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 The two steps in human intelligence development, namely, mimicking and tentative 

application of expertise, are reflected by imitation learning (IL) and reinforcement learning 

(RL) in artificial intelligence (AI).  However, the RL process does not always improve the 

skills learned from expert demonstrations and enhance the algorithm performance. To solve 

the problem, this paper puts forward a novel algorithm called optimal combination of imitation 

and reinforcement learning (OCIRL). First, the concept of deep q-learning from 

demonstrations (DQfD) was introduced to the actor-critic (A2C) model, creating the A2CfD 

model. Then, a threshold was estimated from a trained IL model with the same inputs and 

reward function with the DOfD, and applied to the A2CfD model. The threshold represents 

the minimum reward that conserves the learned expertise. The resulting A2CfDoC model was 

trained and tested on self-driving cars in both discrete and continuous environments. The 

results show that the model outperformed several existing algorithms in terms of speed and 

accuracy.  
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1. INTRODUCTION 

 

For the apprenticeship of any skills, a human being always 

began by learning from teachers, copying their behaviors and 

the way they are making things working, and once the expert 

level is reached, the knowledge and performance are then 

limited by the teacher mastery’s level represented by his 

instructions and demonstrations. To go beyond, humans adopt 

explorations strategy [1-3] to discover new areas, methods, 

and skills to improve their expertise and outperform current 

expert capacities. If it is not well managed and controlled, this 

exploration process can sometimes diverge and yield to forget 

expert demonstrations, leading to a suboptimal performance 

that is lower than the capacities learned from the experts.  

In artificial intelligence, we can find the same learning 

process, beginning by imitation learning (IL), where we 

leverage supervised learning regression algorithms 

capabilities to teach a given policy using expert labeled 

demonstrations as a training dataset [4], so the model tries to 

faithfully mimic the behavior of this expert, but the IL agent 

need large dataset of demonstrations for the training and lacks 

generalization abilities, since the large search space with many 

continuous variables represent the main constraint that IL face 

while solving real-world problems. Moreover, agent 

performance is capped and limited by the level of the expert 

skills learned through his demonstrations. Therefore, IL 

models can only achieve the tasks as good as the expertise 

level of the teacher, which leads most of the time to only a 

near-optimal policy.  

At this stage, the Reinforcement learning algorithms can 

take over, since it has the capacity of self-learning and self-

improvement, thus, RL models can discover through trial and 

error new strategies and maneuvers that can enhance the IL 

policy. RL agent learns optimal policies from rewards, a signal 

that encourages or discourages to do a given action while 

interacting with the environment; however, it suffers from 

many issues like the reward sparsity and slowness of the 

training process. In the last years, many attempts have been 

made to combine IL and RL and take advantage of the 

strengths of both models to improve performance and shorten 

the learning time by leveraging supervised learning capacities 

to initialize the RL neural network with expert demonstrations, 

using two main techniques: 

- Pre-train DRL neural network using supervised learning 

IM: the resulting trained parameters that have proved their 

good performance in classification, allow initializing the 

DRL network with a good policy using Transfer learning 

[5]. 

- Use the DRL Prioritized experience replay [6] (PER) 

memory to inject expert demonstrations, and thus 

providing the model with data that contains good 

behaviors’ transitions, labeled by experts in an early stage 

of the training phase. The PER filled with expert 

demonstrations can be used alone for a pre-training or 

during the Off-policy training with other stored transitions 

that came from the interaction of the agent with its 

environment. For this last case, a prioritized experience 

replay is used and a higher probability is assigned for the 

expert demonstrations transitions to encourage sampling 

from them more often. 

For both techniques, DRL algorithms can produce a 

suboptimal policy with inferior performance than the IL policy 

that it was initialized with if the planning problems are not 

resolved until optimality is reached, which calls into question 

the main reason behind the IL and RL’s combination. This 

issue could be due mostly to three points: 

- High exploration rate [3, 7] that is adopted in such 

algorithm to encourage discovering new strategies that 

can outperform IL initialization. 

- Transitions similarity of the expert demonstrations, which 
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is due to the coherent expert's behavior when dealing with 

similar situations, so we can have in the demonstrations 

many of the same transitions that could harm the model 

performance as it shrinks the agent training to a smaller 

state-space. 

- The difference between the two distributions of the 

demonstrations’ transitions and the RL agent’s transitions.  

In this paper, we address this issue exposed above by 

proposing a new algorithm OCIRL “Optimal Combination of 

Deep Imitation and Reinforcement learning”, which allows 

DRL models that rely on intrinsic reward function (tailored for 

self-driving car environment), to preserve the learned skills 

from expert demonstrations, and evolve the DRL policy only 

when it performs the desired tasks at the same level or better 

than the IL expert policy, by applying a threshold on 

cumulative reward to condition the update of the DRL target 

network each N steps. This threshold is estimated from an 

already trained IL network with the expert’s demonstration 

that receives the same input image as the DRL network and 

uses the same DRL intrinsic shaped reward function. We 

applied the OCIRL concept to A2C [8] algorithm, stating by 

adapting the DQfD [8, 9] to the actor-critic model that we call 

A2CfD, and then add the threshold condition that is the object 

of our paper, the new model is called A2CfDoC which stands 

for A2C from Demonstrations optimal Combination, and we 

trained and tested it on Self-driving cars virtual Simulator 

OpenAI Carraccing-v0 which is a discrete environment and 

CARLA a continuous one. 

We obtain good results for both discrete and continuous 

environments that outperform IL (behavioral cloning [10]), 

RL (DQfD [8] and A2C [11]), during the training and testing. 

We got a better policy that gets better results than IL and RL, 

even for a complex and continuous environment like CARLA, 

which difficulty is near ground truth.  

 

 

2. BACKGROUND 
 

Our approach is built upon Reinforcement learning [1, 12] 

concept and Markov Decision Process MDP, a sequential 

decision-making problem based, defined by a 5-tuple: A set of 

states and actions (S,A), reward model R, state transition 

probability matrix P (from all states s to all their successor s’) 

and discounted factor γ ϵ [0,1], to give more importance to 

recent rewards compared with future rewards.  

The policy function π maps the possible states S of the agent 

to its selective action a, π: S → p(A = a|S). The RL agent tries 

to learn π*, the optimal policy, so as to maximize the 

cumulative reward by taking the best actions.  

The Actor-Critic (AC) algorithms [12, 13] are hybrid RL 

methods that combine both, the policy gradient method and the 

value function method. They are composed of the Actor, the 

policy function that generates the actions to execute and the 

Critic that assesses the actor’s actions. The high variance 

introduced by the Actor is lowered by the Critic which 

balances the equation and higher the likelihood of 

convergence of the policy gradient methods. 

With Prioritized experience replay [6] (PER), we store 

agent experience (st,at,rt,st+1) in a memory D queue ranked 

using the criterion TD-error, by giving the highest probability 

to the transitions with the highest |TD-errors|, since they have 

the highest potential of learning progress. During the train, 

mini-batches of transitions are sampled from the PER (𝑠, a, 𝑟, 

𝑠’) as input to the DRL network.  

 
 

 

Figure 1. Actor-critic algorithm steps 

 

 

3. RELATED WORK 
 

In the last decade, Artificial Intelligence supported by the 

breakthroughs of deep learning in the areas of computer vision 

and control has been focused on two main concepts, imitation 

learning, and reinforcement learning to enhance the capacities 

and accuracy of the models.  

Imitation learning (IL) [4] most adopted form is Behavioral 

Cloning (BC) [14] that uses supervised learning with the goal 

to make a neural network (convolutional net for vision plus a 

Fully connected net for control) behave as close as the 

observed expert trajectory, by optimizing the error of a loss 

function. Many BC models have proven their efficiency, 

especially in navigation and autonomous driving, it was used 

in many models ALVINN [15], DAVE [16] and DAVE2 [10], 

but gives poorer predictions on unseen situations. This issue 

was addressed by Dagger [17] that keeps its training Dataset 

growing by appending the newly visited states labeled which 

require the intervention of an expert during all the training, 

which is very constraining. Other extensions of Dagger like 

AggreVaTe [18], SEARN [19], SMILE [20] that demonstrated 

high performance on ground-truth. All these models suffer 

from a limitation of the performance since the IL agent can be 

only as good as the expert’s demonstrations, also it lacks 

generalization, when facing unknown environment, however 

these two points turn out to be the great strengths of the Deep 

Reinforcement learning models that have made great steps 

toward end-to-end control algorithms, proving their capacities 

to manage new situations, by learning through the process of 

trial and error and exploration to favor certain actions over 

others. DQN, Double and Dueling DQN were one of the initial 

and more important steps and comes after a wide list of 

techniques that enhanced the model like the prioritize 

experience replay, multi-step learning and actor-critic deep 

policy (A3C [21], PPO [22], ACKTR [23]). The results of 

DRL were a great success for artificial intelligence researchers, 

the generalization capacity was good but it still lacks the speed 

of learning.  

Recently, many papers address this subject and try to 

combine both algorithms IL and DRL like THOR [24], LOKI 

[25] and DQfD [8], these algorithms try to leverage expert 

demonstrations using imitation supervised learning, to speed 

up the training and allow DRL models to bypass the slowness 

of the beginning of the learning phase, due to the exploration 

of the environments through trial and error. So, it initialize the 

DRL policy network by injecting the expert skills in an early 

stage of training, which leads to a faster convergence than 

executing a from scratch policy gradient, and let to the RL 

training phase, the task of fine-tuning the model, so as to 

overtake the skills gained through mimicking the 

demonstrations.  

Most of the time, these hybrid approaches are made by 

adding a supervised imitation learning term to the DRL TD 
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loss function, so the policy will tend to behave the same as in 

the demonstrations and not forget the IL learning it receives in 

the pre-training phase [8]. 

These implementations have made steps in the right 

direction, but it remains that we must ensure that the resulting 

combined algorithm will outperform the expertise level 

learned using IL, and that’s exactly the problem we have 

addressed in this paper. 

 

 

4. OPTIMAL COMBINATION OF IL AND RL 
 

4.1 Problem definition 

 

The objective of combining IL with RL is to outperform the 

expert skills learned through the demonstrations without any 

drop in the performance of the new model regarding the expert 

demonstrations and ensuring a continuous accumulation of 

knowledge and skills. Also, the new model must deal with 

real-world environment, consequently it has to manage 

continuous action spaces.   

 

4.2 OCIRL concept and architecture 

 

The solution that we propose in this paper combines two 

main principles to stabilize the improvement of the learning 

and prevent it from divergence: 

Expert’s trust margin: The experience replay (ER) 

memory of the DRL model is filled by expert demonstrations. 

After training the DRL model off-line based on the PER expert 

demonstrations data set, we get an expert network, with which 

we instantiate two DRL agents (same network and same 

weights) and both interact with two environment instances that 

have the same seed. We call the two networks respectively, the 

Explorer network and the expert critic network.  

The Explorer network is initialized by the expert network 

but adopts an exploration strategy to discover better actions 

and behaviors, and the expert critic network is used as the 

expert reference network that conditions the evolution of the 

learning improvement through his assessment of the Explorer 

network behavior, with the goal to constrain the model to stay 

in high-reward regions. Both networks interact with their 

respective environments, generate their actions and calculate 

their cumulative rewards using a shaped intrinsic reward 

function, which values are respectively RExpert and RExplorer. The 

learning improvement is checked each N steps to trigger the 

update of the Expert Critic Network by the Explorer network’s 

weights in an asynchronous mode. N represents the number of 

steps we wait before updating the Expert critic network in an 

asynchronous mode with the weights of the primary network, 

in order to keep the stability of the neural network during the 

training. 

The computed RExpert is used as a critic signal that will 

condition the validation of the explorer network performance 

by the following constraint:  

 
 

 

| 𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 − 𝑅𝐸𝑥𝑝𝑒𝑟𝑡  | <  β𝐸𝑥𝑝𝑒𝑟𝑡                 (1) 

 
 

This condition prevents from bad learning, with βExpert as a 

significant threshold and a hyperparameter that we call the 

Expert's trust Margin, and are tweaked through 

experimentations. βExpert value depends on the shaped reward 

function and on the rewards values the agent gets through its 

interaction with the environment. This condition was adopted 

to fix a boundary region in order to avoid any performance 

drop of the OCIRL model compared with the imitation 

learning network. At the end, the resulting policy is the Expert 

critic network that has progressed through the training while 

obeying the constraint relating to the Expert's trust margin. 

Expert gradient clipping is a customized version of 

Gradient clipping [22] that limits the magnitude of the update 

step of the policy network’s parameters to maintain training 

stability, it’s a threshold value to keep the gradients from 

getting too high. For the OCIRL algorithm, the approach 

adopted is Gradient Value Clipping instead of Gradient Norm 

Scaling by taking into account the βExpert value. The higher the 

value of βExpert is, the higher is the risk margin that the expert 

critic network skills level will get lower than the initial expert 

level. So, to moderate and balance this risk, we apply in this 

case an intelligent clipping by tightening its margin depending 

on 
1

βExpert
 value. 

 

𝜀𝐶𝑙𝑖𝑝(βExpert) = 𝛼.
1

βExpert
                   (2) 

 
 

 

𝐽𝑐𝑙𝑖𝑝(𝑄) = 𝐸𝑡(𝑀𝑖𝑛(𝐽(𝑄), 𝐶𝑙𝑖𝑝(𝐽(𝑄), 1 − 𝜀𝐶𝑙𝑖𝑝(βExpert), 1 +

𝜀𝐶𝑙𝑖𝑝(βExpert))                                                 (3) 

 

The correlated combination of these two mechanisms 

Expert’s trust region and Expert Gradient clipping based on 

the βExpert value will balance the risk margin of divergence by 

limiting the magnitude of the network update when it is too 

high.  

 

 
 

Figure 2. OCIRL architecture 

 

 

Algorithm 1 OCIRL  

1: Inputs: DPER: Prioritized experience replay memory, 

initialized with demonstration data set, θExpert: weights for 

Expert critic network (random), θExplorer: weights for 

Explorer network (random), τ: frequency at which to 

update Expert critic network, k: number of pre-training 

gradient updates 

2: for steps t ∈ {1, 2, ... k} do 

3: Sample a mini-batch of n transitions from DPER 

4: Calculate loss J(Q) using the Expert critic network 

5: Perform a gradient descent step to update θ 

6: if t mod τ = 0 then θExplorer ← θExpert end if 

7: end for 

8: for steps t ∈ {1, 2, . . .} do 

9: Sample action from the Explorer Network’s   behavior 

policy a ∼ πθExplorer 

10: Play action a and observe (s’, r) 
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11: Sample action from the Expert critic Network’s 

behavior policy a ∼ πθExpert 

12: Play action a and observe (s’’, r’) 

13: Compute cumulative reward for both agents RExpert and 

RExplorer 

14: Store (s, a, r, s′) into DPER, overwriting oldest self-

generated transition if overcapacity 

15: Sample a mini-batch of n transitions from DPER 

16: Calculate loss Jclip(Q)=Et(min(J(Q), clip(J(Q, 1-

𝜀𝐶𝑙𝑖𝑝(βExpert), 1+𝜀𝐶𝑙𝑖𝑝(βExpert)) using Explorer 

network 

17: Perform a gradient descent step to update θExplorer 

18: if t mod τ = 0 and | 𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 − 𝑅𝐸𝑥𝑝𝑒𝑟𝑡  | <  β𝐸𝑥𝑝𝑒𝑟𝑡   , 

then θExpert ← θExplorer end if 

19:   s ← s′ 

20:  end for 

 

 
 

5. OCIRL IMPLEMENTATION BASED ON A2C 
 

We choose to build our OCIRL model on the top of the 

Advantage Actor-Critic A2C DRL algorithm, that we call 

A2CfDoC which leverage the robustness of Actor-Critic 

methods that mix Policy Gradient and value-based approaches 

and also the trickiness of prioritized experience replay (PER) 

that proves its importance as the main factor that has 

significant impact on DRL models performance.  

For the A2CfDoC network architecture, we apply Relu 

function to all the network’s layers for non-linearity purposes, 

and batch normalization [14] after each convolutional layer 

and at the end of the fully connected network to standardize 

the inputs, allowing to use a higher learning rate and mini-

batches which speed up the training. 

 

 

 
 

Figure 3. A2CfDoC: CNN, actor & critic FCN 

 

5.1 Adapting the A2C model 

 

To take advantage of expert demonstrations, A2CfDoC 

adopt the same approach as the DQfD algorithm, as we 

described in the previous chapter, the PER is filled in by 

expert’s demonstrations data set which is used in the pre-

training phase to initialize the DRL network with expert’s 

skills in supervised learning way. In this pre-training off-

policy phase, the data does not come from the agent’s current 

behavioral policy but only from the PER memory, which 

served first and foremost to break the strong temporal 

/chronological relationship between transitions, and to learn to 

imitate the expert with a Q function that are compliant with the 

Bellman equation so we can apply TD updates once the agent 

begins to interact with his environment. 

More concretely, we use a loss function inspired by the 

DQfD loss that combines between the A2C loss and the 

supervised large-margin classification loss, an imitation loss 

that comes on top of the standard TD-error. It is applied during 

the pre-training phase, where the DRL agent samples 

transitions from the PER expert’s demonstrations and is 

encouraged to mimic expert’s actions. For the training phase 

where the input data is self-generated, the supervised large-

margin classification loss is not applied (𝛌𝑬 = 0):  

 

A2C Loss: 𝐿𝐴2𝐶 =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦  with: 

 

𝐿𝑣𝑎𝑙𝑢𝑒 = ∑(𝑅 − 𝑉(𝑠))
2
 

 

𝑎𝑛𝑑 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 = −𝑙𝑜𝑔(𝜋(𝑎|𝑠)). 𝐴(𝑠) − 𝛽. 𝐻(𝜋(𝑎|𝑠))   (4) 

 
 

𝐻𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜋) = − ∑ 𝑃(𝑥). 𝑙𝑜𝑔(𝑃(𝑥))           (5) 

 
 

 

Supervised large-margin classification loss: 

 
 
 

𝐿𝐸(𝑄) = 𝑚𝑎𝑥𝑎𝜖𝐴  [𝑄(𝑠, 𝑎) − 𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎)] −

𝑄(𝑠, 𝑎𝐸𝑥𝑝𝑒𝑟𝑡)                                (6) 

 
 
 

𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎)  is the margin loss, with 𝑙 = 0  when 𝑎 =

𝑎𝐸𝑥𝑝𝑒𝑟𝑡 and positive otherwise. 

 
 

 

𝐿A2CfDoC =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 + λ𝐸. 𝐿𝐸              (7) 

 
 

𝐿A2CfDoC =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 + λ𝐸(𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎) − 𝑙)  (8) 

 
 

To give the model more robustness and the ability to learn 

more general features, we use dropout [26] in our case, instead 

of L2 regularization [27] loss that is mainly adopted for 

supervised learning to avoid overfitting during the training. 

Being applied to the Self-driving car context, the A2CfDoC 

model must have the environment image as input and outputs 

two commands, the steering angle for the orientation and the 

speed to manage the acceleration and braking that are 

normalized Float values [-1.0, +1.0]. 

 

5.2 Simulation environment and data preparation 

 

Reinforcement learning algorithms are always tested on the 

simulation environment due to the Markov Decision Process 

that rely on trial and error principle. These environments allow 

training the DRL agent without any real risks; and once the 

policy is good within the defined criteria, then the tests in 

ground truth can start to validate the learned policy in the 

simulation. 

For this paper, we adopt the context of Self-driving cars 

with two open-source simulators that deal with continuous 

control tasks. The first is CarRacing-v0 [28], a basic 

environment made by openAI, specialized in lane-keeping and 

offer measures like speed, car position, steering wheel position 

and gyroscope, The second simulator is CARLA, an 

autonomous driving simulator with a high-fidelity realistic 

driving, developed jointly by Computer Vision Center, Intel 
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Labs and Toyota Research Institute and built on top of the 

UnrealEngine4 game engine. it supports camera raw image 

and provides direct measurements such as forward speed, 

orientation. CARLA requires a GPU to run, for the simulations 

we use a dual Xeon processor server with a Nvidia GPU 

Geforce GTX 1080Ti (3584 Cuda cores) [29]. 

 

 
 

Figure 4. OpenAI carracing-v0 simulator environment 

 

 
 

Figure 5. CARLA simulator environment 

 

For both environment Carracing-v0 and CARLA, we design 

two intrinsic reward functions that will be used during 

imitation learning as a performance indicator for the expert 

demonstrations, and as a reward function in the RL phase [30].  

The reward function that we choose for the Carracing-v0 is 

a basic one since only basic measurements are available in this 

environment: 

 

𝑅𝑒𝑤𝑎𝑟𝑑 = {
cos(𝜃) − λ sin(𝜃) −

𝑑

𝑤
    , 𝑖𝑓 𝜃 <

𝜋

2

−2                                       , otherwise
        (9) 

 

With ∈ [−
𝝅

𝟐
,

𝝅

𝟐
] , d the distance to lane center, w is the half-

width of the lane and λ a coefficient that adjusts the influence 

of θ. When the vehicle runs out of track or runs backward, we 

terminate the episode and penalize the action with a high 

penalty −2.    

For CARLA, the environment affords more advanced 

measures that help to craft a more accurate reward function 

that encourages speed and penalizes intersecting lanes, off-

road driving, collisions, and excessive turns. 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  [𝑐𝑎𝑝𝑝𝑒𝑑 𝑠𝑝𝑒𝑒𝑑] − 

𝛼1 ∗ [𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑒𝑠] − 

𝛼2 ∗ [𝑜𝑓𝑓 𝑟𝑜𝑎𝑑] −  𝛼3 ∗ [𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛] 
−𝛼4 ∗ |𝑠𝑡𝑒𝑒𝑟 𝑣𝑎𝑙𝑢𝑒|                                       (10) 

 

We choose (𝛼1, 𝛼2, 𝛼3, 𝛼4) = (100, 5, 10, 10). 

Thereafter, we launch the simulation for the two 

environments to collect expert demonstrations, by recording 

videos using manual commands for Carraccing-v0 and the 

auto-pilot mode for CARLA and store the expert 

demonstrations of agent’s experiences et=(st, at, rt, st+1) at 

each time-step t in a dataset Dcarla 
t={e1,…,et} and 

DCarracing
t={e’1,…,e’t}. As we indicate above, the reward is also 

calculated as a performance signal. 

5.3 The pre-training 

 

We populate the PER memory with the transitions from 

Expert Demonstrations and choose a medium buffer size to get 

better performance (with a total of 5.104 steps, instead of the 

106 default value that is usually used). This part of the buffer 

filled with expert data will never be overwritten since it 

represents reliable and highly recommended transitions. 

We start the off-policy training of the A2CfDoC model 

before starting to explore the environment for a set number of 

steps (60.000 for Carracing-v0 and 150.000 steps for CARLA), 

based only on the PER memory that contains the expert’s 

demonstrations, like for supervised imitation learning phase 

[31]. This allows to initialize the model’s network by expert’s 

skills, and shorten the slow initial learning of DRL algorithms. 

At this phase, both explorer and expert critic networks are 

instantiated by the expert’s driving skills.   

 

5.4 Training phase 

 

The next step starts by allowing the A2CfDoC two agents 

to interact with the Carracing-v0 and CARLA environments 

(with the same seed) and run for a set number of steps 

(respectively 200.000 and 450.000), with a lower exploration 

rate to prevent instability. During the training, the expert critic 

network brings stability to improving learning. It is a 

mandatory brick that allows constraining the update of the 

explorer network, whose role is to discover better driving ways 

and improve the initial expert policy. The synchronization 

between the explorer network and the expert critic network, 

only if the expert's trust margin reward is respected every N 

steps (10,000), to ensure that the A2CfDoC is in the right way 

to outperform the expert demonstrations, and to prevent from 

a performance drop.  

Also, the use of Expert Gradient clipping limits the size of 

the update of the network that can provoke large changes from 

the previous policy, by keeping the update in a secured region 

and avoiding a dramatic decrease in performance. 

 

 
 

Figure 6. Optimal Combination of Imitation and A2C 

(A2CfDoC) 

 

We also activate the prioritization for the experience replay 

memory, where we begin to inject the agent’s self-generated 

sequences that have the higher importance transitions based on 

TD error criteria (the higher the TD value, the more interesting 

it is and the more often it is sampled), when the replay buffer 

is full, we replace the less important transitions by the new 

more important ones based on their priorities. 
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The resulting PER memory contains a mix of both a 

changing agent self-generated data and fixed and prioritized 

expert demonstrations data in the same buffer. During the 

training, the sampling from the PER is done from both 

populations with a higher probability for the expert 

demonstrations to avoid catastrophic forgetting. 

 

 

6. EXPERIMENTS: APPLICATION TO SELF-

DRIVING CAR 
 

In this section, we first train our model with different values 

of the hyperparameter β𝐸𝑥𝑝𝑒𝑟𝑡  the Expert's trust margin, to 

find out the right value that gives the best results, and then we 

assess the three models the A2C, the A2C from 

Demonstrations that we call A2CfD and our model, the 

A2CfDoC, by training them and assessing them based on the 

average cumulated reward. These two experiments were 

launched on both OpenAI Carracing-v0 and CARLA 

simulation environments. 

 

6.1 Defining the Expert's trust margin 

 

The β𝐸𝑥𝑝𝑒𝑟𝑡  Expert's trust margin is a model hyper-

parameter involved in two complementary mechanisms that 

balance the exploration vs stability of the algorithm, through 

the limitation of the risk of divergence by conditioning the 

network update and also, by clipping the loss magnitude to 

avoid important network changes.  

For the OCIRL algorithm applied to A2C model, we have 

to define the optimal value of the β𝐸𝑥𝑝𝑒𝑟𝑡  Expert's trust margin 

value that leads to an improvement of the learning level 

compared to the expert skills level, and we evaluate this 

performance by running the model with several β𝐸𝑥𝑝𝑒𝑟𝑡  values 

(100, 300 and 1000).  

The experimentations show that when β𝐸𝑥𝑝𝑒𝑟𝑡  is high, the 

model underperforms and finishes by lowering the agent initial 

expert skills acquired during the pre-training phase using PER 

memory, it then fails to meet the expectations of improving the 

expert level. Also, when β𝐸𝑥𝑝𝑒𝑟𝑡is too low, the improvement 

margin is very small and the model stays at the same expertise 

level since the trust margin condition is mostly unfulfilled and 

the expert critic network is rarely updated. For the context of 

self-driving car in CARLA simulator, the best value of β𝐸𝑥𝑝𝑒𝑟𝑡  

is 300, it allows to capitalize on the expert demonstrations and 

push the learning further to outperform the cumulative reward 

of the teacher. 

 

 

 
 

Figure 7. Carracing-v0 & CARLA: A2CfDoC training with various β𝐸𝑥𝑝𝑒𝑟𝑡  Expert’s trust margin values 
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6.2 Models training comparison  

 

To assess our A2CfDoC model, we make a benchmark of 

three algorithms, the A2C model that is a pure Deep 

reinforcement learning algorithm, the A2C from 

demonstrations (A2CfD), which is an adaptation of A2C to the 

Deep Q-learning from Demonstrations (DQfD) that represents 

a successful combination of Reinforcement and Imitation 

Learning algorithm, but without any constraint on the learning 

process to preserve the expert knowledge during the RL 

training phase and finally our model the A2CfDoC which 

leverage DQfD principles and implement mechanisms that 

allow improving expert skills while avoiding any performance 

drop.  

We can clearly notice in figure 8 that the moments when 

learning begins to improve the model, is different, and the 

A2C which is a pure DRL algorithm lags to trigger the learning, 

since it relies only on trial and error principle, while the 

A2CfD and the A2CfDoC that both combine imitation and RL, 

benefit from expert demonstrations to boost their learning at 

an early stage (the pre-training phase based on expert 

demonstrations). We also note for the A2CfD and A2CfDoC 

that the pre-training phases (200 episodes) are quite similar 

and that their behaviors start to change during the RL training 

phase where the progression of the cumulative reward became 

different.  

 

 
 

Figure 8. Carracing-v0 & CARLA: training A2C, A2C with demonstrations and our algorithm A2CfDoC 

 

For the A2CfDoC model, the cumulative reward continues 

to grow even after the pre-training based on expert 

demonstrations. The A2CfDoC model shows more steadiness 

and does not suffer from the fluctuation of the A2CfD 

algorithm, which proves that our model succeeds at 

capitalizing on the learned skills, avoid any drop of 

performance and manage to stabilize the improvement of 

learning. 

 

6.3 Testing results 

 

We trained the three agents RL (A2C, A2CfD, A2CfDoC) 

and a behavioral cloning (BC/IL) agent on CARLA’s Town1 

circuit and then we test their saved models on both Town1 and 

Town2 (another different CARLA circuit), that have 

respectively 1.4 km and 2.9 km of drivable roads, and this for 

100 episodes each one, in order to assess their performance, 

their adaptation capacities and their abilities to reach a given 

destination. For both circuits, we apply the same driving 

conditions (sunny day), and for simplification, we choose to 

drive an empty road with no pedestrian and no other vehicles. 

The episode is considered successful for a fixed duration 

when the agent made his tour without colliding any obstacle in 

a blocking manner. The episodes' data have been recorded and 

stored to analyze the agent’s behavior during the episodes. 

Finally, we get the following summary of results: 

During the tests, we notice that the BC model outperforms 

the A2C RL model for the Town1 for which it was already 

trained on, but underperform the RL model for the circuit 

Town 2 since it’s an unseen environment. Also, the two 

271



 

algorithms A2CfD and A2CfDoC that mixed IL and RL 

succeed in outclassing both RL (A2C) and IL (BC) models on 

the two circuits Town1 and Town2, which proves their 

strengths and their high adaptability, however, we note a better 

performance and adaptation of our model that excels on the 

two circuits and outstrip all the tested models including A2C, 

BC, and the combined model A2CfD, and we noticed 

especially, its good result for the Town2 that represent a new 

circuit that it was not trained for.  

 

Table 1. Success rate of the three assessed models A2C, 

BC(IL), A2CfD and A2CfDoC 

  
Success Rate 

 A2C BC(IL) A2CfD A2CfDoC 

Town 1 58% 64% 63% 71% 

Town 2 48% 43% 51% 57% 

 

 

7. CONCLUSION 
 

When comparing supervised imitation learning (IL) and 

Deep Reinforcement Learning (DRL) methods, we can rapidly 

note the dissimilarity of their training signals, the rewards vs 

the demonstrations, and using a naive combination of the two 

approaches could lead to catastrophic results. So many 

endeavors have been made by researchers to associate both 

algorithms and try to benefit from their strengths.   

In this paper, we presented a novel hybrid algorithm that 

combines DRL and IL to achieve human-level performance on 

the Self-driving car simulation environments OpenAI 

Carracing-v0 and CARLA. It succeeds in learning the expert 

skills during the pre-training phase and allows surpassing this 

expertise level using a constrained and more intelligent RL 

exploration process, which has secured the taught expertise 

and led to the acquisition of more advanced abilities.  

The use of such an algorithm in the context of autonomous 

vehicles has a very important benefit since it accelerates the 

learning and at the same time, it avoids any drop of 

performance that the RL agent could suffer from. By 

combining two correlated principles the Expert's trust margin 

and the Expert Gradient clipping, the OCRIL model succeed 

in balancing the risk of divergence and promote the learning 

progression toward higher expertise and better performance. 

A next step could be a combination of other techniques that 

can solve the many challenges that Artificial Intelligence face 

in building an 100% reliable ADAS systems, by using a 

hierarchical deep learning network architecture to form a true 

whole single network that can deal with complex tasks and 

include other sub-function like sensor fusion, occupancy grid 

mapping and path planning, or handle several macro features 

going from pedestrians detection, road-sign recognition and 

Collision Avoidance to some more complex one like self-

parking, lane-keeping and cruise control. Also we can 

combine Partial Observability Markov Decision Process 

(POMDP) principle to provide the deep learning network with 

the ability to deal with limited spatial and temporal perception 

of the environment by using RNN/LSTM to predict what it has 

not been sensed, by a historical dataset of past visual features 

that compensate the lack of information. Finally yet 

importantly, we can use inverse reinforcement learning to 

solve the reward sparsity problem by deriving a reward 

function and the goals to achieve from observed expert 

behavior using supervised deep learning. 
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NOMENCLATURE 

RL 

DRL 

Reinforcement learning 

Deep Reinforcement Learning 

IL Imitation learning 

BC 

PER 

A2C 

A2CfD 

A2CfDoC 

Behavioral Cloning 

Prioritized Experience Replay  

Advantage Actor-Critic algorithm 

Advantage Actor-Critic algorithm from 

Demonstrations 

Advantage Actor-Critic algorithm from 

Demonstrations optimally Constrained  

Greek symbols 

βExpert

𝜀𝐶𝑙𝑖𝑝

𝐿A2CfDoC

𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟

𝑅𝐸𝑥𝑝𝑒𝑟𝑡

Expert's trust margin threshold 

Expert Gradient clipping hyperparameter 

A2CfDoC loss function 

The Explorer Network Reward 

The Expert Network Reward 
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