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Real-time detection of moving object is essential to traffic monitoring, video surveillance and 

many other vital applications. The effectiveness of real-time detection hinges on background 

subtraction. This paper proposes a hardware-efficient architecture for the running Gaussian 

average (RGA) technique of background subtraction. The architecture was designed based on 

the field programmable gate array (FPGA) and application specific integrated circuit (ASIC). 

The FPGA was realized using Digilent ZedBoard, while the ASIC was implemented using 

Cadence Genus, Innovus, and Assura tools at 45 nm process technology. A prototype of our 

architecture was tested with a video containing multiple moving objects, and another 

containing a single moving object. The results show that the proposed architecture is efficient 

in terms of area, power and timing. Therefore, this paper provides a background subtraction 

approach that uses hardware resources effectively without sacrificing the detection accuracy. 
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1. INTRODUCTION

Automated video Surveillance System (VSS) and traffic 

monitoring are nowadays gaining significant concern among 

researchers in recent times. Real-time moving object detection 

has been progressively watched as an essential component in 

different significant applications, such as traffic monitoring 

and VSS. A critical part of all such applications is the accurate 

extraction of objects of interest from an insignificant 

background scene. The various object detection techniques 

can be classified into two broaden categories (1) adaptive 

techniques and (2) nonadaptive techniques. Nonadaptive 

techniques have a few constraints that make it unfit of 

nowadays prerequisites like the requirement for manual 

initialization. For conquering constraints of nonadaptive 

techniques, adaptive technique comes into the picture. 

Adaptive techniques are advantageous in the sense that it 

averages the incoming frames over time, bringing about the 

formation of approximate background. Various adaptive 

techniques exist like frame differencing, mean filtering, 

median filtering, Running Gaussian Average (RGA), Mixture 

of Gaussian (MoG), and Kernel Density Estimation (KDE). 

Adaptive algorithms perceive the moving objects by observing 

the difference between the current video frame and 

background model comprising of the non-dynamic section of 

the video. The difference is then compared with the threshold 

value, and if it is higher than the threshold value, then the pixel 

is recognized as foreground otherwise background. The 

objective of such techniques is to create the background model 

that ought to have the option to get updated according to 

changes in the background scene such as illumination changes, 

camera oscillation, etc.   

RGA is a simple technique in contrast with existing 

background detection adaptive techniques. It provides high 

Frame per Second (fps) with acceptable accuracy. The 

hardware implementation has less memory requirement in 

comparisons of others and thus preferred for usage. With time, 

several researchers have done work for betterment in the 

performance of RGA. Tang et al. associated this technique 

with the frame difference technique to fill the gaps in which a 

moving object might be contained [1]. Jabri et al. [2] 

associated this technique with edge information to enhance the 

accuracy of such a scheme. 

Many researchers have suggested different hardware 

architecture approach to address the problem of an efficient 

hardware implementation of moving object detection 

algorithms. Based on design methodologies, the hardware 

implementation can be classified as general purpose-based, 

digital signal processor-based, Complex Programmable Logic 

Device (CPLD) based, Application Specific Integrated Circuit 

(ASIC) based, and Field Programmable Gate Array (FPGA) 

based. Moving object detection is an essential constituent of 

an automated surveillance system to be utilized as a stand-

alone system. The real-time video processing systems require 

highly complex computational units. Due to the parallel 

processing ability of FPGA, it is found to be suitable for the 

realization of image and video processing algorithms with 

high performance. FPGA provides the techniques to be 

directly realized onto the hardware. Since the instant 

prototyping and development of techniques are conceivable on 

FPGA, it is selected here for moving object detection.  

The significant contributions of this paper are as follows: 

– Composing hardware efficient architecture of RGA

technique for moving object detection that permits speed

improvement and low power consumption.

– Development of real-time moving object detection on

Artix-7 FPGA device, achieving 60 frames per second (fps)

for 640x480 pixels video.

– ASIC implementation of the proposed architecture at 45

nm process technology using Cadence Genus, Innovus and

Revue d'Intelligence Artificielle 
Vol. 33, No. 4, August, 2019, pp. 305-311 

Journal homepage: http://iieta.org/journals/ria 

305



 

Assura tools. 

Rest of the paper is organized as follows: Section 2 explores 

related work of background subtraction, Section 3 explores the 

proposed approach of RGA implementation, Section 4 

provides the results and analysis and Section 5 concluded 

entire works and scope for future work possibilities 

 

 

2. RELATED WORK 
 

The broad classification of background modeling 

techniques is shown in Figure 1. Background modeling 

techniques are incorporated by various techniques like 

subspace methods based [3], neural network-based models [4-

5], parametric and nonparametric models, etc. This section is 

partitioned into two parts. The standard background 

subtraction techniques are discussed in the first part and its 

hardware implementation in the second part.  

 

 
 

Figure 1. Classification of background modeling techniques 

 

2.1 Background subtraction techniques 

 

Various background subtraction techniques have been 

developed until now. Among them, the simplest one is frame 

differencing, which detects the moving object by examining 

the difference between the current frame and the reference 

model [6]. In this, the background frame is developed by 

averaging N, the number of previous frames as given in Eq. 

(1). 

 

𝛽(𝑥, 𝑦, 𝑡) =  
1

𝑁
∑ 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)𝑁

𝑖=1             (1) 

 

Jacques, et al. [7] and Stefano, et al., [8] employed Running 

Gaussian Average for creating the background model, which 

is subtracted from incoming frames to detect the moving 

objects. The single Gaussian model has only one source of 

variation, i.e., additive Gaussian noise. The objective of such 

algorithms is to create a background model that is updated 

with time. For example, to update the background model, 

Ridder et al., [9] and Karmann and Brandt [10] utilizes a 

Kalman filter, Toyama et al. [11] used a Wiener filter, and 

Jacques et al., [12] and Hung et al. [13] recommended a 

method based on median filtering. These methods address the 

light intensity variation in the background. Elgammal et al., 

[14] used a non-parametric approach, i.e., KDE, which models 

the background by aggregating the histogram of pixels. There 

is a wide utilization of KDE in the case of multimodal PDF. 

Stauffer and Grimson [15] used Gaussian Mixture Models 

(GMM), which assumes that the background pixels follow 

multiple Gaussian distributions. It is preferred in an outdoor 

environment, where the pixel value is different in different 

frames due to more than one source of the noise. The pixel 

intensity is evaluated by a mixture of k Gaussian distributions. 

The likelihood that a specific pixel has intensity  

xt at ‘t’ is given by Eq. (2). 

 

𝑃(𝑥𝑡|𝐵) =  ∑ 𝑤(𝑖, 𝑡)𝐺(𝑥𝑡; 𝑢𝑖,𝑡 ∑(𝑖, 𝑡))𝑘
𝑖=1         (2) 

 

where, w(i,t) is its weight, G is Gaussian function with mean, 

ui ,t and covariance, ∑(i,t) = σ2
i,tI. Kim et al. [16] used 

codebook technique, which associates each background pixel 

with a codeword. Barnich, et al. [17] used ViBe, which works 

at a very high speed and creates a background model using 

neighboring pixels and past pixels of the given pixel. Hofmann 

et al. [18] Kryjak et al. [19] used another background 

subtraction technique called Pixel-Based Adaptive Segmenter 

(PBAS) that maintains multiple background samples in the 

background model. In this, the decision threshold and learning 

parameters are dynamic per-pixel. Controllers are acquainted 

with steering these parameters to estimate the background. 

Subspace learning methods [3] have been developed to 

decrease the dimensionality of data, which reduces the 

computational complexity. 

 

2.2 Hardware realization of various background 

subtraction techniques 

 

Several researchers have done the hardware realization of 

background subtraction techniques. Jiang et al. have done 

FPGA implementation of video segmentation unit for 

automated video surveillance systems, capable of processing 

at 25 fps and reducing the memory requirement of more than 

70% using word length reduction and pixel locality [20]. Jiang 

et al. proposed a hardware architecture that is capable of 

handling multimodal background conditions, and the VirtexII 

FPGA platform used for hardware realization. The system 

processes video sequences of resolution 1024 x 1024 at 38 fps 

and can achieve up to a 60% reduction in memory requirement 

[21]. Kristensen et al. [22] has improved the segmentation 

circuit proposed by Jiang et al. [21]. Genovese, et al. presented 

the FPGA realization of GMM, which consumes less energy 

and is faster in comparison with previous implementations. 

The authors maneuver the update equations to simplify 

hardware implementation [23, 24]. Cherian et al. [25] 

implemented RGA on FPGA for detecting moving objects, 

which can process video stream of 640 x 480 resolution. The 

algorithm realized on Digilent Atlys Spartan 6 FPGA board. 

VmodCAM is used to capture real-time video. 

In brief, although several researchers have worked on the 

hardware implementation of different background subtraction 

techniques, yet not many of them have done the hardware 

implementation of the RGA technique. Due to the simplicity 

and high frame rate of the RGA technique with acceptable 

accuracy, it is considered in this paper, and efficient hardware 

architecture is proposed here. 

 

 

3. PROPOSED APPROACH OF RGA 

IMPLEMENTATION 
 

The crucial step in the detection of moving objects 

employing the background subtraction technique is the 

creation of the background frame. In the RGA method, 

Gaussian PDF is employed to develop the background. 

Running average is computed to avoid fitting the PDF from 
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the start of each new frame. For the creation and maintenance 

of background using RGA technique, we need to update the 

background model recursively using exponential forgetting, 

i.e., 

 

𝛽𝑡 =  𝛼𝐼𝑡 +  (1 − 𝛼)𝛽𝑡−1                       (3) 

 
|𝐼𝑡 −  𝛽𝑡| > 𝑇                              (4) 

 

where, α is the learning rate which decides the speed of 

ignoring the background information, and its value lies 

between 0 and 1. Also ’It’ is the current image at a time ’t’ and 

βt−1 is background image at (t-1). We can observe from Eq. (3) 

that the overall mean is a weighted mean of the current pixel 

value and past values of pixels. The difference of current frame 

and calculated background frame is then thresholded to detect 

the moving object present in the scene, given by Eq. (4). To 

evaluate the mean of past n samples, two floating-point 

multipliers, and an addition unit are required, which increases 

hardware utilization. The increase of hardware requirement 

adversely affects the power and area utilization. In the 

proposed approach, the floating-point manipulation units are 

replaced by decimal manipulation units, which reduce the 

hardware utilization to a great extent. The step by step process 

of the proposed technique for the realization of moving object 

detection using Running Gaussian Average technique is as 

follows: 

Algorithm:  

For an easy understanding of the proposed technique, it has 

developed an algorithm based on the mathematical model of 

design. It has been explained in 12 steps as given below: 

 

Step 1 The 24-bit wide RGB pixel of an input video 

frame is first converted into 8-bit gray scale 

value using Figure 2. 

Step 2 The first frame of video is used for background 

initialization and hence should be stored in 

memory. 

Step 3 The upcoming frames are employed along with 

first frame for creating the background. 

Step 4 The 8-bit wide gray pixel of current frame and 

previous frame is converted into 16-bit wide 

pixel by using an 8-bit shift operation. 

Step 5 The learning rate, α, whose value lies between 

0 and 1 is multiplied with 1000 and the resultant 

is directly used in our implementation process. 

Step 6 The 16-bit wide pixel value of current frame is 

multiplied with α. The resultant is stored in 32-

bit wide variable say gray32. Radix 4 booth 

multiplier is used here for all multiplications 

required in this implementation. 

Step 7 The 16-bit wide pixel value of previous frame 

is multiplied with resultant of 1000 * (1 −α). 

The resultant is stored in 32-bit wide variable, 

say background32. 

Step 8 The 32-bit values, i.e., gray32 and background32 

are then added to obtain updated background. 

For addition, 32-bit ripple carry adder is used in 

this paper. 

Step 9 The 32-bit wide updated background is then 

divided by 1000 to compensate the 

modifications and the resultant is stored in a 16-

bit wide variable. 

Step 10 The 16-bit wide updated background is shifted 

to right by 8 bits and the resultant 8-bit value of 

updated background is obtained. 

Step 11 The current frame pixel value which is 8-bit 

wide is subtracted from 8-bit wide updated 

background pixel to obtain the difference. 

Step 12 The difference value is then thresholded to 

detect a moving object from a sequence of video 

frames. 

 

Based on algorithm steps, an example is given below for an 

easy understanding of proposed concepts. Assuming first pixel 

of first frame be  

B = 24’b110010000110010011001000 (24’d13133000) and 

first pixel of second frame be  

C = 24’b011001001100100001100100 (24’d6604900). The 

24 bit RGB pixel is now converted to 8 bit gray pixel which is 

given as: 

B = 8’b10001101, C = 8’b10011111 

B16 = B<< 8 = 16’b1000110100000000,  

C16 = C<<8 = 16’b1001111100000000 

Let α = 0 .01 then 1000 × α = 1000x0 .01 = 10. Let α1 = 10 

and α2= 1000 – α1 = 990 background32 = B16 × α2 = 

32’d35735040, gray32 = C16 × α1 = 32’d407040  

updated_ background32 = background32 + gray32 = 

32’d36142080 

updated_background16 = updated_background32 ÷ 1000 = 

16’d36142 

update_ background = updated_ background16>> 8 = 

8’b10001101 = 8’d141 

Let the incoming frame first pixel value is 8’d200 then 

Difference = 8’d200− updated_ background = 8’d200− 

8’d141 = 8’d59. 

 

 
 

Figure 2. Block diagram of RGB image to gray conversion 

 

Since the difference is less than the threshold (assuming 

150), then output is the same as difference value. Various 

researchers have given different ways of RGB to gray 

conversion. In this paper, a novel architecture of RGB to gray 

conversion is proposed where transformation is accomplished 

by using shift and addition operations, as shown in Figure 2. 

The 24-bit RGB pixel is divided into separate 8 bit R, G, and 

B pixels, then the desired right shift is carried out on each of 

them, and finally, they are added up to obtain an 8-bit gray 
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image. Figure 3 shows the existing architecture of RGA 

implementation. The gray pixel obtained from RGB to gray 

conversion needs to be converted into floating-point value to 

carry out further computations. The translation of decimal 

value to floating-point value requires IEEE 754 floating-point 

conversion unit. Since there is a necessity of floating-point 

multiplication and addition blocks for computation, it leads to 

an increase in resource utilization. In the proposed architecture, 

there is no need for the IEEE 754 conversion unit as pixel 

value is directly fed in the system to carry out the computation 

process. Figure 4 provides an architecture view of the 

proposed methodology. Radix 4 booth multiplier is used to 

carry out all the required multiplications. Figure 5 provides the 

block diagram of the proposed methodology of RGA 

implementation.  

 

 
 

Figure 3. Existing architecture of RGA implementation 

 

 
 

Figure 4. Proposed architecture of RGA implementation 

 
 

Figure 5. Block diagram of proposed RGA implementation 

 

 
 

Figure 6. Conceptual view of real time FPGA 

implementation of background subtraction 

 

 

Figure 6 shows the real-time implementation of background 

subtraction on FPGA, where the background update is carried 

out using the RGA method. Block memory present on FPGA 

board is used to store the frame pixels value during processing. 

This block memory requires an interfacing module for its 

usage. The resultant video frames containing detected moving 

objects obtain on a monitor of 640 x 480 resolution @60 Hz, 

which is accomplished using a VGA controller module. 

 

 

4. RESULTS AND ANALYSIS 

 

The FPGA implementation of the proposed framework is 

accomplished using the Xilinx Vivado 2016.2 tool. The design 

realized on Digilent ZedBoard (xc7z020clg484-1), which has 

a 28 nm Xilinx Artix-7 FPGA device. Vivado in-built logic 

simulator is used to perform the required circuit simulations. 

Table 1 provides the post-implementation resource utilization 

of proposed architecture for the background updation module. 

The existing architecture is also implemented on ZedBoard 

and a comparison made with the proposed architecture. The 
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proposed framework is capable of processing video in real-

time with reduced hardware requirements compared to an 

existing architecture. Table 1 shows that the required LUT 

reduces to a large extent, but it also requires 156 FF. The VGA 

interfacing module also implemented on FPGA, and its 

resource utilization is given in Table 2. The implementation of 

the VGA interfacing module on ZedBoard requires 0.06% of 

LUT, 0.04% of FF, and 1 global buffer. Table 3 represents the 

variation of area, power, and timings concerning the frequency 

variation at 45nm process technology. Difference between 

data required time and data arrival time produces slack time. 

For avoiding timing violations, the slack time must be zero or 

positive. From Table 3, the proposed technique seems to have 

a positive slack of 4.44 ns at 100 MHz clock frequency with a 

total power consumption of 106.6 µW. As operating frequency 

increases, there is an increase in power consumption and a 

decrease in arrival time. We can observe that the slack time 

approaches 0 ns as the clock frequency approaches 357 MHz 

and power reaches to 446.1 µW. Figure 7 shows the slack 

variation to frequency change for the proposed architecture. 

Figure 7 shows that at 100 MHz clock frequency, the design 

produces a positive slack of 4.5 ns. Further, the slack time 

reduces to 0.01 ns at 312 MHz. With further increase of 

frequency, we get 0 ns slack time. While for the existing 

architecture, the system produces a positive slack of 5.8 ns at 

10 MHz. The slack then reduces to 0 ns at 50 MHz, and the 

slack of 0 ns continues to remain till 100 MHz. The existing 

architecture produces a negative slack of -0.12 ns at 125 MHz, 

which further reduces to -1.3 ns at 166 MHz and -3.9 ns at 285 

MHz. 

It infers that the proposed architecture performs better at 

higher frequency in comparison to an existing architecture. 

Table 4 shows the resource utilization for the ASIC 

implementation of the background updation module at 45 nm 

process technology. The synthesis is accomplished using the 

Cadence Genus tool. Also, physical design and verification are 

performed using Cadence Innovus and Assura tools, 

respectively. It is observed from Table 4 that the total area for 

logic implementation is reduced by approximately 82%, and 

the total power consumption is reduced by 58% for the ASIC 

implementation of proposed architecture of background 

subtraction. Also, there is a reduction in 97% in area delay 

product (ADP) for the proposed architecture. Figure 8 shows 

the outcome of physical design, which includes floorplanning, 

placement, clock tree synthesis, and routing. 

 

Table 1. Comparison of resource utilization for the proposed 

and existing architectures on FPGA 

 
Resource Proposed Existing 

LUT 157 1461 

Flip Flop 156 186 

IO 59 25 

BRAM 100.5 100.5 

BUFG 1 1 

 

Table 2. Resource utilization of FPGA implementation for 

VGA module 

 
Resource Utilization Available Utilization % 

LUT 34 53200 0.06 

Flip Flop 40 106400 0.04 

IO 37 200 18.50 

BUFG 1 32 3.13 

 

Table 3. Variation of area, power and delay with respect to 

frequency at 45nm process technology for proposed 

architecture 

 
Parameters  

Frequency 

(MHz) 

Total 

Area 

( µm2) 

Total 

Power 

( µW) 

Required 

Time 

 (ns) 

Arrival 

Time 

(ns) 

100 2929 106.6 9.88 5.44 

166 2930 166.4 6.88 4.59 

192 2932 204.2 5.08 4.54 

217 2943 230.8 4.50 4.48 

285 3085 320.1 3.39 3.38 

312 3176 351.9 3.09 3.08 

357 3413 446.1 2.68 2.68 

 

Table 4. Performance comparison of ASIC implementation 

of proposed and existing architectures at 45 nm process 

technology 

 
Parameters Proposed Existing 

Total Area ( µm2) 3413 19305 

Total Power ( µW) 446.1 1072.8 

Arrival Time (ns) 2.68 19.88 

ADP (um2 ∗ us) 9.14 383.78 

 

 
 

Figure 7. Variation of timing slack w.r.t. frequency for the 

proposed architecture 

 

 
 

Figure 8. Physical design of proposed architecture of RGA 

 

The experimental validation of proposed architecture is 

performed using two test videos from Actions as space-time 

shapes dataset [26]. One of the test videos contains multiple 

moving objects, and another test video consists of a single 

moving object. Figure 9 shows some of the frames of input test 

videos and the corresponding detected moving objects present 

in the videos. The detected moving objects seem to be in 

grayscale rather than color because of the initial conversion of 

the input video frames into the grayscale for further processing. 
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Figure 10 shows the FPGA realization of moving object 

detection using the proposed framework. 

 

Input 1 

 
Output1 

 
Input 2 

 
Output 

2 

 
 

Figure 9. Some of the input and corresponding output frames 

of two test videos 

 

 
 

Figure 10. FPGA realization of RGA for moving object 

detection 

 

 

5. CONCLUSION 

 

This paper proposed an efficient hardware architecture for 

the FPGA and ASIC implementation of the RGA technique of 

background subtraction. FPGA realization is performed using 

Digilent ZedBoard, and ASIC implementation is performed 

using Cadence Genus, Innovus, and Assura tools at 45nm 

process technology. The proposed architecture of the RGA 

technique is found to be efficient in terms of area, power, and 

timing. The implemented prototype system is seen to detect 

relative motion from the incoming video stream in real-time 

scenario on VGA monitor of 640 x 480 resolution at 60 fps. 

Thus, the proposed architecture uses the hardware resource 

more effectively without a significant reduction in the 

accuracy of detection. 
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