
Compact Hardware of Running Gaussian Average Algorithm for Moving Object Detection

Realized on FPGA and ASIC

Kaushal Kumar1*, Durgesh Nandan2, Ritesh Kumar Mishra1

1 Department of ECE, National Institute of Technology, Patna 800005, India
2 CL Educate Ltd., New Delhi 110044, India

Corresponding Author Email: kaushal.ec16@nitp.ac.in

https://doi.org/10.18280/ria.330407 ABSTRACT

Received: 16 March 2019

Accepted: 20 July 2019

Real-time detection of moving object is essential to traffic monitoring, video surveillance and

many other vital applications. The effectiveness of real-time detection hinges on background

subtraction. This paper proposes a hardware-efficient architecture for the running Gaussian

average (RGA) technique of background subtraction. The architecture was designed based on

the field programmable gate array (FPGA) and application specific integrated circuit (ASIC).

The FPGA was realized using Digilent ZedBoard, while the ASIC was implemented using

Cadence Genus, Innovus, and Assura tools at 45 nm process technology. A prototype of our

architecture was tested with a video containing multiple moving objects, and another

containing a single moving object. The results show that the proposed architecture is efficient

in terms of area, power and timing. Therefore, this paper provides a background subtraction

approach that uses hardware resources effectively without sacrificing the detection accuracy.

Keywords:

ASIC, background subtraction, FPGA,

moving object detection, running

gaussian average, video processing

1. INTRODUCTION

Automated video Surveillance System (VSS) and traffic

monitoring are nowadays gaining significant concern among

researchers in recent times. Real-time moving object detection

has been progressively watched as an essential component in

different significant applications, such as traffic monitoring

and VSS. A critical part of all such applications is the accurate

extraction of objects of interest from an insignificant

background scene. The various object detection techniques

can be classified into two broaden categories (1) adaptive

techniques and (2) nonadaptive techniques. Nonadaptive

techniques have a few constraints that make it unfit of

nowadays prerequisites like the requirement for manual

initialization. For conquering constraints of nonadaptive

techniques, adaptive technique comes into the picture.

Adaptive techniques are advantageous in the sense that it

averages the incoming frames over time, bringing about the

formation of approximate background. Various adaptive

techniques exist like frame differencing, mean filtering,

median filtering, Running Gaussian Average (RGA), Mixture

of Gaussian (MoG), and Kernel Density Estimation (KDE).

Adaptive algorithms perceive the moving objects by observing

the difference between the current video frame and

background model comprising of the non-dynamic section of

the video. The difference is then compared with the threshold

value, and if it is higher than the threshold value, then the pixel

is recognized as foreground otherwise background. The

objective of such techniques is to create the background model

that ought to have the option to get updated according to

changes in the background scene such as illumination changes,

camera oscillation, etc.

RGA is a simple technique in contrast with existing

background detection adaptive techniques. It provides high

Frame per Second (fps) with acceptable accuracy. The

hardware implementation has less memory requirement in

comparisons of others and thus preferred for usage. With time,

several researchers have done work for betterment in the

performance of RGA. Tang et al. associated this technique

with the frame difference technique to fill the gaps in which a

moving object might be contained [1]. Jabri et al. [2]

associated this technique with edge information to enhance the

accuracy of such a scheme.

Many researchers have suggested different hardware

architecture approach to address the problem of an efficient

hardware implementation of moving object detection

algorithms. Based on design methodologies, the hardware

implementation can be classified as general purpose-based,

digital signal processor-based, Complex Programmable Logic

Device (CPLD) based, Application Specific Integrated Circuit

(ASIC) based, and Field Programmable Gate Array (FPGA)

based. Moving object detection is an essential constituent of

an automated surveillance system to be utilized as a stand-

alone system. The real-time video processing systems require

highly complex computational units. Due to the parallel

processing ability of FPGA, it is found to be suitable for the

realization of image and video processing algorithms with

high performance. FPGA provides the techniques to be

directly realized onto the hardware. Since the instant

prototyping and development of techniques are conceivable on

FPGA, it is selected here for moving object detection.

The significant contributions of this paper are as follows:

– Composing hardware efficient architecture of RGA

technique for moving object detection that permits speed

improvement and low power consumption.

– Development of real-time moving object detection on

Artix-7 FPGA device, achieving 60 frames per second (fps)

for 640x480 pixels video.

– ASIC implementation of the proposed architecture at 45

nm process technology using Cadence Genus, Innovus and

Revue d'Intelligence Artificielle
Vol. 33, No. 4, August, 2019, pp. 305-311

Journal homepage: http://iieta.org/journals/ria

305

Assura tools.

Rest of the paper is organized as follows: Section 2 explores

related work of background subtraction, Section 3 explores the

proposed approach of RGA implementation, Section 4

provides the results and analysis and Section 5 concluded

entire works and scope for future work possibilities

2. RELATED WORK

The broad classification of background modeling

techniques is shown in Figure 1. Background modeling

techniques are incorporated by various techniques like

subspace methods based [3], neural network-based models [4-

5], parametric and nonparametric models, etc. This section is

partitioned into two parts. The standard background

subtraction techniques are discussed in the first part and its

hardware implementation in the second part.

Figure 1. Classification of background modeling techniques

2.1 Background subtraction techniques

Various background subtraction techniques have been

developed until now. Among them, the simplest one is frame

differencing, which detects the moving object by examining

the difference between the current frame and the reference

model [6]. In this, the background frame is developed by

averaging N, the number of previous frames as given in Eq.

(1).

𝛽(𝑥, 𝑦, 𝑡) =
1

𝑁
∑ 𝐼(𝑥, 𝑦, 𝑡 − 𝑖)𝑁

𝑖=1 (1)

Jacques, et al. [7] and Stefano, et al., [8] employed Running

Gaussian Average for creating the background model, which

is subtracted from incoming frames to detect the moving

objects. The single Gaussian model has only one source of

variation, i.e., additive Gaussian noise. The objective of such

algorithms is to create a background model that is updated

with time. For example, to update the background model,

Ridder et al., [9] and Karmann and Brandt [10] utilizes a

Kalman filter, Toyama et al. [11] used a Wiener filter, and

Jacques et al., [12] and Hung et al. [13] recommended a

method based on median filtering. These methods address the

light intensity variation in the background. Elgammal et al.,

[14] used a non-parametric approach, i.e., KDE, which models

the background by aggregating the histogram of pixels. There

is a wide utilization of KDE in the case of multimodal PDF.

Stauffer and Grimson [15] used Gaussian Mixture Models

(GMM), which assumes that the background pixels follow

multiple Gaussian distributions. It is preferred in an outdoor

environment, where the pixel value is different in different

frames due to more than one source of the noise. The pixel

intensity is evaluated by a mixture of k Gaussian distributions.

The likelihood that a specific pixel has intensity

xt at ‘t’ is given by Eq. (2).

𝑃(𝑥𝑡|𝐵) = ∑ 𝑤(𝑖, 𝑡)𝐺(𝑥𝑡; 𝑢𝑖,𝑡 ∑(𝑖, 𝑡))𝑘
𝑖=1 (2)

where, w(i,t) is its weight, G is Gaussian function with mean,

ui ,t and covariance, ∑(i,t) = σ2
i,tI. Kim et al. [16] used

codebook technique, which associates each background pixel

with a codeword. Barnich, et al. [17] used ViBe, which works

at a very high speed and creates a background model using

neighboring pixels and past pixels of the given pixel. Hofmann

et al. [18] Kryjak et al. [19] used another background

subtraction technique called Pixel-Based Adaptive Segmenter

(PBAS) that maintains multiple background samples in the

background model. In this, the decision threshold and learning

parameters are dynamic per-pixel. Controllers are acquainted

with steering these parameters to estimate the background.

Subspace learning methods [3] have been developed to

decrease the dimensionality of data, which reduces the

computational complexity.

2.2 Hardware realization of various background

subtraction techniques

Several researchers have done the hardware realization of

background subtraction techniques. Jiang et al. have done

FPGA implementation of video segmentation unit for

automated video surveillance systems, capable of processing

at 25 fps and reducing the memory requirement of more than

70% using word length reduction and pixel locality [20]. Jiang

et al. proposed a hardware architecture that is capable of

handling multimodal background conditions, and the VirtexII

FPGA platform used for hardware realization. The system

processes video sequences of resolution 1024 x 1024 at 38 fps

and can achieve up to a 60% reduction in memory requirement

[21]. Kristensen et al. [22] has improved the segmentation

circuit proposed by Jiang et al. [21]. Genovese, et al. presented

the FPGA realization of GMM, which consumes less energy

and is faster in comparison with previous implementations.

The authors maneuver the update equations to simplify

hardware implementation [23, 24]. Cherian et al. [25]

implemented RGA on FPGA for detecting moving objects,

which can process video stream of 640 x 480 resolution. The

algorithm realized on Digilent Atlys Spartan 6 FPGA board.

VmodCAM is used to capture real-time video.

In brief, although several researchers have worked on the

hardware implementation of different background subtraction

techniques, yet not many of them have done the hardware

implementation of the RGA technique. Due to the simplicity

and high frame rate of the RGA technique with acceptable

accuracy, it is considered in this paper, and efficient hardware

architecture is proposed here.

3. PROPOSED APPROACH OF RGA

IMPLEMENTATION

The crucial step in the detection of moving objects

employing the background subtraction technique is the

creation of the background frame. In the RGA method,

Gaussian PDF is employed to develop the background.

Running average is computed to avoid fitting the PDF from

306

the start of each new frame. For the creation and maintenance

of background using RGA technique, we need to update the

background model recursively using exponential forgetting,

i.e.,

𝛽𝑡 = 𝛼𝐼𝑡 + (1 − 𝛼)𝛽𝑡−1 (3)

|𝐼𝑡 − 𝛽𝑡| > 𝑇 (4)

where, α is the learning rate which decides the speed of

ignoring the background information, and its value lies

between 0 and 1. Also ’It’ is the current image at a time ’t’ and

βt−1 is background image at (t-1). We can observe from Eq. (3)

that the overall mean is a weighted mean of the current pixel

value and past values of pixels. The difference of current frame

and calculated background frame is then thresholded to detect

the moving object present in the scene, given by Eq. (4). To

evaluate the mean of past n samples, two floating-point

multipliers, and an addition unit are required, which increases

hardware utilization. The increase of hardware requirement

adversely affects the power and area utilization. In the

proposed approach, the floating-point manipulation units are

replaced by decimal manipulation units, which reduce the

hardware utilization to a great extent. The step by step process

of the proposed technique for the realization of moving object

detection using Running Gaussian Average technique is as

follows:

Algorithm:

For an easy understanding of the proposed technique, it has

developed an algorithm based on the mathematical model of

design. It has been explained in 12 steps as given below:

Step 1 The 24-bit wide RGB pixel of an input video

frame is first converted into 8-bit gray scale

value using Figure 2.

Step 2 The first frame of video is used for background

initialization and hence should be stored in

memory.

Step 3 The upcoming frames are employed along with

first frame for creating the background.

Step 4 The 8-bit wide gray pixel of current frame and

previous frame is converted into 16-bit wide

pixel by using an 8-bit shift operation.

Step 5 The learning rate, α, whose value lies between

0 and 1 is multiplied with 1000 and the resultant

is directly used in our implementation process.

Step 6 The 16-bit wide pixel value of current frame is

multiplied with α. The resultant is stored in 32-

bit wide variable say gray32. Radix 4 booth

multiplier is used here for all multiplications

required in this implementation.

Step 7 The 16-bit wide pixel value of previous frame

is multiplied with resultant of 1000 * (1 −α).

The resultant is stored in 32-bit wide variable,

say background32.

Step 8 The 32-bit values, i.e., gray32 and background32

are then added to obtain updated background.

For addition, 32-bit ripple carry adder is used in

this paper.

Step 9 The 32-bit wide updated background is then

divided by 1000 to compensate the

modifications and the resultant is stored in a 16-

bit wide variable.

Step 10 The 16-bit wide updated background is shifted

to right by 8 bits and the resultant 8-bit value of

updated background is obtained.

Step 11 The current frame pixel value which is 8-bit

wide is subtracted from 8-bit wide updated

background pixel to obtain the difference.

Step 12 The difference value is then thresholded to

detect a moving object from a sequence of video

frames.

Based on algorithm steps, an example is given below for an

easy understanding of proposed concepts. Assuming first pixel

of first frame be

B = 24’b110010000110010011001000 (24’d13133000) and

first pixel of second frame be

C = 24’b011001001100100001100100 (24’d6604900). The

24 bit RGB pixel is now converted to 8 bit gray pixel which is

given as:

B = 8’b10001101, C = 8’b10011111

B16 = B<< 8 = 16’b1000110100000000,

C16 = C<<8 = 16’b1001111100000000

Let α = 0 .01 then 1000 × α = 1000x0 .01 = 10. Let α1 = 10

and α2= 1000 – α1 = 990 background32 = B16 × α2 =

32’d35735040, gray32 = C16 × α1 = 32’d407040

updated_ background32 = background32 + gray32 =

32’d36142080

updated_background16 = updated_background32 ÷ 1000 =

16’d36142

update_ background = updated_ background16>> 8 =

8’b10001101 = 8’d141

Let the incoming frame first pixel value is 8’d200 then

Difference = 8’d200− updated_ background = 8’d200−

8’d141 = 8’d59.

Figure 2. Block diagram of RGB image to gray conversion

Since the difference is less than the threshold (assuming

150), then output is the same as difference value. Various

researchers have given different ways of RGB to gray

conversion. In this paper, a novel architecture of RGB to gray

conversion is proposed where transformation is accomplished

by using shift and addition operations, as shown in Figure 2.

The 24-bit RGB pixel is divided into separate 8 bit R, G, and

B pixels, then the desired right shift is carried out on each of

them, and finally, they are added up to obtain an 8-bit gray

307

image. Figure 3 shows the existing architecture of RGA

implementation. The gray pixel obtained from RGB to gray

conversion needs to be converted into floating-point value to

carry out further computations. The translation of decimal

value to floating-point value requires IEEE 754 floating-point

conversion unit. Since there is a necessity of floating-point

multiplication and addition blocks for computation, it leads to

an increase in resource utilization. In the proposed architecture,

there is no need for the IEEE 754 conversion unit as pixel

value is directly fed in the system to carry out the computation

process. Figure 4 provides an architecture view of the

proposed methodology. Radix 4 booth multiplier is used to

carry out all the required multiplications. Figure 5 provides the

block diagram of the proposed methodology of RGA

implementation.

Figure 3. Existing architecture of RGA implementation

Figure 4. Proposed architecture of RGA implementation

Figure 5. Block diagram of proposed RGA implementation

Figure 6. Conceptual view of real time FPGA

implementation of background subtraction

Figure 6 shows the real-time implementation of background

subtraction on FPGA, where the background update is carried

out using the RGA method. Block memory present on FPGA

board is used to store the frame pixels value during processing.

This block memory requires an interfacing module for its

usage. The resultant video frames containing detected moving

objects obtain on a monitor of 640 x 480 resolution @60 Hz,

which is accomplished using a VGA controller module.

4. RESULTS AND ANALYSIS

The FPGA implementation of the proposed framework is

accomplished using the Xilinx Vivado 2016.2 tool. The design

realized on Digilent ZedBoard (xc7z020clg484-1), which has

a 28 nm Xilinx Artix-7 FPGA device. Vivado in-built logic

simulator is used to perform the required circuit simulations.

Table 1 provides the post-implementation resource utilization

of proposed architecture for the background updation module.

The existing architecture is also implemented on ZedBoard

and a comparison made with the proposed architecture. The

308

proposed framework is capable of processing video in real-

time with reduced hardware requirements compared to an

existing architecture. Table 1 shows that the required LUT

reduces to a large extent, but it also requires 156 FF. The VGA

interfacing module also implemented on FPGA, and its

resource utilization is given in Table 2. The implementation of

the VGA interfacing module on ZedBoard requires 0.06% of

LUT, 0.04% of FF, and 1 global buffer. Table 3 represents the

variation of area, power, and timings concerning the frequency

variation at 45nm process technology. Difference between

data required time and data arrival time produces slack time.

For avoiding timing violations, the slack time must be zero or

positive. From Table 3, the proposed technique seems to have

a positive slack of 4.44 ns at 100 MHz clock frequency with a

total power consumption of 106.6 µW. As operating frequency

increases, there is an increase in power consumption and a

decrease in arrival time. We can observe that the slack time

approaches 0 ns as the clock frequency approaches 357 MHz

and power reaches to 446.1 µW. Figure 7 shows the slack

variation to frequency change for the proposed architecture.

Figure 7 shows that at 100 MHz clock frequency, the design

produces a positive slack of 4.5 ns. Further, the slack time

reduces to 0.01 ns at 312 MHz. With further increase of

frequency, we get 0 ns slack time. While for the existing

architecture, the system produces a positive slack of 5.8 ns at

10 MHz. The slack then reduces to 0 ns at 50 MHz, and the

slack of 0 ns continues to remain till 100 MHz. The existing

architecture produces a negative slack of -0.12 ns at 125 MHz,

which further reduces to -1.3 ns at 166 MHz and -3.9 ns at 285

MHz.

It infers that the proposed architecture performs better at

higher frequency in comparison to an existing architecture.

Table 4 shows the resource utilization for the ASIC

implementation of the background updation module at 45 nm

process technology. The synthesis is accomplished using the

Cadence Genus tool. Also, physical design and verification are

performed using Cadence Innovus and Assura tools,

respectively. It is observed from Table 4 that the total area for

logic implementation is reduced by approximately 82%, and

the total power consumption is reduced by 58% for the ASIC

implementation of proposed architecture of background

subtraction. Also, there is a reduction in 97% in area delay

product (ADP) for the proposed architecture. Figure 8 shows

the outcome of physical design, which includes floorplanning,

placement, clock tree synthesis, and routing.

Table 1. Comparison of resource utilization for the proposed

and existing architectures on FPGA

Resource Proposed Existing

LUT 157 1461

Flip Flop 156 186

IO 59 25

BRAM 100.5 100.5

BUFG 1 1

Table 2. Resource utilization of FPGA implementation for

VGA module

Resource Utilization Available Utilization %

LUT 34 53200 0.06

Flip Flop 40 106400 0.04

IO 37 200 18.50

BUFG 1 32 3.13

Table 3. Variation of area, power and delay with respect to

frequency at 45nm process technology for proposed

architecture

Parameters

Frequency

(MHz)

Total

Area

(µm2)

Total

Power

(µW)

Required

Time

 (ns)

Arrival

Time

(ns)

100 2929 106.6 9.88 5.44

166 2930 166.4 6.88 4.59

192 2932 204.2 5.08 4.54

217 2943 230.8 4.50 4.48

285 3085 320.1 3.39 3.38

312 3176 351.9 3.09 3.08

357 3413 446.1 2.68 2.68

Table 4. Performance comparison of ASIC implementation

of proposed and existing architectures at 45 nm process

technology

Parameters Proposed Existing

Total Area (µm2) 3413 19305

Total Power (µW) 446.1 1072.8

Arrival Time (ns) 2.68 19.88

ADP (um2 ∗ us) 9.14 383.78

Figure 7. Variation of timing slack w.r.t. frequency for the

proposed architecture

Figure 8. Physical design of proposed architecture of RGA

The experimental validation of proposed architecture is

performed using two test videos from Actions as space-time

shapes dataset [26]. One of the test videos contains multiple

moving objects, and another test video consists of a single

moving object. Figure 9 shows some of the frames of input test

videos and the corresponding detected moving objects present

in the videos. The detected moving objects seem to be in

grayscale rather than color because of the initial conversion of

the input video frames into the grayscale for further processing.

309

Figure 10 shows the FPGA realization of moving object

detection using the proposed framework.

Input 1

Output1

Input 2

Output

2

Figure 9. Some of the input and corresponding output frames

of two test videos

Figure 10. FPGA realization of RGA for moving object

detection

5. CONCLUSION

This paper proposed an efficient hardware architecture for

the FPGA and ASIC implementation of the RGA technique of

background subtraction. FPGA realization is performed using

Digilent ZedBoard, and ASIC implementation is performed

using Cadence Genus, Innovus, and Assura tools at 45nm

process technology. The proposed architecture of the RGA

technique is found to be efficient in terms of area, power, and

timing. The implemented prototype system is seen to detect

relative motion from the incoming video stream in real-time

scenario on VGA monitor of 640 x 480 resolution at 60 fps.

Thus, the proposed architecture uses the hardware resource

more effectively without a significant reduction in the

accuracy of detection.

REFERENCES

[1] Tang, Z., Miao, Z., Wan, Y. (2007). Background

subtraction using running gaussian average and frame

difference. In: 2007 International Conference on

Entertainment Computing (ICEC), pp. 411-414.

https://doi.org/10.1007/978-3-540-74873-1_50

[2] Jabri, S., Duric, Z., Wechsler, H., Rosenfeld, A. (2000).

Detection and location of people in video images using

adaptive fusion of color and edge information. Proc - Int

Conf Pattern Recognition, pp. 627-630.

http://doi.org/10.1109/ICPR.2000.902997

[3] Berger, M., Seversky, L.M. (2014). Subspace tracking

under dynamic dimensionality for online background

subtraction. In: Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, pp. 1274-1281.

http://doi.org/10.1109/CVPR.2014.166

[4] Braham, M., Van Droogenbroeck, M. (2016). Deep

background subtraction with scene-specific

convolutional neural networks. In: International

Conference on Systems, Signals, and Image Processing,

pp 1-4. http://dx.doi.org/10.1109/IWSSIP.2016.7502717

[5] Culibrk, D., Marques, O., Socek, D., Kalva, H., Furht, B.

(2007). Neural network approach to background

modeling for video object segmentation. IEEE

Transactions on Neural Networks, 18(6): 1614-1627.

http://doi.org/10.1109/TNN.2007.89686

[6] Sivabalakrishnan, M., Manjula, D. (2009). An efficient

foreground detection algorithm for visual surveillance

system. International Journal of Computer Science and

Network Security, 9(5): 221-227.

[7] Jacques, J.C.S., Jung, C.R., Musse, S.R. (2006). A

background subtraction model adapted to illumination

changes. In: Proceedings - International Conference on

Image Processing, ICIP, pp 1817-1820.

http://doi.org/10.1109/ICIP.2006.312599

[8] Stefano, L.D., Mattoccia, S., Mola, M. (2003). A change-

detection algorithm based on structure and colour. In:

Proceedings of the IEEE Conference on Advanced Video

and Signal Based Surveillance, pp. 252-259.

http://doi.org/10.1109/AVSS.2003.1217929

[9] Ridder, C., Munkelt, O., Kirchner, H. (1995). Adaptive

background estimation and foreground detection using

kalman-filtering. In: International Conference on Recent

Advances in Mechatronics (ICRAM 1995), pp. 193-199.

[10] Karmann, K.P., Brandt, A. (1990). Moving object

recognition using an adaptive background memory. In:

Proceedings Time Varying Image Processing, pp. 289-

307.

[11] Toyama, K., Krumm, J., Brumitt, B., Meyers, B. (1999).

Wallflower: principles and practice of background

maintenance. In: Proceedings of the Seventh IEEE

International Conference on Computer Vision, pp. 255-

261. http://doi.org/10.1109/ICCV.1999.791228

[12] Jacques, J.C.S., Jung, C.R., Musse, S.R. (2005).

Background subtraction and shadow detection in

grayscale video sequences. In: XVIII Brazilian

Symposium on Computer Graphics and Image

Processing (SIBGRAPI’05), pp. 189-196.

http://doi.org/10.1109/SIBGRAPI.2005.15

[13] Hung, M., Pan, J., Hsieh, C. (2010). Speed up temporal

median filter for background subtraction. In: 2010 First

International Conference on Pervasive Computing,

Signal Processing and Applications, pp. 297-300.

http://doi.org/10.1109/PCSPA.2010.79

[14] Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.

(2002). Background and foreground modeling using

nonparametric kernel density estimation for visual

surveillance. Proceedings of the IEEE, 90(7): 1151-1163.

http://doi.org/10.1109/JPROC.2002.801448

[15] Stauffer, C., Grimson, W.E.L. (1999). Adaptive

background mixture models for real-time tracking. In:

310

http://doi.org/10.1109/ICPR.2000.902997
http://dx.doi.org/10.1109/CVPR.2014.166
http://dx.doi.org/10.1109/IWSSIP.2016.7502717
http://doi.org/10.1109/AVSS.2003.1217929

Proceedings. 1999 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (Cat. No

PR00149), pp. 246-252.

http://doi.org/10.1109/CVPR.1999.784637

[16] Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.

(2005). Real-time foreground background segmentation

using codebook model. Real-Time Imaging, 11(3):

72185. http://doi.org/10.1016/j.rti.2004.12.004

[17] Barnich, O., Van Droogenbroeck, M. (2011). Vibe: A

universal background subtraction algorithm for video

sequences. IEEE Transactions on Image Processing

20(6): 1709-1724.

http://doi.org/10.1109/TIP.2010.2101613

[18] Hofmann, M., Tiefenbacher, P., Rigoll, G. (2012).

Background segmentation with feedback: The pixel-

based-adaptive segmenter. In: 2012 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition Workshops, pp. 38-43.

http://doi.org/10.1109/CVPRW.2012.6238925

[19] Kryjak, T., Komorkiewicz, M., Gorgon, M. (2014). Real-

time foreground object detection combining the PBAS

background modelling algorithm and feedback from

scene analysis module. International Journal of

Electronics and Telecommunications, 60(1): 61-72.

http://doi.org/10.2478/eletel-2014-0006

[20] Jiang, H., Ardo, H., Owall, V. (2009). A hardware

architecture for real-time video segmentation utilizing

memory reduction techniques. IEEE Transactions on

Circuits and Systems for Video Technology, 19(2): 226-

236. http://doi.org/10.1109/TCSVT.2008.2009244

[21] Jiang, H.T., Ardo, H., Owall, V. (2005). Hardware

accelerator design for video segmentation with

multimodal background modelling. In: 2005 IEEE

International Symposium on Circuits and Systems, pp.

1142-1145.

http://doi.org/10.1109/ISCAS.2005.1464795

[22] Kristensen, F., Hedberg, H., Jiang, H., Nilsson, P., Owall,

V. (2008). An embedded real-time surveillance ̈system:

Implementation and evaluation. Journal of Signal

Processing Systems, 52(1): 75-94.

http://doi.org/10.1007/s11265-007-0100-7

[23] Genovese, M., Napoli, E. (2014). Asic and FPGA

implementation of the gaussian mixture model algorithm

for real-time segmentation of high definition video. IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, 22(3): 537-547.

http://doi.org/10.1109/TVLSI.2013.2249295

[24] Evangelio, R.H., Patzold, M., Keller, I., Sikora, T. (2014).

Adaptively splitted gmm with feedback improvement for

the task of background subtraction. IEEE Transactions

on Information Forensics and Security, 9(5): 863–874.

http://doi.org/10.1109/TIFS.2014.2313919

[25] Cherian, S., Singh, C.S., Manikandan M (2014).

Implementation of real time moving object detection

using background subtraction in FPGA. In: 2014

International Conference on Communication and Signal

Processing, pp. 867-871.

http://doi.org/10.1109/ICCSP.2014.6949967

[26] Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri,

R. (2007). Actions as space-time shapes. Transactions on

Pattern Analysis and Machine Intelligence, 29(12):

2247-2253.

311

