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 Based on twin support vector machines (TWSVM) model, the twin support vector clustering 

(TWSVC) is a planar clustering model that increases inter-cluster separation. Because the 

TWSVC is not a standard model for some variables, its solving algorithm consumes lots of 

time and does not always converge to the optimal solution. To solve the problem, this paper 

proposes a novel clustering model, denoted as TWSVC+, based on twin support vector 

machines (TWSVM). The TWSVC+ is convex and standard with respect to each variable. 

Therefore, it is possible to solve this model rapidly with an algorithm that converges to a global 

optimal solution relative to each variable. The author presented linear TWSVC+ and non-linear 

TWSVC+ for clustering linear separable clusters and linear inseparable clusters, respectively. 

Experimental results on real datasets of UCI repository show that the TWSVC+ was better 

than TWSVC and support vector clustering (SVC) in accuracy and training time. 

 

Keywords: 

plane-based clustering, support vector 

clustering (SVC), twin support vector 

clustering (TWSVC), convex 

 

 

 
1. INTRODUCTION 

 

Clustering is a main procedure for data mining with wide 

application such as community detection, image processing, 

gene analysis, text organization, etc. K-Means and its 

extensions [1-5] are one class of the most famous clustering 

models. K-Means extracts clusters such that the data of each 

cluster have minimum distance to its cluster center which is a 

point. Hence, k-means is a point-based clustering model which 

tries to increase intra-cluster compactness. Other main 

category of clustering models are plane-based clustering 

models, e.g. k-plane clustering (kPC) [6, 7], proximal plane 

clustering (PPC) [8, 9], support vector clustering (SVC) [10, 

11] and twin support vector clustering (TWSVC) [12]. In 

plane-based clustering model, cluster center or cluster 

boundary is a plane. SVC [11] tries to increase inter-cluster 

separation. A faster version of SVC was proposed by K. Zhang, 

et al. [10]. Their experimental results show that the accuracy 

of SVC is higher than K-Means. But, when the number of data 

increases, memory-usage and training time of SVC increases 

dramatically. SVC is based on a well-known classification 

model named support vector machine (SVM) [13]. Training 

time and accuracy of Twin SVM (TWSVM) [14-16] are better 

than those of SVM. The existing TWSVM-based clustering, 

i.e. TWSVC [12], is not a standard model with respect to some 

of its variables. Therefore, a time-consuming algorithm named 

concave-convex algorithm [17] is used to solve TWSVC with 

respect to the mentioned variables. Moreover, the concave-

convex algorithm does not guarantee a global optimal solution 

with respect to the mentioned variables.  

This paper proposes a novel TWSVM-based clustering 

model called TWSVC+, which is convex and standard with 

respect to each model variable. Therefore, there is a fast 

algorithm for solving TWSVC+ with respect to each model 

variable which guarantees a global optimal solution of 

TWSVC+ with respect to each model variable. For simplicity, 

it assumed that we are dealing with two-cluster clustering. 

Therefore, the proposed model is explained based on a two-

cluster TWSVM: Assuming that we have only two clusters, 

initial clustering is done by using k-Means and therefore, the 

membership degrees of data to each initial cluster are 

determined. Then, cluster centers are corrected using TWSVM 

because data labels or data membership degrees were 

determined, previously. Next, data labels are corrected 

according to cluster centers learned using TWSVM. The 

process of correcting cluster centers and data labels is 

continued until convergence. Our experiments on the real 

dataset of UCI repository, i.e. Sonar, Cancer, PID, Iris and 

Wine show that the accuracy of TWSVC+ is better than that 

of k-means, SVC and TWSVC, and the training time of 

TWSVC+ is less than that of TWSVC and SVC.  

In continue, in section 2, TWSVC is explained. As our 

proposed clustering model is based on TWSVM, it is briefly 

explained in section 2, too. In section 3, TWSVC+ is proposed. 

In section 4, TWSVC+ is evaluated using real dataset and in 

section 5, the conclusion is provided.  

 

 

2. PRELIMINARIES 
 

2.1 TWSVC for clustering 

 

Let X = {x1, x2, … , xN} be data which must be clustered into 

k clusters where ∀i: xi ∈ R
m . TWSVC [6] assumes that the 

center of i-th cluster is a hyperplane with the equation wi
Tx +

bi = 0, where wi is the weight vector and bi is the bias of the 

mentioned hyperplane. TWSVM finds i-th cluster center or i-

th hyperplane such that members of this cluster are in the 

vicinity of i-th hyperplane and members of other clusters, are 

away from this hyperplane. For this purpose, the following 

mathematical model is used:
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min
wi,bi,qi

1

2
‖Xiwi + bie‖

2 + cẽTqi

subject to |X̃iwi + biẽ| ≥ ẽ − qi;  qi ≥ 0.
          (1) 

 

where, i = 1,2, … , k; Xi is i-th data cluster and X̃i is the other 

data clusters located on both sides of the i-th cluster center. 

The term ‖Xiwi + bie‖
2 of the model objective function (1) 

minimize the Euclidean distance of i-th cluster data to i-th 

cluster center. qi  is slack vector which exceptionally allows 

some data of X̃i not to be far enough from the i-th cluster center. 

These data are called outliers. Each of e  and ẽ  are vectors 

whose elements are equal to 1. The parameter c ≥ 0 

determines the importance of the second term of the model 

objective function (1) compared to its first term. If the value of 

c is large, less number of X̃i are allowed not to be far enough 

from i-th cluster center. Instead, it is possible that i-th cluster 

data, i.e. Xi, are not placed in the vicinity of i-th cluster center 

or i-th hyperplane. The model (1) is not a standard model 

because its first constraint is non-convex. The concave-convex 

algorithm which is a time-consuming algorithm is used to 

solve the model (1). Algorithm 1 [12] is an iterative algorithm 

which is used to solve the model (1) for clustering data into k 

cluster. 

 

Algorithm 1. An algorithm for solving TWSVC [12], i.e. the 

model (1). 

Input: 

𝑋 = {x1, x2, … , xN}: Data 

k: The number of clusters . 

thr: a threshold. 

Output: 

k cluster centers. 

• Step 1: Initialized data membership degrees using k-

means or randomly. 

• Step 2: Assign each data to its nearest cluster center, and 

determine Xi and X̃i, accordingly. 

• Step 3: Determine or correct i-th cluster centers by solving 

the non-standard model (1) using concave-convex 

algorithm. 

• Step 4: If the norm difference of the current cluster centers 

and the previous cluster centers is more than the specified 

threshold thr, go to step 2. 

 

2.2 TWSVM for two class classification 

 

In SVM, it is assumed that the borders of two data classes 

which are determined by a mathematical model are parallel. In 

TWSVM, the borders or centers of two data classes are 

determined by a twin model. Solving TWSVM is faster than 

SVM, and the accuracy of TWSVM classification is higher 

than SVM [8]. TWSVM model is as follows:  

 

min
w,b,q

1

2
‖Xw + bẽ‖2 + ceTq

subject to – (X̃w + b𝑒) ≥ 𝑒 − q;  q ≥ 0.
           (2) 

 

min
w̃,b̃,q̃

1

2
‖X̃w̃ + b̃𝑒‖

2
+ c̃�̃�Tq̃

subject to (Xw̃ + b̃�̃�) ≥ �̃� − q̃;  q̃ ≥ 0.
             (3) 

 

where, wTx + b = 0 and w̃Tx + b̃ = 0 are the borders or the 

center of each of the two data classes, and w and b are the 

weight vector and the  bias of the first class center, and w̃ and 

b̃ are the weight vector and the bias of the second class center. 

X is the first data class and X̃  is the second data class. The 

term ‖Xw + b�̃�‖2 in the objective function of the model (2), 

minimizes Euclidean distance of the first data class from the 

first class center. The vector q is slack vector which allows 

some of the second data class not to be far enough from the 

first class center. Such data are called outliers. Each of e and ẽ 

is a vector whose elements are equal to 1. The parameter 𝑐 ≥
0  determines the importance of the second term of the 

objective function (2) compared to its first term. If the value 

of c is large, less number of the second data class are allowed 

not to be far enough from the first cluster center. Instead, it is 

possible that the first data class is not placed in the vicinity of 

the first class center. The parameter 𝑐  controls the 

generalization ability of classifier which can increase the 

classifier accuracy. 

The term ‖X̃w̃ + b̃𝑒‖
2
  in the objective function of the 

model (3), minimizes Euclidean distance of the second data 

class from the second class center. The vector �̃� is slack vector 

which allows some of the first data class not to be far enough 

from the second class center. Such data are called outliers. The 

parameter �̃� ≥ 0 determines the importance of the second term 

of the objective function (3) compared to its first term. If the 

value of c is large, less number of the first data class are 

allowed not to be far enough from the second cluster center. 

Instead, it is possible that the second data class is not placed in 

the vicinity of the second class center. Figure 1 shows how 

TWSVM classifies data.  

 

 
 

Figure 1. Classification of data using TWSVM 

 

 

3. OUR PROPOSED MODEL: TWSVC+ 
 

As it was mentioned, the existing TWSVC is not a standard 

model with respect to some of its variables. Therefore, a time-

consuming algorithm named concave-convex algorithm is 

used to solve TWSVC with respect to the mentioned variables. 

Moreover, the concave-convex algorithm does not guarantee a 

global optimal solution with respect to the mentioned variables. 

In this section, we propose a novel TWSVM-based clustering 

model called TWSVC+, which is convex and standard with 

respect to each model variable. Therefore, there is fast 

algorithm for solving TWSVC+ with respect to each model 

variable which guarantees a global optimal solution of 

TWSVC+ with respect to each model variable. 

In two following sub-sections, linear TWSVC+ and non-

linear TWSVC+ is presented for clustering linear separable 

clusters and linear inseparable clusters, respectively. 
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3.1 Linear TWSVC+  

 

TWSVC+ is based on the basic TWSVM. The basic 

TWSVM is a two-class classifier which learns a classifier 

based on a two-class training data. One can design a multi-

class classifier by using some two-class TWSVM models, e.g. 

DAG approach. In this paper, for simplicity, it is assumed that 

we want to cluster data into two clusters. Therefore, the 

proposed model is described based on a two-class TWSVM. 

Obviously, similarly, by combining several two-cluster 

clustering model, we can create a multi-cluster clustering 

model. 

Suppose that we want to group {x1, x2, … , xN}  into two 

clusters n and p. Initialize cluster centers and data membership 

degree Uip ∈ {0,1} and Uin ∈ {0,1}, i.e. membership degree of 

xi  to clusters p and n, respectively, by using k-means or 

randomly. Then, cluster centers can be determined using 

TWSVM model because data labels or data membership 

degrees were determined, previously. To be more precise, to 

determine the two cluster centers, it is enough to solve the 

following twin models: 

 

min
w،b،q

∑ (wTxi + b)
2Uip + c∑ qiUin 

N
i=1      N

i=1

subject to  {
−(wTxi + b) ≥ 1 − qi ,
qi ≥ 0,   i = 1,2, … , N.

        (4) 

 

min
w̃،b̃،q̃

∑ (w̃Txi + b̃)
2
Uin + c̃∑ q̃iUip 

N
i=1      N

i=1

subject to  {
(w̃Txi + b̃) ≥ 1 − q̃i,

q̃i ≥ 0,   i = 1,2, … , N.

      (5) 

 

The first model, i.e. model (4), learns the center of cluster p 

or a hyperplane with the equation wTx + b = 0 such that the 

data of cluster n are located behind the hyperplane with an 

appropriate distance from it. In other word, for each x of the 

cluster n we must almost have – (wTx + b) ≥ 1, and for each 

x of the cluster p we must have wTx + b = 0  which is 

achieved by minimizing (wTx + b)2  in the model (4). The 

variable b is the bias and w is the weight vector of the center 

of cluster p. qi is slack variable which allows xi of the cluster 

n not to be in the proper distance behind the center of class p. 

Such data are called outliers. The parameter c controls the 

number of outliers of class n.  

The second model, i.e. the model (5), learns the center of 

cluster n or a hyperplane with the equation w̃Tx + b̃ = 0 such 

that the data of cluster p are located in front of the hyperplane 

with an appropriate distance from it. In other word, for each x 

of the cluster p we must almost have (w̃Txi + b̃) ≥ 1, and for 

each x of the cluster n we must have w̃Tx + b̃ = 0 which is 

achieved by minimizing (w̃Tx + b̃)
2

 in the model (5). The 

variable b̃ is the bias and w̃ is the weight vector of the center 

of cluster n. q̃i is slack variable which allows xi of the cluster 

p not to be in the proper distance in front of the center of class 

n. Such data is called outlier. Parameter c controls the number 

of outliers of class p. 

Each of the models (4) and (5) is a standard model, i.e. 

Quadratic Programming Problem (QPP). There exist efficient 

and well-known algorithms to solve a QPP. Solving the duals 

of these two primal models, i.e. models (4) and (5), are faster 

than solving the primal models because their dual models has 

less variables and less constraints. Hence, in continue, the 

duals of each of these primal models is determined. The model 

(4) can be written as follows: 

 

min 
w،b،q

 
1

2
(Xw + eb)Tdiag(Up)(Xw + eb) + ce

T(diag(Un))q

subject to {
– (Xw + eb) ≥ e − q,
q ≥ 0.

  (6) 

 

where, X = (x1, x2, … , xN)
T ; e ∈ RN is a vector whose 

elements are equal to 1; Up = (U1p, U2p, … , UNp)
T

; Un =

(U1n, U2n, … , UNn)
T; and q = (q1, q2, … , qN)

T. The model (6) 

can be written as follows: 

 

min 
w،b،q

1

2
‖√diag(Up)Xw + √diag(Up) eb‖

2

+ceT(diag(Un))q

subject to {
– (Xw + eb) ≥ e − q,
q ≥ 0.

         (7) 

 

Let Ẋ = √diag(Up)X, ė= √diag(Up) e, ë= diag(Un)e, and 

diag(Un) = diag(1 − Up).  Then, the model (7) can be 

rewritten as follows: 

 

min 
w،b،q

1

2
‖Ẋw + ėb‖

2
+ cëTq

subject to {
– (Xw + eb) ≥ e − q,
q ≥ 0.

              (8) 

 

Lagrange function of the model (8) is as follows: 

 

ℒ =  
1

2
‖Ẋw + ėb‖

2
+ cëTq − αT(−(Xw + eb) + q − e) − βTq, (9) 

 

where, 𝛼 ≥ 0 and 𝛽 ≥ 0 are Lagrange coefficients. We have 

at the optimal point of the dual model: 

 
dℒ

dw
= 0 → ẊT(Ẋw + ėb) + XTα = 0;           (10) 

 
dℒ

db
= 0 → ėT(Ẋw + ėb) + eTα = 0;            (11) 

 
dℒ

dq
=  0 → cë − α− β = 0;                 (12) 

 

According to Eq. (12) and given that 𝛽 ≥ 0 and 𝛼 ≥ 0, we 

have: 

 

0 ≤ α ≤ cë.                               (13) 

 

By combining Eq. (10) and Eq. (11) we obtain: 

 

[ẊT, ėT][Ẋ, ė][w, b] + [XT, eT]α = 0.          (14) 

 

We define H = [Ẋ, ė],  G = [X, e],  and V = [w, b]T.  Then, 

Eq. (14) can be written as follows: 

 

HTHV + GTα = 0.                        (15) 

 

Therefore, 

 

V = −(HTH)−1GT α.                    (16) 

 

The matrix HTH may be not invertible. In such situation, a 
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small positive value (𝜆) is added to its main diagonal. Then, 

we have: 

 

V = −(HTH + λI)−1GT α.                     (17) 

 

Moreover, by substituting Eq. (10)-(12) in the Lagrange 

function (9), the dual of the first model of the proposed twin 

models can be obtained as follows: 

 

max
α
−
1

2
 αTG(HTH)−1GT α+ eTα  

subject to  0 ≤ α ≤ cë.
           (18) 

 

By solving the model (18), and obtaining optimal α and 

putting it in Eq. (16) or Eq. (17), the value of V, i.e. the weight 

vector w and the bias b of center of cluster p, is obtained.  

Similarly, by setting the gradient of Lagrange function of 

the second model of the proposed twin model, i.e. the model 

(5), equal to zero, we obtain: 

 

Ṽ = (H̃TH̃)−1GT α̃.                             (19) 

 

where, α̃  is Lagrange coefficient; Ṽ = [w̃ ، b̃]T ; H̃ = [X̃, e̅] ; 

X̃ = √diag(Un)X ; e̅ =  √diag(Un) e ; and e̿ =  diag(Up) e . 

Similarly, the dual of the model (5) can be obtained: 

 

max
 α̃

 −
1

2
 α̃TH̃(GTG)−1H̃T α̃ + eTα̃  

subject to   0 ≤ α̃ ≤ c̃e̿.
              (20) 

 

By solving the model (20), and obtaining optimal α̃  and 

putting it in Eq. (19), the value of �̃�, i.e. the weight vector �̃� 

and the bias �̃� of center of class n, is obtained.  

After determining the cluster centers using the models (18) 

and (20), the membership degrees of data to the clusters, or the 

values of Uip  and Uin  must be modified such that the two 

clusters of data are as most distinctive as possible. That is, as 

far as possible, data of cluster p must be on the first hyperplane 

with the equation wTx + b = 0, namely ∑ (wTxi + b)
2Uip

N
i=1  

must be minimized, while the data of cluster n must be located 

far behind the first hyperplane. Also, as far as possible, data of 

cluster n must be on the second hyperplane with the equation 

w̃Tx + b̃ = 0 , namely ∑ (w̃Txi + b̃)
2
Uin

N
i=1  must be 

minimized, while the data of cluster p must be located far in 

front of the second hyperplane, and the number of clusters 

outliers must be reduced, or almost equivalently ∑  qiUin
N
i=1  

and ∑ qĩUip
N
i=1  must be minimized. To this end, the following 

model is proposed: 

 
min
U  ∑ (wTxi + b)

2Uip + ∑  qiUin
N
i=1

N
i=1

+∑ (w̃Txi + b̃)
2
Uin + ∑ qĩUip 

N
i=1

N
i=1

subject to {

Uip +   Uin = 1,

Uip, Uip ∈ {0,1},   i = 1,2, … , N,

−L ≤ ∑ uip
N
i=1 − ∑ uin

N
i=1 ≤ L.

          (21) 

 

The constraint Uip +  Uin = 1  states that xi  can be the 

member of only one cluster. The last constraint which is 

similar to the constraint of SVC doesn’t allow all data are 

assigned to one cluster. This constraint states that the 

difference between the number of data of clusters n and p must 

not be higher than a predefined parameter denoted by L. For 

the moment, we do not consider the last constraint of the 

model (21). Note that (wTxi + b)
2 + qĩ is the coefficient of 

Uip  and (w̃Txi + b̃)
2
+ qi  is the coefficienct of Uin , and 

according to the constraints of the model (21 ), Uin = 1 

exclusive or Uip = 1 . Therefore, to minimize the objective 

function (21), Uip must be set to 1 if its coefficient is smaller 

than the coefficient of Uin. In other word, 

 

Uip = {
1 (wTxi + b)

2 + qĩ ≤ (w̃
Txi + b̃)

2
+ qi

0 otherwise.
 

Uin =  1 −  Uip.                          (22) 

 

After determining the membership degrees using Eq. (22), 

if the last constraint of the model (21) is not satisfied, namely 

if ∑ uip
N
i=1 − ∑ uin

N
i=1 > 𝐿 , some data of cluster p must 

migrate to cluster n, and if ∑ uip
N
i=1 −∑ uin

N
i=1 < −L, some 

data of cluster n must migrate to cluster p to satisfy the last 

constraint. Of course, since the objective function (21) must 

be minimized, the data with the least affect on increasing the 

objective function (21) must migrate. For this purpose, the 

algorithm 2 is suggested. 

 

Algorithm 2: Migration of data of cluster p to cluster n or 

vice versa for satisfying the last constraint of the model 

(21). 

Diff = [(wTxi + b)
۲ + qĩ] − [(w̃

Txi + b̃)
۲
+ qi] 

If  ∑ uip
N
i=1 −∑ uin

N
i=1 > 𝐿  then  

 Diff = Diff < 0 
 Diff = sort(Diff, ′descending′) 

   ∀i ∈ {1:
∑ uip
N
i=1 −∑ uin

N
i=1 −L

2
}: Uin = 1, Uip = 0. 

Elseif ∑ uip
N
i=1 −∑ uin

N
i=1 < −L then 

 Diff = Diff ≥ 0 
 Diff = sort(Diff, ′ascending′) 

    ∀i ∈ {1:
∑ uip
N
i=1 −∑ uin

N
i=1 −L

2
}: Uin = 1, Uip = 0. 

End if 

 

After determining the membership degrees using equation 

(22) and using algorithm 2, if the current membership degrees 

is different from the previous membership degrees, the center 

of each cluster must be corrected using models (18) and (20), 

and then this process must be continued until convergence. In 

fact, the proposed iterative algorithm tries to solve the 

following models: 

 
min
w،b،q,

w̃،b̃،q̃,U 
 
1

2
∑ (wTxi + b)

2Uip + c∑ qiUin
N
i=1

N
i=1

+
1

2
∑ (w̃Txi + b̃)

2
Uin + c̃∑ q̃iUip 

N
i=1

N
i=1

subject to  

{
 
 
 

 
 
 
−(wTxi + b) ≥ 1 − qi,
qi ≥ 0,   i = 1,2,… , N,

(w̃Txi + b̃) ≥ 1 − q̃i,

q̃i ≥ 0,   i = 1,2,… , N,
Uip +   Uin = 1,

Uip, Uip ∈ {0,1},   i = 1,2,… , N,

−L ≤ ∑ uip
N
i=1 − ∑ uin

N
i=1 ≤ L.

    (23) 

 

If membership degrees are considered to be fixed, the model 

(23) is transformed into the models (4) and (5), and if the 

clusters centers are considered to be fixed, the model (23) is 

transformed into the model (21). Our proposed algorithm for 

solving the model (23) can be summarized as algorithm 3. 
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Algorithm 3. An algorithm for solving TWSVC+, i.e. the 

model (23). 

Input:  

S = {x1, x2, … , xN}: data 

Output:  

The members of each of two clusters. 

• Step 1: Initialize membership degrees using K-Means 

or randomly.  

• Step 2: Determine cluster centers using the models (18) 

and (20). 

• Step 3: Determine membership degrees using Eq. (22) 

and then algorithm 2.  

• Step 4: If the current membership degrees are different 

from the previous membership degrees, go to step 2. 

 

3.2 Non-linear TWSVC+  

 

If clusters are not linear separable, no hyperplane can be 

found to separate the clusters. To address this problem, first, 

data are mapped into a high-dimensional space using a 

mapping function denoted by φ. The mapping function φ is 

selected such that the data is linear separable in the high 

dimensional space. We have 

 

w =∑si

N

i=1

φ(xi), 

w̃ =∑ s̃i

N

i=1

φ(xi), 

 

where, si, s̃i ∈ R. Thus, the first and the second cluster centers 

with the equations wTx + b = 0  and w̃Tx + b̃ = 0  can be 

written as follows: 

 

k(xi, X)s + b = 0, 
k(xi, X)s̃ + b = 0, 

 

where, k(x, z) = φT(x)φ(z)  is a kernel function. Thus, the 

model (4) and (5) can be restated as follows: 

 

min
w،b،q

1

2
∑ (k(xi, X)s + b)

2Uip + c∑ qiUin 
N
i=1      N

i=1

s. t.  {
−(k(xi, X)s + b) ≥ 1 − qi,
 qi ≥ 0, i = 1,2, … , N.

    (24) 

 

min
w̃،b̃،q̃

1

2
∑ (k(xi, X)s̃ + b̃)

2
Uin + c̃∑ q̃iUip 

N
i=1      N

i=1

s. t.  {
(k(xi, X)s̃ + b̃) ≥ 1 − q̃i,

q̃i ≥ 0, i = 1,2, … , N.

   (25) 

 

The models (24) and (25) are also QPPs. Hence, there are 

efficient algorithms to solve them. Solving the duals of these 

primal models, i.e. models (24) and (25), are faster than 

solving the primal models because their dual models has less 

variables and less constraints. Hence, in continue, the duals of 

each of these primal models is determined. The model (25) can 

be written as follows: 

 

min 
w،b،q

1

2
‖√diag(Up)k(X, X)s + √diag(Up) eb‖

2

+ceT(diag(Un))q + ce
Tdiag(Un)q

subject to − (k(X, X)s + eb) ≥ e − q, q > 0.

      (26) 

Let k̇(X،X) = √diag(Up)k(X, X) ; ė = √diag(Up) e ; and 

ë = diag(Un)e. Thus, the model (26) can be written as follows: 

 

min 
w،b،q

1

2
‖k̇(X, X)s + ėb‖

2
+ cëTq

subject to − (k(X, X)s + eb) ≥ e − q, q ≥ 0.
    (27) 

 

Similarly, by setting the gradient of the Lagrange function 

of model (27) equal to zero, we obtain: 

 

V̅ = −(H̅TH̅)−1G̅T α̅.                        (28) 

 

where, α̅  is Lagrange coefficient, V̅ = [s, b]T , H̅ =

[k̇(X, X), ė],  and G̅ = [k(X, X), e].  Similarly, the duals of the 

model (27) can be obtained: 

 

max
 α̅
−
1

2
α̅TG̅(H̅TH̅)−1G̅T α̅+ eTα̅  

subject to      0 ≤ α̅ ≤ cë.
          (29) 

 

The matrix H̅TH̅ may be not invertible. In such situation, a 

small positive value (λ) is added to its main diagonal. In this 

case, we have: 

 

V̅ = −(H̅TH̅ + λI)−1G̅Tα̅.                   (30) 

 

After solving the dual model (29) and obtaining optimal α̅ 

and putting it into Eq. (30), V̅, i.e. the weight vector s and the 

bias b of the class center p, is obtained.  

Similarly, by setting the gradient of Lagrange function of 

the model (25) equal to zero, we obtain 

 

V̿ = −(H̿TH̿)−1G̅T α̿.                       (31) 

 

where, α̿ is Lagrange coefficient, V̿ = [s̃, b̃]T, H̅ = [k̈(X, X), e̅], 

and k̈(X،X) = √diag(Un)k(X, X) . Similarly, the dual of the 

model (25) can be obtained: 

 

max
 α̿
−
1

2
α̿
T
G̅(H̿TH̿)−1G̅T α̿+ eTα̿  

subject to      0 ≤ α̿ ≤ c̃e̿.
        (32) 

 

where, e̿= diag(Up) e. The matrix H̿TH̿ may be not invertible. 

In such situation, a small positive value (λ) is added to its main 

diagonal. In this case, we have: 

 

V̿ = −(H̿TH̿ + λI)
−1
G̅Tα̿.                   (33) 

 

After solving the dual model (32), and obtaining the optimal 

a̿ and putting it into Eq. (33), V̿, i.e. the weight vector s̃ and the 

bias b ̃ of the cluster center n, is obtained. 

 

 

4. EXPERIMENTAL RESULTS  

 

In this section, the proposed model called TWSVC+ is 

compared with k-means, linear SVC [10], nonlinear SVC [10] 

and TWSVC [12]. We used Gaussian kernel function in the 

nonlinear clustering models. The parameter of Gaussian kernel 

function is σ. The parameters c and c̃ were considered to be 

the same in this paper. The optimal value of these parameters, 

i.e. σ and c, were chosen by grid search method from the sets 
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{0.1,0.2, . . . ,2}, {2−10, 2−9, … , 210}, respectively. It should be 

noted that each of the eight real datasets, i.e. Iris, Wine, Sonar, 

Cancer, PID, Ecoli, Haberman, and Parkinsons were 

normalized. For random initialization in k-means, each 

experiment was repeated 20 times and the average of results 

was reported in Table 1. As can be seen, the accuracy of 

TWSVC+ is a bit better than SVC because the accuracy of 

TWSVM is a bit better than SVM [8], and TWSVC+ is 

TWSVM-based model and SVC is SVM-based model. 

The accuracy of TWSVC+ is much better than TWSVC 

because TWSVC+ is a standard model with respect to each 

variable, while TWSVC is not a standard model with respect 

to some variables. The concave-convex algorithm is used to 

solve TWSVC with respect to the mentioned variables. The 

concave-convex algorithm does not guarantee a global optimal 

solution with respect to the mentioned variables.  

Table 2 shows training times. As it can be seen, k-means 

has the least training time, and TWSVC+ has the second least 

training time. The training time of TWSVC+ is less than that 

of SVC because the training time of TWSVM is less than SVM 

[8]. The training time of TWSVC+ is less than that of TWSVC 

because concave-convex algorithm which is used to solve 

TWSVC is too time consuming.  

 

Table 1. The accuracy of clustering models (%) 

 
Mean Parkinsons Haberman Ecoli PID Cancer Sonar Wine Iris  

71.60 59.11 74.83 71.65 65.10 94.69 52.88 54.57 100 TWSVC (linear) 

72.67 65.63 51.63 73.81 76.43 95.70 52.40 65.73 100 TWSVC (Non-linear) 

86.17 85.09 74.72 95.17 79.01 97.13 66.73 95.51 96.00 SVC (linear) 

86.27 84.37 75.98 94.37 76.02 97.13 66.81 95.51 100 SVC (Non-linear) 

75.14 86.36 51.96 73.51 82.29 97.70 54.80 54.49 100 K-Means 

86.35 86.36 75.49 98.21 83.48 95.55 57.40 94.28 100 TWSVC+ (linear) 

86.63 84.09 71.43 95.96 87.67 94.09 69.85 89.93 100 TWSVC+ (Non-linear) 

 

Table 2. Training time of clustering models (second) 

 
Mean Parkinsons Haberman Ecoli PID Cancer Sonar Wine Iris  

21.14 1.45 7.62 5.67 102.14 46.62 2.89 1.90 0.81 TWSVC (linear) 

43.12 2.54 16.03 9.70 204.54 103.15 4.89 2.35 1.74 TWSVC (Non-linear) 

10.64 0.22 4.80 4.89 26.52 45.09 1.57 1.26 0.73 SVC (linear) 

17.25 0.18 3.60 4. 70 37.03 88.18 2.13 1.52 0.68 SVC (Non-linear) 

0.03 0.01 0.01 0.01 0.04 0.02 0.03 0.07 0.02 K-Means 

5.62 0.41 3.33 2.50 22.16 14.18 1.01 0.87 0.52 TWSVC+ (linear) 

8.89 37.0  2.52 2.92 31.41 30.11 1.91 1.02 0.87 TWSVC+ (Non-linear) 
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Figure 2. Sensitivity of linear TWSC+ to the hyper-

parameter c 
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Figure 3. Sensitivity of non-linear TWSC+ to the hyper-

parameter c 

Figure 2 and Figure 3 depict the sensitivity of linear 

TWSVC+ and non-linear TWSVC+ to the hyper-parameter c, 

respectively. As it can be seen, the sensitivity of TWSVC+ to 

the hyper-parameter c depends on input dataset. For some 

datasets, when the hyper-parameter c changes the accuracy 

does not changes; for some datasets, when the hyper-

parameter c changes for a wide range the accuracy does not 

changes; and for some datasets, when the hyper-parameter c 

changes the accuracy changes. 

 

 

5. DISCUSSION AND CONCLUSION 

 

(1) In this paper, a TWSVM-based clustering model 

called TWSVC+ was proposed which is an improved version 

of TWSVC. Our experiments on five real datasets showed that 

TWSVC+ has the highest accuracy compared with SVC, 

TWSVC and k-means, and has the less training time compared 

with SVC and TWSVC.  

(2) The accuracy and training time of TWSVC+ is better 

than SVC because SVC is SVM-based clustering model while 

TWSVC+ is TWSVM-based clustering model, and training 

time and accuracy of TWSVM is better than those of SVM [8].  

(3) The accuracy and training time of TWSVC+ is better 

than TWSVC because TWSVC is not a standard model with 

respect to some of its variables while TWSVC+ is a standard 

model (QPP) with respect to the mentioned variables. A time-

consuming algorithm named concave-convex algorithm is 

used to solve the non-standard model TWSVC with respect to 

the mentioned variables while there are efficient algorithms to 

solve TWSVC+ with respect to the mentioned variables. 

Moreover, the concave-convex algorithm does not guarantee a 

global optimal solution with respect to the mentioned variables 

while QPP does.  
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NOMENCLATURE 

X training set 

N the number of training data 

xi i-th training data

Xi i-th data cluster

X̃i the other data clusters located on both sides

of the i-th cluster center

wi weight vector of i-th cluster

bi bias of i-th cluster

k the number of cluster

thr threshold parameter

e, ẽ vectors of which elements are equal to 1

q, q̃ slack vectors

Uip membership degree of xi to clusters p

w, w̃ weight vectors of hyperplanes

b, b̃ biases of hyperplanes

𝜆 a small positive scalar

L A threshold parameter

𝛼, 𝛽 lagrange coefficients

c, c̃ penalty parameter
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