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 Semantic gap is a common problem for most distance metric learning (DML) algorithms. 

Because of this problem, the semantic information may be inconsistent with the image features, 

which negatively affects the image classification accuracy. To solve the problem, this paper 

puts forward a new supervised DML method called semantic discriminative metric learning 

(SDML). The SDML maximizes the geometric mean of the normalized dispersion, making 

dispersions between different classes as identical as possible. Moreover, the Log function was 

combined with the geometric mean to further balance the dispersion between classes, and the 

maximum-margin criterion (MMC) was introduced to further enhance the discrimination 

ability of the distance metric. Finally, two constraints were applied to optimize the distance 

metric matrix. The effectiveness of the SDML algorithm was fully proved through experiments 

on actual datasets. The experimental results show that our algorithm outperformed many other 

typical DML methods in classification accuracy. This research provides an effectively way to 

measure the similarity between image samples and classify high-dimensional images. 
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1. INTRODUCTION 

 

With the development of the electronic technology, the 

electronic data have grown rapidly in volume and dimension. 

The phenomenon is particularly evident in the fields of 

computer vision and pattern recognition. In these fields, the 

raw data are severely redundant and difficult to discriminate. 

The redundancy seriously affects the performance of machine 

learning algorithms, posing a huge computing load to the 

processing system. To solve the problem, many dimension 

reduction methods have emerged. These methods generally 

construct a low-dimensional subspace based on data 

correlation, and then map high-dimensional raw data to the 

subspace, making them easier to discriminate. 

The typical dimension reduction methods include principal 

component analysis (PCA) [1], linear discriminant analysis 

(LDA) [2], Laplacian eigenmap (LE) [3], locally linear 

embedding (LLE) [4], neighborhood preserving embedding 

(NPE) [5], and locality preserving projections (LPP) [6]. All 

of them are linear approaches for dimension reduction, which 

aims to maintain some correlations between samples and look 

for the intrinsic distribution of the sample data. Similarly, 

maximum-margin criterion (MMC) [7] is a linear dimension 

reduction algorithm under supervised learning. However, none 

of the above linear methods could identify the intrinsic 

structure of nonlinear data. 

In recent years, sparse subspace learning algorithm [8] has 

become a research hotspot. This algorithm relies on sparse 

representation to fully mine the sparse correlation between 

samples. Sparse correlation refers to the correlation between 

samples reconstructed by sparse representation. However, 

there are two defects with sparse subspace learning algorithm: 

the discrimination ability is weak due to the neglection of 

spatial distribution of the samples, and the errors in sample 

correlation induced by the global property of sparse 

representation. 

The sparsity preserving projections (SPP) [9] has also 

caused widespread attention. The SPP is a global algorithm 

that sparsely represents the correlation between samples, 

and a nonparametric dimension reduction strategy without 

relying on parameter setting. Despite its excellence in 

dimension reduction, the SPP faces difficulties in identifying 

the correlation between samples, which mainly arise from the 

global property of sparse representation. For example, sparse 

representation cannot clearly discriminate a sample linearly 

represented by multiple samples from different classes. Qi et 

al. [10] pointed out that, when sparse representation is adopted 

to reconstruct samples, the samples in dictionary and those to 

be represented may come from different classes, causing errors 

to the sparse correlation thus constructed. Barazandeh et al. 

[11] proved that the global property of sparse representation 

induces heavy losses of structure information about the raw 

data. 

One of the emerging dimension reduction methods is 

distance metric learning (DML). Hayden et al. [12] proposed 

a global DML algorithm, which maximizes the sum of all 

distances between samples from different classes and 

introduces two constraints to obtain an effective distance 

metric. Information theoretic metric learning (ITML) is a 

classic DML algorithm that transforms the optimization 

procedure of DML into a Bregman optimization problem [13]. 

The algorithm minimizes the relative entropy of two 

multivariate Gaussian distributions to optimize the distance 

metric matrix. Extended from the ITML algorithm, high 

dimensional low rank (HDLR) is and constrains the rank of the 

distance metric matrix to be less than a constant. The low rank 

property enables the HDLR to process high-dimensional data. 

Semi-supervised sparse metric learning [14] adds a penalty 
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term to reduce the density of the distance metric matrix. Liang 

et al. [15] proposed a unified framework that integrates 

multiple sparse DML algorithms. Based on local sample 

distribution and label information, Wang et al. [16] designed a 

novel method called neighborhood similarity measurement, 

and successfully applied it to image classification. 

Subspace learning is the basis for many DML algorithms. 

In the learned subspace, the similarity between samples can be 

measured by Euclidean distances. Large margin nearest 

neighbor (LMNN) [17] is a classic algorithm that introduces a 

loss function similar to a support vector machine (SVM). 

Constraint-margin maximization (CMM) [18] and constrained 

metric learning (CML) [19] are two more DML algorithms 

based on subspace learning. With the aid of the MMC, the 

CML considers sample information outside of the pairwise 

constraint.  

Semantic gap is a common problem for most DML 

algorithms. It refers to the difference in meaning between 

constructs formed within different representation systems. 

Because of the semantic gap, the semantic information may be 

inconsistent with the image features. In other words, the 

distance between image features does not necessarily reflect 

the correlation of image semantic information. To make 

matters worse, images from different classes, which carry 

completely different semantic information, may look similar 

in the feature space. This is mainly resulted from the extremely 

unbalanced similarity distribution between images from 

different classes, which deviates from the correlation of real 

semantic information between images. 

To solve the problem, this paper puts forward a new 

supervised DML method called semantic discriminative 

metric learning (SDML). The SDML maximizes the geometric 

mean of the normalized dispersion, making dispersions 

between different classes as identical as possible. The 

geometric mean can be maximized, for all its multipliers are 

equal. In this way, semantic content and image features 

become consistent, reducing the impact of the semantic gap. 

Moreover, the Log function was combined with the geometric 

mean to further balance the dispersion between classes, and 

the MMC was introduced to further enhance the 

discrimination ability of the distance metric. Finally, two 

constraints were applied to optimize the distance metric matrix. 

 

 

2. IMAGE RECONSTRUCTION BASED ON SPARSE 

REPRESENTATION 

 

Sparse representation aims to linearly reconstruct the target 

samples through minimal use of the samples in the dictionary. 

Let ∈ 𝑅𝑛  be the samples (e.g. a vector-form signal and an 

image) to be represented, and 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑚} ∈ 𝑅𝑛×𝑚 be 

the overcomplete dictionary matrix, where each column in x is 

a sample. Then, the objective of the sparse representation is to 

linearly represent 𝑥 with as few samples as possible in X: 

 

min
s

‖s‖0   s. t.    𝑥 = 𝑋𝑠                     (1) 

 

where, 𝑠 ∈ 𝑅𝑚  is the coefficient vector of the sparse 

representation; ‖s‖0  is the 𝑙0 norm of the coefficient vector 

indicating the number of nonzero elements in the vector. 

However, the sparse solution cannot be obtained directly for 

two reasons: Eq. (1) is a nonconvex function; the constraint 

𝑥 = 𝑋𝑠 is usually invalid because x is often noisy. Therefore, 

the objective function of sparse representation can be rewritten 

as: 

 

min
s

‖s‖1 s. t. ‖𝑥 − 𝑋𝑠‖ < 𝜀                    (2) 

 

where, 𝜀  is the reconstruction error of the sparse 

representation. The 𝑙0 optimization for Eq. (1) can be replaced 

with 𝑙1 , as the 𝑙1  minimization can be solved by the least 

absolute shrinkage and selection operator (LASSO) method 

[20]. 

Sparse representation makes it possible to establish the 

weight matrix of the correlation between samples. Through 

sparse representation, each sample 𝑥𝑖  in the dataset can be 

reconstructed based on the data of all the other samples, 

creating the reconstructed coefficient vector 𝑠𝑖: 

 

min
si

‖si‖1 

 s. t.   ‖xi − Xsi‖ < 𝜀                               (3) 

1 = 𝟏Tsi 

 

where, 𝟏 = [1,1, ⋯ ,1]T ∈ Rm×1 ; si =

[si,1, si,2, ⋯ , si,i−1, 0, si,i+1, ⋯ , si,m]
T

. Therefore, the sparse 

weight matrix can be described as S = (s1, s2, ⋯ , sm)T, where 

S = (si,j)m×m  and si,j  is the sparse correlation between the 

sample 𝑥𝑖 and 𝑥𝑗. 

The sparse weight matrix contains discriminative 

information, and reflects the intrinsic geometry of the data 

to a certain extent. Like the LLE and the NPE, the 

objective to keep the sparse correlation 𝑠𝑖 between sample 

𝑥𝑖 and any other sample can be expressed as:  

 

min
w

∑ ‖wTxi − wTXsi‖
2m

i=1                     (4) 

 

For compactness, Eq. (4) can be transformed as follows by 

the SPP: 

 

∑ ‖wTxi − wTXsi‖
2m

i=1 = wTX(I − S − ST + STS)XTw (5) 

 

To prevent solution degradation, the SPP makes 

wTXXTw = 1 . Then, Eq. (5) can be replaced by the 

maximization method: 

 

max
w

wTXSαXTw

wTXXTw
                                 (6) 

 

where, Sα = S + ST − STS.  

The optimal solution w ∈ Rn×1  can be obtained by the 

eigenvector corresponding to the largest eigenvalue of the 

generalized eigenvalue decomposition: 

 

XSαXTw = λXXTw                           (7) 

 

After dimension reduction, the distance between samples in 

different classes can be maximized using the features extracted 

by the MMC. Compared with unsupervised algorithms like the 

PCA and the LDA, the MMC can preserve the discrimination 

ability of data, and overcome the small sample problem. The 

objective function of the MMC can be expressed as: 

 

J =
1

2
∑ ∑ pipj (d(mi, mj) − tr(Si) − tr(Si))

c

j=1

c

i=1
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=
1

2
∑ ∑ pipjd(mi, mj)

c

j=1

c

i=1

−
1

2
∑ ∑ pipj

c

j=1

c

i=1

(tr(Si) − tr(Sj)) 

= tr (∑ pi(mi − mj)(mi − mj)
T

c

i=1

) − ∑ pitr(Si)

c

i=1

 

= tr(Sb) − tr(Sw)                            (8) 

 

where, pi and pj are the number of samples in the class i and j, 

respectively; mi and mj are the mean vectors of samples in the 

class i and j, respectively; d(mi, mj) = ‖mi − mj‖; Si and Sj 

are the covariance matrices of samples in the class i and j; 

respectively. Eq. (8) can be written more compactly as: 

 

J = max tr(Sb − Sw)                        (9) 

 

where, Sb is the inter-class dispersion matrix; Sw is the intra-

class dispersion matrix. 

Due to the global property of sparse representation, the 

weight matrix constructed by the SPP contains some wrong 

information of the correlation between samples. Therefore, the 

SSP cannot achieve satisfactory performance when processing 

real data. 

Since the samples in same class are usually located in the 

vicinity of the sample space, the least squares policy 

evaluation (LSPE) can replace 𝑋 with XNi as a dictionary to 

reconstruct the sparse correlation between samples in the 

sparse representation. Let Ni ∈ Rm×m  be a diagonal matrix 

that reflects the location of xi. Each diagonal element of Ni is 

either zero or one. If the element is a neighbor of xi, it is one; 

otherwise, it is zero. The XNi  performs a simple column 

transform on the dictionary matrix X. Only samples reflecting 

the location of sample xi can be retained in the reconstruction 

dictionary and XNi = (0, ⋯ ,0, xi1, 0, ⋯ ,0, xi2, ⋯ ). 

The sparse correlation coefficient vectors, which reflect the 

sample location, can be obtained through the optimization 

below: 

 

min
si

‖si‖1 

s. t.   ‖xi − XNisi‖ < 𝜀                  (10) 

1 = 𝟏Tsi 

 

where, 𝟏 = [1,1, ⋯ ,1]T ∈ Rm×1 ; si ∈ Rm×1 ; XNi   is a new 

dictionary filtered from X using Ni. Eq. (10) can be solved by 

the LASSO method. The column vector in the matrix X ,which 

corresponds to the diagonal element of zero in Ni , is not 

involved in the sparse representation to reconstruct xi . 

Therefore, the elements in si  must be zeros because of the 

objective function min
si

‖si‖1. The samples not reflecting the 

location are ignored in sparse representation, under the 

function of Ni, making si sparser. 

The LSPE aims to maintain the sparse correlation between 

samples obtained in Eq. (10) through dimension reduction. 

Therefore, the objective of the LSPE can be summed up as 

looking for the best projection that keeps the sparse correlation 

between each sample and all the remaining samples: 

 

min
w

∑ ‖wTxi − wTXNisi‖
2m

i=1                (11) 

 

Eq. (11) can be simplified as: 

 

∑ ‖wTxi − wTXNisi‖
2m

i=1 = wT(∑ (xi − XNisi)(xi −m
i=1

XNisi)
T)w (12) 

 

 

3. DML-BASED SEMANTIC DISCRIMINATION  

 

Our SDML algorithm was proposed to solve the semantic 

gap of most DML algorithms, which leads to the inconsistency 

between image features and semantic information. The SDML 

algorithm is a supervised DML algorithm that combines 

geometric mean and normalized dispersion, aiming to 

separates image from different classes as accurately as 

possible. The SDML algorithm mainly targets the dispersion 

between different classes with similar image features but 

completely different semantic contents. In addition to the 

geometric mean and normalized dispersion, the CMM was 

introduced to construct the optimization model of the SDML 

algorithm to improve the discrimination ability. 

First, the SDML algorithm divides all training samples into 

c classes according to the sample labels, namely, s1, s2, … , sc. 
Since the normalized dispersion can describe the ratio of 

dispersion between samples si  and sj  to the total dispersion 

between samples, the normalized dispersion ρij
M  between 

classes 𝑖 and 𝑗 can be defined as: 

 

 ρij
M =

qiqjdM(ui,uj)

∑ qmqndM(um,un)1≤m<𝑛≤𝑐
                  (13) 

 

where, qi  is the number of samples in class  si ; ui  is the 

centroid of class 𝑖 ; dM(ui, uj)  is the distance between the 

centroids, i.e. the inter-class dispersion, of classes i and j. 
The consistency between features and semantic information 

is critical to image processing. Therefore, the constructed 

distance metric should treat the images from different classes 

equally, making them evenly dispersed in the metric space. 

Since maximizing the geometric mean makes all the 

multipliers virtually identical, the SDML algorithm enhances 

the similarity of the inter-class dispersions by maximizing 

geometric mean of normalized dispersion, striking a balance 

in the distribution of different classes in the metric space. In 

other words, the inter-class dispersion is reduced, and the 

inter-class dispersions are balanced. Therefore, the SDML 

algorithm focuses on the difference between images from 

similar but different classes. The geometric mean of 

normalized dispersion can be maximized by: 

 

M∗ = arg max
M

 (∏
qiqjdM(ui,uj)

∑ qmqndM(um,un)1≤m<𝑛≤𝑐
1≤i<𝑗≤𝑐 )

1

c(c−1) (14) 

 

According to the geometric mean inequality, the product of 

normalized dispersion is maximized if and only if the 

respective normalized dispersions are equal. Therefore, the 

optimal distance metric matrix M favors small inter-class 

dispersions over large inter-class dispersion. Hence, the 

maximum similarity between all inter-class dispersions 

dM(ui, uj)(i ≠ j) can be achieved by maximizing Eq. (14). To 

further highlight the distinction between images from similar 

classes, the Log function was applied to the geometric mean 

in Eq. (14). Thanks to the special nature of the Log function, 

the SDML algorithm can further balance all normalized 

dispersions and emphasize small inter-class dispersions. After 

introducing the Log function, we have: 
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M∗

= arg max
M

log ( ∏
qiqjdM(ui, uj)

∑ qmqndM(um, un)1≤m<𝑛≤𝑐
1≤i<𝑗≤𝑐

)

1
c(c−1)

 

= arg max
M

log (∏ ρij
M

1≤i<𝑗≤𝑐 )
1

c(c−1)                 (15) 

 

The optimal distance metric obtained by Eq. (15) maintains 

the consistency of feature and semantic information. However, 

this equation only considers normalized dispersion, ignoring 

the distance between samples from different classes. For better 

discrimination ability, the SDML algorithm maximizes the 

sum of the distances between image samples from different 

classes. Based on geometric mean and the MMC, a regularized 

DML framework can be established as: 

 

max
M

g(M) = log(∏ ρij
M

1≤i<𝑗≤𝑐 )
1

c(c−1) +

λ ∑ ηij1≤i<𝑗≤𝑁 dM(xi, xj)  

(16) 

 

where, λ  is the regularization parameter; ηij  is a variable 

reflecting the relationship between the classes of xi and xj (if 

the two samples belong to the same class, ηij=0; otherwise, 

ηij =1); log(∏ ρij
M

1≤i<𝑗≤𝑐 )
1

c(c−1)  maximizes the similarity 

between normalized inter-class dispersions, keeping features 

and semantic information consistent in the metric space;  

λ ∑ ηij1≤i<𝑗≤𝑁 dM(xi, xj)  is the sum of the distances of all 

samples from different classes, which enhances the 

discrimination ability of the SDML. 

However, distance metric matrix M obtained by Eq. (16) is 

not necessarily a semi-positive definite matrix. Hence, the 

constraint M ≥ 0 was introduced to ensure that M is always a 

semi-positive matrix. Due to the complexity of the image 

content, the image features corresponding to the same 

semantic information tend to scatter in the feature space. To 

solve this problem, another constraint h(M) was introduced to 

limit the distance between image features from the same class 

within a certain constant l. Therefore, the objective function of 

the SDML algorithm can be defined as: 

 

max
M

g(M) = log ( ∏ ρij
M

1≤i<𝑗≤𝑐

)

1
c(c−1)

+ λ ∑ ηij

1≤i<𝑗≤𝑁

dM(xi, xj) 

 s. t. h(M) = ∑ (1 − ηij1≤i<𝑗≤𝑁 )dM
2(xi, xj) ≤ l (17) 

M ≥ 0 

 

Because constant l  is stochastic and not unique, r  was 

adopted to replace the constant. Then, the distance metric 

matrix becomes  r2M. The scale of the matrix values can be 

adjusted without affecting the properties of the matrix. 

 

 

4. EXPERIMENT AND RESULTS ANALYSIS 

 

To verify its performance, the proposed SDML algorithm 

was compared with several typical DML algorithms through 

an experiment on eight image datasets, namely, Yale face 

dataset and Caltech 101 dataset.  The Yale face dataset 

contains 165 face images from 15 people, each of whom has 

11 face images with different expressions. The Caltech 101 

dataset contains 300×200 images of 9,145 objects in 102 

classes. Some images of Caltech 101 dataset are shown in 

Figure 1 below. 

 

 
 

Figure 1. Sample images in Caltech 101 dataset 

 

A total of seven distance metric algorithms were selected to 

compare with the SDML, including Xing.P, the CMM, the 

ITML, the LMNN, Euclidean, Chebuuychev and the LDA. 

Among them, Xing.P, the CMM, Euclidean, Chebuuychev and 

the LDA are nonparametric distance metric algorithms. The 

parameters of the other two algorithms were configured as 

follows. 

For the ITML, the initial metric matrix was set to the unit 

matrix. Through statistical calculation of the pairwise 

distances of all samples, the critical lengths of 5% and 95% 

were taken as the upper and lower bounds of the pairwise 

constraints of the algorithm, respectively. For the LMNN, the 

number of target neighborhoods was set to 4 and the initial 

transform matrix was set to the identity matrix. 

For SDML algorithm, the regularization parameter λ was set 

to 0.07. Capable of solving that the unbalanced distribution of 

images in the feature space, the SDML can prevent dividing 

images from similar classes into the same class, and thus 

maintain the consistency of image features and semantic 

information. To fully verify the algorithm performance, some 

outlier classes were included in the training data to make the 

distribution of all classes unbalanced (Figure 2). 

 

 
 

Figure 2. Addition of outlier images from Caltech 101 

dataset to Yale face dataset  

 

Each DML algorithm was trained by the disturbed Yale face 

dataset, and then uses a k-nearest neighbors (k-NN) algorithm 

[21] to classify the test images. The application of each 

algorithm was repeated ten times and the mean value of the 

results was taken as the final result. The classification error of 

each algorithm trained on the disturbed Yale face dataset is 

displayed in Figure 3. 

As shown in Figure 3, the SDML is superior to other seven 

DML algorithms in most cases. The superiority is attributable 
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to the SDML’s good performance under the serious semantic 

gap in the test data. Our algorithm can measure the similarity 

between samples more accurately than the contrastive 

algorithms. 

Next is the comparison of training time. Since Euclidean 

and Chebychev DML algorithms need no training, the training 

times of the remaining six DML algorithms were obtained 

through experiment (Table 1 and Table 2). 

The CMM and the LDA algorithms directly decompose data 

features, eliminating the need of iterative training to obtain an 

analytical solution.  As a result, the two algorithms consumed 

shorter training times than the other DML algorithms. As 

shown in Tables 1 and 2, the SDML algorithm consumed less 

time in training than the ITML and the LMNN. Our algorithm 

is very sensitive to the dimension of training samples, and its 

training time increased rapidly with the growth of dimension. 

Meanwhile, the training time of our algorithm increased 

slowly with the growing number of training samples. 

 

 
 

Figure 3. Image classification errors after training on 

disturbed Yale face dataset 

 

Table 1. Training time with disturbed Yale face dataset containing different number of training samples 

 
Number of training samples 200 250 300 350 400 450 

Xing. P 0.491 0.587 0.592 0.598 0.607 0.610 

CMM 0.002 0.002 0.003 0.004 0.007 0.009 

ITML 7.128 7.219 7.287 7.307 7.318 7.482 

LMNN 9.882 9.981 10.123 12.761 14.721 16.923 

LDA 0.872 0.896 0.908 0.918 0.932 0.971 

SDML 0.981 0.987 0.991 0.999 1.021 1.082 

 

Table 2. Training time with disturbed Yale face dataset containing training samples of different dimensions 

 
Dimensions of training samples 20 40 60 80 100 120 

Xing. P 0.473 0.817 0.886 1.271 1.682 2.875 

CMM 0.010 0.005 0.006 0.003 0.011 0.015 

ITML 3.826 5.821 8.725 9.921 12.341 15.821 

LMNN 5.925 7.983 8.690 9.035 15.823 18.723 

LDA 0.736 0.756 0.842 0.982 1.254 1.862 

SDML 0.927 1.472 2.891 3.481 4.102 5.986 

 

 

5. CONCLUSIONS 

 

This paper develops a novel supervised DML algorithm 

called the SDML, which couples geometric mean and 

normalized dispersion to balance all inter-class dispersions. 

Once the similarity distribution of images from different 

classes is balanced in the metric space, the similarity metric of 

images will no longer be negatively affected by the semantic 

gap. In addition, the SDML algorithm uses the MMC to 

enhance the discrimination ability of the distance metric. The 

distance between samples from different classes is maximized, 

promoting the classification accuracy of samples. 

Through repeated experiments, the SDML algorithm was 

proved effective in several aspects. For instance, the algorithm 

can maintain the consistency between image features and 

semantic information. The wrong correlation between samples, 

which is induced by the imbalance of sample distribution, can 

be avoid by the effective distance metric constructed by our 

algorithm. Moreover, SDML algorithm can distinguish images 

from similar classes at a high accuracy. 

However, the SDML algorithm is not fast enough to support 

real-time processing of some computer vision tasks, such as 

target tracking. This is because the optimization process of our 

algorithm relies on iterative optimization such as gradient 

ascent and iterative map. Hence, the future research will focus 

on creating a faster DML algorithm. 
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