

descriptor. 

The digit recognition application was chosen to determine 

the appropriate parameters and to test the success of the 

proposed system and the images created from the digits were 

used in this study. It is aimed to determine the digit images of 

different sizes and different rotations. There are different 

studies in the literature on font recognition and character 

recognition [6-8]. The method proposed by Zahedi and Eslami 

[6] can recognize automatic Persian / Arabic fonts based on 

SIFT (Scale Invariant Feature Transform). Since the SIFT 

algorithm supports scale and rotation invariance, it is not 

affected by such factors. The SIFT algorithm was used by 

Jamjuntr and Dejdumrong [7] to identify the Thai font, and a 

success rate of 97.37% was achieved in the tests performed. 

Ouyang et al. [9] compare 3 robust feature detection methods: 

SIFT, Principal Component Analysis (PCA)-SIFT and SURF. 

The performances of these three methods were compared in 

terms of scale changes, rotation, illumination changes, blur 

and affine transformations. 

Next section gives used methods and proposed approach for 

implementation of SURF algorithm based on Vivado-HLS. 

Simulations and obtained results are given in the section 3.

  

Traitement du Signal 
Vol. 36, No. 5, October, 2019, pp. 377-382 

 

Journal homepage: http://iieta.org/journals/ts 
 

377



 

2. METHOD 
 

2.1 SURF algorithm 
 

SURF is an algorithm used for feature mappings. It was 

developed based on the SIFT algorithm. SIFT detects the key 

points existing in an image and calculates the attributes by 

using the descriptors through these points. The most important 

advantage of this algorithm is that it is not influenced too much 

by the fact that when the key points are encountered, the 

picture is rotated in different directions, the size of the picture 

is different, or the intensity of light in the picture varies [10]. 

The SURF algorithm can work faster and more effectively 

than SIFT. The SIFT algorithm detects the discriminative 

points on the image and extracts the identifiers for each 

discriminant point. These distinctive points extracted are 

independent of features such as rotation, scale etc. 

The SURF algorithm tries to localize the points of interest 

on the image [11]. The high performance and accuracy of the 

SURF algorithm can be attributed to the use of integral images 

[12]. Furthermore, the SURF detector is efficient and yields 

accurate results because of the use of the Hessian matrix.  

The SURF algorithm implements the scale-space by 

applying the box filters in the original image to the increasing 

size. The reasons for this performance improvement are; It 

permits multiple layers of the scale-space pyramid to be 

processed at the same time, and the processing of the sub-

samples of the view is not performed. In other words, for 

different scale situations, the scale of the filters is changed 

without changing the scale of the view. 

The scale space is divided by the number of octaves at 

which the octave belongs to the sequence of reaction maps 

computed with certain filters. The creation of the scale space 

starts with a 9x9 filter that computes the determinant response 

of the image for the smallest scale [11]. 

Each octave is divided into 4 intervals. Subsequent layers 

are obtained by scaling the filters up while preserving the same 

filter-placement ratio. As the filter size increases, the values of 

the associated Gaussian scale increases. The descriptors are 

calculated for specific pixels of the scene. Filters in different 

structures and sizes specify which rows and columns of pixels 

should be processed. After calculating the four inputs of the 

Hessian matrix, normalization is applied for each scale-space 

position. This scale normalization of the determinant response 

map is obtained by dividing these inputs by the filter area [11]. 

 

2.2 High-level synthesis (HLS) 
 

With Vivado-HLS developed by Xilinx [13], code 

generated with C, C ++ or SystemC can be converted into RTL 

source code or packages called IP (Intellectual Property) Core. 

The first step of the implementation is the creation of the 

algorithm with a supported programming language (C, C ++, 

SystemC). The generated code is added to "HLS Tools". In 

addition, the system directives are used to improve 

performance or reduce the amount of hardware used. The HLS 

directives are used to generate the optimized RTL code. 

Once the modules implemented in HLS are tested and 

synthesized, they can be packaged as "ip-core" and transferred 

to the Vivado environment. It can be used as a library file in 

FPGA projects to be created in the Vivado environment. 

 

2.3 Genetic Algorithm (GA) 
 

Genetic Algorithms are one of the leading artificial 

intelligence optimization techniques used today. Genetic 

algorithm is a search method that exemplifies the mechanism 

of evolution in nature. Genetic algorithms produce solutions 

that are constantly healing based on the rule of life of the best 

in nature [14, 15]. 

It is aimed to optimize the sizes of threshold values and box 

filters used in OPENSURF [16, 17] algorithm by using GA in 

the study. In proposed approach, GA tries to maximize the 

number of matching points of interest by changing threshold 

and box filter sizes. The optimum values of five parameters in 

the GA and SURF algorithms were determined. These 

parameters are threshold value and octave-1 (4 values). In the 

optimization stage, the population size was 50, the selection 

function was "stochastic uniform" and the mutation rate was 

"0.01". The settings made to limit the optimization are the 

lower and upper limits selected for the threshold value 0.0001 

- 0.01, the selected upper and lower limits for the octave-1 

values {4 5 10 15} - {10 15 27 27}. 

 

2.4 Implementation of the SURF algorithm 

 

The OPENSURF library is an implementation of the SURF 

algorithm [16-19]. Realized by Christopher Evans in C ++ 

languages [16]. It has been adapted to the Matlab program by 

Kroon [17]. Fan et al. [19] propose the high performance 

hardware architecture on FPGA to implement SURF 

algorithm. The aimed hardware architecture is consistent with 

the OpenSURF. Chen et al. [20] proposed an implementation 

and acceleration architecture for OpenSURF algorithm on 

FPGA platform. 

In the study, software analysis of the library was done first. 

After making the required arrangements, the modules required 

for HLS have been identified. In order to determine the most 

suitable bit lengths of the registers, the smallest bit lengths that 

can be generated by various simulations are determined by 

software. The goal is to save performance and minimize 

memory usage by storing the data in the smallest possible 

memory area with minimal loss. 

Then, the functions determined in software as modules were 

adapted to HLS and synthesized by making necessary 

arrangements. In order to optimize the results of the synthesis, 

the ones that are available in the HLS are used. 

In the stage of using the OPENSURF Library, analyzes 

were made with reference to the version of the library adapted 

by Kroon [17]. The algorithm basically consists of two steps. 

Firstly, the reference image to be taken of the reference 

descriptor vectors must be determined. This can be any ROI 

on an object or image specified in the image. The specified 

image is subjected to the operations of the SURF algorithm to 

obtain descriptor vectors according to the determined 

parameters. The resulting vectors are stored and then used in 

search operations. 

Secondly, similar operations are repeated for the image to 

be searched for the object whose vectors are detected. It is also 

passed through the operations of the SURF algorithm to obtain 

descriptive vectors. If the object being searched can be 

predicted in which region on the image, only the processing of 

that part of the image will yield better results in terms of speed. 

If there is no prediction, it will be necessary to compare the 

reference vectors with the descriptor vectors of the entire 

image [18]. 

The points of interest found are based on the similarities 

between the obtained vectors and the reference vectors. The 

most similar is the sort that will be in the first place. That is, 

378



 

according to the SURF algorithm, the coordinates of the two 

pixels that are most similar between the two images are 

determined. The number of these pixels varies according to the 

number of points of interest on the reference image and the 

image being searched. Also, there may not be any points of 

interest on the image. 

Fixed-point data types were changed as data loss was 

minimized in the study, and the system was integrated into the 

HLS as modules in the final state. In the synthesis process with 

HLS, "Zedboard Zynq Evaluation and Development Kit 

(xc7z020clg484-1)" was used and the system frequency was 

selected as 100 MHz. 

The mode of operation used was the Upright SURF (U-

SURF) rotation control mode, which maintains stability for 

image rotations of up to ± 15 degrees. Also, since there are not 

too many scale changes, one was chosen as the octave value. 

The octave value can be increased for images with a larger 

scale change, so that the points of interest can be detected more 

successfully. However, increasing the octave value increases 

the processing load and therefore causes the system to run 

slower. 

 

 

3. SIMULATION RESULTS 

 

The performance of the proposed optimum SURF algorithm 

has been tested for digit recognition application independently 

of character size and rotation. For the reference and test images, 

figures of 45x80 were created. 10 images have been created as 

a reference. The images were created using figures of different 

sizes and rotations so as not to be the same as the reference 

image for use in the test data set. As a result, 10 pictures for 

reference and 80 pictures for use in the test data set have been 

created. 

While the 45x80 image is used as the reference image, the 

test image is 45x800, which is created by merging ten images 

in 45x80 sizes. The purpose here is to find each digit in the 

image generated by selecting from the test data set. Thus, it is 

aimed to determine the corresponding digit from each picture 

selected from the test data set using the SURF algorithm. 

The success rate can be determined because it is known 

which of the reference digit and the corresponding figure is in 

which region of the randomly generated test image. That is, 

points of interest are determined for the figure used in the 

reference picture. Likewise, points of interest for the test 

picture are determined. The points of interest are sorted by 

comparison with each other and the most similar ones are 

identified. The distribution of points of interest most similar to 

the reference points of interest in the test image refers to the 

test success. If the entire distribution of points of interest is in 

the region of the figure sought, the success rate is expressed as 

100%. GA optimization algorithm is used to increase the 

success rate obtained by default parameter values in the study. 

The optimization algorithm is run for two different situations, 

over 50% of the number of points of interest detected using the 

optimization algorithm and over 70%. As a result of 

optimization for these two different situations, it has been 

observed that the success rate is significantly increased 

compared to the default parameters. The parameter values 

determined by the optimization algorithm are used in HLS. 

Reference and test images were used for the tests made at HLS 

in 45x80 dimensions. 

For the structure of the SURF algorithm, a reference picture 

is needed. The points of interest on the reference images are 

stored in the memory and compared with the points of interest 

on the test images. Numbers are used for the reference dataset. 

Each figure was created as a 45x80 image with font size 20 

and writing style "Calibri" (rotation 0 degrees). The images 

used for the reference are shown in Figure 1. 
 

 
 

Figure 1. Reference digit images 

 

A test data set was created to observe how the parameter 

changes change the algorithm result. In addition, this data set 

has been created to measure the success of the algorithm and 

to be used during optimization. Optimization tool tries to 

determine optimal parameters by using reference images and 

test images. For the test data set, each number should have a 

font size of 18 and 22, font format "calibri", rotation of +10 

degrees, 0 degrees and -10 degrees, font size of 20, font format 

"calibri" degree and -10 degrees in 45x80 dimensions as the 

picture was created. The important thing here is that the 

images used as references are not included in the test data set. 

As a result, one reference image and six test images were 

created for each figure (10 reference images, 60 test images). 

Figure 2 shows the test images created for the all number zero. 

(the same image as the reference used in the test data set is not 

used). 
 

 
 

Figure 2. Example test data for 0 digit 
 

 
 

Figure 3. Test results for 0 digit 

 

In order to determine the success of the optimum parameter 

values determined using the reference and test data in this 

study, a different validation data set was also created. This data 

set contains 10 images in a similar way as in the test data set. 

Twenty validation images were created, randomly selected 

from the dataset, resulting in two images for each digit. By 

using the optimization algorithm, it is aimed to maximize the 

number of correct matches with each reference image, the test 

image including ten digits in different sizes and rotations. To 

find this number, at least 50% of the points of interest in the 

reference image at the end of each test are examined to see if 

it is in the relevant region in the test image. If there are as many 

points of interest as possible in the area concerned, the success 

rate is increased by 1. For a total of 60 test images, if there is 

at least 50% interest in the respective region of each view, the 

success counter will be 60 and the test success will be 100%. 

In Figure 3, one of the tests for the number zero is shown. At 

the top, the points of interest for the reference number zero are 

shown. In the second row, the points of interest in one of the 

test images created in 45x800 dimensions are shown. In the 

third row, the points of interest in the reference image and the 

379



 

points of interest in the test image are shown. In the fourth row, 

the reference image and matching points of interest in the test 

image are shown matched with the drawing. 

In the OPENSURF algorithm, the octave-1 values are set to 

9 - 15 - 21 - 27 by default and the threshold value is set to 

0.0001. Here the threshold value represents which of the 

candidate points of interest will be considered as points of 

interest. The octave values represent the box filter dimensions 

to be used. That is, when octave-1 default values are used, box 

filters are performed in sizes 9x9, 15x15, 21x21, 27x27. With 

the optimization algorithm, it is aimed to determine the effect 

of these filters on the success rate of the changes in dimensions. 

The obtained test results shown in Table 1 are shown. Here, 

the success of the test and the overall test are shown separately 

for each figure. According to this, the number of tests that were 

50% (compared to the number of points of interest) was found 

to be 18 in a total of 60 tests. The 50% threshold value 

indicates that the related digit is at least 50% correct, since the 

percentages in these digits represent the success of finding the 

correct number. Table 2 shows the cases in which the success 

rate is higher than 70%. According to this, the number of tests 

with at least 70% accuracy in the 60 tests was 12. As a result, 

the success rate is 20%. It is aimed to determine more 

appropriate values of octave - 1 and threshold values in order 

to increase success rates. For this purpose, the GA 

optimization algorithm was first run to increase the number of 

tests that were more successful than 50% (based on the number 

of points of interest). The octave-1 values were found to be 4, 

9, 18, 23 and the threshold value was 0.007. Table 3 shows the 

test results. Accordingly, the number of tests that were more 

successful than the 50% tested in the 60 tests was 59. As a 

result, the success rate was calculated as 98.3%.  

The number of tests that were more successful than 70% 

was 54. The success rate is obtained as 90%. In order to verify 

the parameter values determined by the optimization algorithm 

and to determine the success of the system, tests were carried 

out using 45x800 images (selected from images of 45x80 size) 

generated by random selection from the test data set. The 

results obtained for a total of 200 validation data are shown in 

Table 4. Accordingly, it has been observed that the parameter 

values determined by the optimization algorithm significantly 

increase the success rate of the system. 

Table 5 and Table 6 show the accuracy rates of the optimal 

parameter values determined by the GA for HLS tests. In the 

tests performed here, 45x80 size reference image and 45x80 

size test image are used. For example, if the number zero is 

accepted as the reference point size 20, the rotation 0 is 

selected as the first test with point size 22, the rotation 10, the 

second test with point 18, and the rotation 0. According to the 

test results, the accuracy rate obtained with the default 

parameter values is 56% while the success rate obtained using 

the parameter values calculated with optimization is 81%. 

 

Table 1. Test accuracy results for the unoptimized case (for more than 50% of detected points of interest) 

 
When the parameters are selected as Octav=[9,15,21,27] and threshold=0.0001 

Numbers 

The Number of 

Feature in Reference 

Image 

The success of found numbers that were in test images. 

(for each number separately %) 

The number of 

tests which are 

more success 

from percent 50 
Test - 1 Test - 2 Test - 3 Test - 4 Test - 5 Test - 6 

0 8 25.00 62.50 50.00 37.50 37.50 25.00 1 

1 2 100.00 50.00 0.00 0.00 0.00 50.00 1 

2 6 33.33 50.00 33.33 50.00 50.00 83.33 1 

3 5 0.00 60.00 40.00 20.00 20.00 60.00 2 

4 4 100.00 50.00 75.00 25.00 25.00 75.00 3 

5 4 75.00 50.00 50.00 25.00 25.00 50.00 1 

6 3 66.67 66.67 33.33 33.33 33.33 66.67 3 

7 4 50.00 50.00 75.00 75.00 100.00 100.00 4 

8 3 0.00 33.33 100.00 33.33 33.33 0.00 1 

9 2 100.00 50.00 50.00 50.00 50.00 50.00 1 

18 of the 60 tests were more successful than the 50%. 

Result=18/60=>30% 
18 

 

Table 2. Test accuracy results for the unoptimized case (for more than 70% of detected points of interest) 

 
When the parameters are selected as Octav=[9,15,21,27] and threshold=0.0001 

Numbers 

The Number of 

Feature in Reference 

Image 

The success of found numbers that were in test images. 

(for each number separately %) 

The number of 

tests which are 

more success 

from percent 70 
Test - 1 Test - 2 Test - 3 Test - 4 Test - 5 Test - 6 

0 8 25.00 62.50 50.00 37.50 37.50 25.00 0 

1 2 100.00 50.00 0.00 0.00 0.00 50.00 1 

2 6 33.33 50.00 33.33 50.00 50.00 83.33 1 

3 5 0.00 60.00 40.00 20.00 20.00 60.00 0 

4 4 100.00 50.00 75.00 25.00 25.00 75.00 3 

5 4 75.00 50.00 50.00 25.00 25.00 50.00 1 

6 3 66.67 66.67 33.33 33.33 33.33 66.67 0 

7 4 50.00 50.00 75.00 75.00 100.00 100.00 4 

8 3 0.00 33.33 100.00 33.33 33.33 0.00 1 

9 2 100.00 50.00 50.00 50.00 50.00 50.00 1 

 12 of the 60 tests were more successful than the 70%. 

Result=12/60=>20% 
12 

380



 

Table 3. Test results for optimized case by using GA (for more than 50% of detected points of interest) 

 
When the parameters are selected as octav=[4,9,18,23] and threshold=0.007 

(By using optimization algorithm) 

Numbers 
The Number of Feature 

in Reference Image 

The success of found numbers that were in test images. 

(for each number separately %) 

The number of 

tests which are 

more success 

from percent 50 
Test - 1 Test - 2 Test - 3 Test - 4 Test - 5 Test - 6 

0 4 100.00 100.00 100.00 100.00 100.00 100.00 6 

1 5 100.00 80.00 100.00 80.00 80.00 60.00 6 

2 6 83.33 100.00 66.67 83.33 83.33 83.33 6 

3 7 57.14 42.86 85.71 57.14 57.14 85.71 5 

4 5 80.00 80.00 100.00 100.00 100.00 100.00 6 

5 7 71.43 71.43 85.71 71.43 71.43 71.43 6 

6 5 80.00 80.00 100.00 100.00 100.00 100.00 6 

7 4 100.00 100.00 75.00 100.00 100.00 100.00 6 

8 10 90.00 80.00 100.00 100.00 100.00 100.00 6 

9 7 100.00 71.43 85.71 100.00 100.00 85.71 6 

 59 of the 60 tests were more successful than the 50%. 

Result=59/60=>98.3% 
59 

 

Table 4. Accuracy results for validation data 

 

 

The number of tests 

which are more success 

from percent 50 

The number of tests which 

are more success from 

percent 70 

When the parameters are selected as Octav=[9,15,21,27] and threshold=0.0001 30% 19% 

When the parameters are selected as Octav=[4,9,18,23] and threshold=0.007 

(By using optimization algorithm) 
96% 84% 

 

Table 5. HLS test success results for unoptimized case 

 
When the parameters are selected as Octav=[9,15,21,27] and threshold=0.0001 

Numbers 

The Number of 

Features in 

Reference Image 

TEST – 1 TEST – 2 

The Number of 

Features in Test 

Image 

The number of 

features which 

are success 

The 

Success 

Rate % 

The Number of 

Features in Test 

Image 

The number of 

features which 

are success 

The 

Success 

Rate % 

0 8 4 3 37.5 5 3 37.5 

1 2 2 1 50 7 0 0 

2 6 3 3 50 5 4 66.67 

3 7 5 4 57.14 5 2 28.57 

4 5 3 3 60 9 3 60 

5 4 5 4 100 4 4 100 

6 3 4 2 66.67 2 2 66.67 

7 6 7 4 66.67 3 3 50 

8 5 5 3 60 4 3 60 

9 3 3 1 33.33 4 2 66.67 

    58%   54% 
 

Table 6. HLS test success results for GA optimized case 
 

When the parameters are selected as Octav=[4,9,18,23] and threshold=0.007 

Numbers 

The Number of 

Features in 

Reference Image 

TEST – 1 TEST – 2 

The Number of 

Features in Test 

Image 

The number of 

features which 

are success 

The 

Success 

Rate % 

The Number of 

Features in Test 

Image 

The number of 

features which 

are success 

The 

Success 

Rate % 

0 4 5 4 100 3 2 50 

1 5 3 3 60 5 5 100 

2 6 3 3 50 6 4 66.67 

3 8 6 6 75 10 7 87.5 

4 5 5 5 100 4 4 80 

5 7 7 7 100 8 7 100 

6 5 9 5 100 4 4 80 

7 4 4 4 100 3 3 75 

8 10 10 8 80 11 8 80 

9 7 8 5 71.43 4 4 57.14 

    84%   78% 

 

381



4. CONCLUSIONS

In this work, it is aimed to construct the optimum 

performance SURF algorithm with HLS. Modules 

implemented with HLS in the study are primarily optimized as 

hardware using directives between HLS tools. The success of 

the SURF algorithm is tested on the data set generated by the 

numbers. In this context, tests were done using images in 

45x80 dimensions. It is aimed to determine optimal values by 

optimizing the parameters used in algorithm with genetic 

algorithm. For this, the octave-1 values (representing the filter 

sizes used in the SURF algorithm) and the threshold value are 

optimized. Optimize algorithm has been determined optimal 

values by giving possible range of values and these values are 

used in SURF algorithm. Using the values of the optimized 

parameters, the success rate is significantly increased. 

Proposed approach can be used for different applications such 

as object recognition, handwriting character recognition. 

REFERENCES 

[1] Lei, F., Wang, W. (2014). A fast method for image

mosaic based on SURF. 9th IEEE Conference on

Industrial Electronics and Applications, Hangzhou, pp.

79-82. https://doi.org/10.1109/ICIEA.2014.6931135

[2] Bay, H., Tuytelaars, T., Van Gool, L. (2006) SURF:

Speeded up robust features. European Conference on

Computer Vision, ECCV 2006: Computer Vision –

ECCV 2006, Springer, Berlin, Heidelberg, 3951: 404-

417. https://doi.org/10.1007/11744023_32

[3] Faliagkas, Κ. (2013). High level synthesis of the

OpenSURF algorithm. Student thesis, National

Technical University of Athens, Greece.

[4] Cai, S., Liu, L., Yin, S., Zhou, R.Y., Zhang, W.L., Wei,

S.J. (2014). Optimization of speeded-up robust feature

algorithm for hardware implementation. Science China

Information Sciences, 57(4): 1-15.

https://doi.org/10.1007/s11432-013-4946-y

[5] Oliveira, S.A.F., Neto, A.R.R., Bezerra, F.N. (2016). A

novel genetic algorithms and SURF-based approach for

image retargeting. Expert Systems with Applications, 44:

332-343. https://doi.org/10.1016/j.eswa.2015.09.015

[6] Zahedi, M., Eslami, S. (2011). Farsi/Arabic optical font

recognition using SIFT features. Procedia Computer

Science, 3: 1055-1059.

https://doi.org/10.1016/j.procs.2010. 12.173

[7] Jamjuntr, P., Dejdumrong, N. (2012). Thai font type

recognition using SIFT. 2012 Ninth International

Conference on Computer Graphics, Imaging and

Visualization, Hsinchu, Taiwan, pp. 57-60.

https://doi.org/10.1109/CGIV.2012.23

[8] Ahmad, R., Afzal, M.Z., Rashid, S.F., Liwicki, M.,

Breuel, T. (2015). Scale and rotation invariant OCR for

pashto cursive script using MDLSTM network. 13th Int

Conference on Document Analysis and Recognition

(ICDAR), Tunis, Tunisia, pp. 1101-1105.

https://doi.org/10.1109/ICDAR.2015.7333931

[9] Ouyang, N.J., Li, W.T., Wei, W., Pan, Q. (2013). A

comparison of SIFT, PCA-SIFT and SURF. International

Journal of Image Processing, 28(1): 58-64.

[10] Lowe, D.G. (2004). Distinctive image features from

scale-invariant keypoints. International Journal of

Computer Vision, 60(2): 91-110.

https://doi.org/10.1023/B:VISI.0000029664.99615.94

[11] Bouris D., Nikitakis, A., Papaefstathiouand, I. (2010).

Fast and efficient FPGA-based feature detection

employing the SURF algorithm. 18th IEEE Annual

International Symposium on Field-Programmable

Custom Computing Machines, Charlotte, NC, USA.

https://doi.org/10.1109/FCCM.2010.11

[12] Viola, P., Jones, M. (2001). Rapid object detection using

a boosted cascade of simple features. Proceedings of the

2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Kauai, HI, USA.

https://doi.org/10.1109/CVPR.2001.990517

[13] Xilinx. (2013). Vivado design suite user guide on high

level synthesis. UG902 (v2013.2).

[14] Goldberg, D.E. (1989). Genetic algorithm in search,

optimization, and machine learning. Addison-Wesley.

[15] Yeniay, Ö. (2001). An overview of genetic algorithms.

Anadolu University Journal of Science and Technology,

2(1): 37-49.

[16] Evans, C. (2009). Notes on the OpenSURF library.

Technical Report, University of Bristol.

[17] Kroon, D.J. (2010). OpenSURF. 

http://ch.mathworks.com/matlabcentral/fileexchange/28

300-opensurf--including-image-warp, accessed on 12

May 2019.

[18] H.Özdemir, (2018). Realization of SURF algorithm

based on vivado HLS for FPGA platform. Akdeniz

University, Master Thesis, February.

[19] Fan, X., Wu, C., Cao, W., Zhou, X., Wang, S., Wang, L.

(2013). Implementation of high performance hardware

architecture of OpenSURF algorithm on FPGA;

Proceedings of the 2013 International Conference on

Field-Programmable Technology, Kyoto, Japan, pp. 152-

159. https://doi.org/10.1109/FPT.2013.6718346

[20] Chen, C., Yong, H., Zhong, S., Yan, L. (2015). A real-

time FPGA-based architecture for OpenSURF. Ninth

International Symposium on Multispectral Image

Processing and Pattern Recognition (MIPPR2015),

Enshi, China. https://doi.org/10.1117/12.2205633

382

https://doi.org/10.1117/12.2205633



