

Optimal Combination of Imitation and Reinforcement Learning for Self-driving Cars

Fenjiro Youssef*, Benbrahim Houda

National School of Computer Science and Systems Analysis (ENSIAS), Mohammed V University, Rabat 8007, Morocco

Corresponding Author Email: fenjiro@ensias.ma

https://doi.org/10.18280/ria.330402

ABSTRACT

Received: 12 May 2019

Accepted: 23 July 2019

 The two steps in human intelligence development, namely, mimicking and tentative

application of expertise, are reflected by imitation learning (IL) and reinforcement learning

(RL) in artificial intelligence (AI). However, the RL process does not always improve the

skills learned from expert demonstrations and enhance the algorithm performance. To solve

the problem, this paper puts forward a novel algorithm called optimal combination of imitation

and reinforcement learning (OCIRL). First, the concept of deep q-learning from

demonstrations (DQfD) was introduced to the actor-critic (A2C) model, creating the A2CfD

model. Then, a threshold was estimated from a trained IL model with the same inputs and

reward function with the DOfD, and applied to the A2CfD model. The threshold represents

the minimum reward that conserves the learned expertise. The resulting A2CfDoC model was

trained and tested on self-driving cars in both discrete and continuous environments. The

results show that the model outperformed several existing algorithms in terms of speed and

accuracy.

Keywords:

deep reinforcement learning, behavioral

cloning, supervised imitation learning,

prioritized experience replay, expert's

trust margin, simulation environment

1. INTRODUCTION

For the apprenticeship of any skills, a human being always

began by learning from teachers, copying their behaviors and

the way they are making things working, and once the expert

level is reached, the knowledge and performance are then

limited by the teacher mastery’s level represented by his

instructions and demonstrations. To go beyond, humans adopt

explorations strategy [1-3] to discover new areas, methods,

and skills to improve their expertise and outperform current

expert capacities. If it is not well managed and controlled, this

exploration process can sometimes diverge and yield to forget

expert demonstrations, leading to a suboptimal performance

that is lower than the capacities learned from the experts.

In artificial intelligence, we can find the same learning

process, beginning by imitation learning (IL), where we

leverage supervised learning regression algorithms

capabilities to teach a given policy using expert labeled

demonstrations as a training dataset [4], so the model tries to

faithfully mimic the behavior of this expert, but the IL agent

need large dataset of demonstrations for the training and lacks

generalization abilities, since the large search space with many

continuous variables represent the main constraint that IL face

while solving real-world problems. Moreover, agent

performance is capped and limited by the level of the expert

skills learned through his demonstrations. Therefore, IL

models can only achieve the tasks as good as the expertise

level of the teacher, which leads most of the time to only a

near-optimal policy.

At this stage, the Reinforcement learning algorithms can

take over, since it has the capacity of self-learning and self-

improvement, thus, RL models can discover through trial and

error new strategies and maneuvers that can enhance the IL

policy. RL agent learns optimal policies from rewards, a signal

that encourages or discourages to do a given action while

interacting with the environment; however, it suffers from

many issues like the reward sparsity and slowness of the

training process. In the last years, many attempts have been

made to combine IL and RL and take advantage of the

strengths of both models to improve performance and shorten

the learning time by leveraging supervised learning capacities

to initialize the RL neural network with expert demonstrations,

using two main techniques:

- Pre-train DRL neural network using supervised learning

IM: the resulting trained parameters that have proved their

good performance in classification, allow initializing the

DRL network with a good policy using Transfer learning

[5].

- Use the DRL Prioritized experience replay [6] (PER)

memory to inject expert demonstrations, and thus

providing the model with data that contains good

behaviors’ transitions, labeled by experts in an early stage

of the training phase. The PER filled with expert

demonstrations can be used alone for a pre-training or

during the Off-policy training with other stored transitions

that came from the interaction of the agent with its

environment. For this last case, a prioritized experience

replay is used and a higher probability is assigned for the

expert demonstrations transitions to encourage sampling

from them more often.

For both techniques, DRL algorithms can produce a

suboptimal policy with inferior performance than the IL policy

that it was initialized with if the planning problems are not

resolved until optimality is reached, which calls into question

the main reason behind the IL and RL’s combination. This

issue could be due mostly to three points:

- High exploration rate [3, 7] that is adopted in such

algorithm to encourage discovering new strategies that

can outperform IL initialization.

- Transitions similarity of the expert demonstrations, which

Revue d'Intelligence Artificielle
Vol. 33, No. 4, August, 2019, pp. 265-273

Journal homepage: http://iieta.org/journals/ria

265

is due to the coherent expert's behavior when dealing with

similar situations, so we can have in the demonstrations

many of the same transitions that could harm the model

performance as it shrinks the agent training to a smaller

state-space.

- The difference between the two distributions of the

demonstrations’ transitions and the RL agent’s transitions.

In this paper, we address this issue exposed above by

proposing a new algorithm OCIRL “Optimal Combination of

Deep Imitation and Reinforcement learning”, which allows

DRL models that rely on intrinsic reward function (tailored for

self-driving car environment), to preserve the learned skills

from expert demonstrations, and evolve the DRL policy only

when it performs the desired tasks at the same level or better

than the IL expert policy, by applying a threshold on

cumulative reward to condition the update of the DRL target

network each N steps. This threshold is estimated from an

already trained IL network with the expert’s demonstration

that receives the same input image as the DRL network and

uses the same DRL intrinsic shaped reward function. We

applied the OCIRL concept to A2C [8] algorithm, stating by

adapting the DQfD [8, 9] to the actor-critic model that we call

A2CfD, and then add the threshold condition that is the object

of our paper, the new model is called A2CfDoC which stands

for A2C from Demonstrations optimal Combination, and we

trained and tested it on Self-driving cars virtual Simulator

OpenAI Carraccing-v0 which is a discrete environment and

CARLA a continuous one.

We obtain good results for both discrete and continuous

environments that outperform IL (behavioral cloning [10]),

RL (DQfD [8] and A2C [11]), during the training and testing.

We got a better policy that gets better results than IL and RL,

even for a complex and continuous environment like CARLA,

which difficulty is near ground truth.

2. BACKGROUND

Our approach is built upon Reinforcement learning [1, 12]

concept and Markov Decision Process MDP, a sequential

decision-making problem based, defined by a 5-tuple: A set of

states and actions (S,A), reward model R, state transition

probability matrix P (from all states s to all their successor s’)

and discounted factor γ ϵ [0,1], to give more importance to

recent rewards compared with future rewards.

The policy function π maps the possible states S of the agent

to its selective action a, π: S → p(A = a|S). The RL agent tries

to learn π*, the optimal policy, so as to maximize the

cumulative reward by taking the best actions.

The Actor-Critic (AC) algorithms [12, 13] are hybrid RL

methods that combine both, the policy gradient method and the

value function method. They are composed of the Actor, the

policy function that generates the actions to execute and the

Critic that assesses the actor’s actions. The high variance

introduced by the Actor is lowered by the Critic which

balances the equation and higher the likelihood of

convergence of the policy gradient methods.

With Prioritized experience replay [6] (PER), we store

agent experience (st,at,rt,st+1) in a memory D queue ranked

using the criterion TD-error, by giving the highest probability

to the transitions with the highest |TD-errors|, since they have

the highest potential of learning progress. During the train,

mini-batches of transitions are sampled from the PER (𝑠, a, 𝑟,

𝑠’) as input to the DRL network.

Figure 1. Actor-critic algorithm steps

3. RELATED WORK

In the last decade, Artificial Intelligence supported by the

breakthroughs of deep learning in the areas of computer vision

and control has been focused on two main concepts, imitation

learning, and reinforcement learning to enhance the capacities

and accuracy of the models.

Imitation learning (IL) [4] most adopted form is Behavioral

Cloning (BC) [14] that uses supervised learning with the goal

to make a neural network (convolutional net for vision plus a

Fully connected net for control) behave as close as the

observed expert trajectory, by optimizing the error of a loss

function. Many BC models have proven their efficiency,

especially in navigation and autonomous driving, it was used

in many models ALVINN [15], DAVE [16] and DAVE2 [10],

but gives poorer predictions on unseen situations. This issue

was addressed by Dagger [17] that keeps its training Dataset

growing by appending the newly visited states labeled which

require the intervention of an expert during all the training,

which is very constraining. Other extensions of Dagger like

AggreVaTe [18], SEARN [19], SMILE [20] that demonstrated

high performance on ground-truth. All these models suffer

from a limitation of the performance since the IL agent can be

only as good as the expert’s demonstrations, also it lacks

generalization, when facing unknown environment, however

these two points turn out to be the great strengths of the Deep

Reinforcement learning models that have made great steps

toward end-to-end control algorithms, proving their capacities

to manage new situations, by learning through the process of

trial and error and exploration to favor certain actions over

others. DQN, Double and Dueling DQN were one of the initial

and more important steps and comes after a wide list of

techniques that enhanced the model like the prioritize

experience replay, multi-step learning and actor-critic deep

policy (A3C [21], PPO [22], ACKTR [23]). The results of

DRL were a great success for artificial intelligence researchers,

the generalization capacity was good but it still lacks the speed

of learning.

Recently, many papers address this subject and try to

combine both algorithms IL and DRL like THOR [24], LOKI

[25] and DQfD [8], these algorithms try to leverage expert

demonstrations using imitation supervised learning, to speed

up the training and allow DRL models to bypass the slowness

of the beginning of the learning phase, due to the exploration

of the environments through trial and error. So, it initialize the

DRL policy network by injecting the expert skills in an early

stage of training, which leads to a faster convergence than

executing a from scratch policy gradient, and let to the RL

training phase, the task of fine-tuning the model, so as to

overtake the skills gained through mimicking the

demonstrations.

Most of the time, these hybrid approaches are made by

adding a supervised imitation learning term to the DRL TD

266

loss function, so the policy will tend to behave the same as in

the demonstrations and not forget the IL learning it receives in

the pre-training phase [8].

These implementations have made steps in the right

direction, but it remains that we must ensure that the resulting

combined algorithm will outperform the expertise level

learned using IL, and that’s exactly the problem we have

addressed in this paper.

4. OPTIMAL COMBINATION OF IL AND RL

4.1 Problem definition

The objective of combining IL with RL is to outperform the

expert skills learned through the demonstrations without any

drop in the performance of the new model regarding the expert

demonstrations and ensuring a continuous accumulation of

knowledge and skills. Also, the new model must deal with

real-world environment, consequently it has to manage

continuous action spaces.

4.2 OCIRL concept and architecture

The solution that we propose in this paper combines two

main principles to stabilize the improvement of the learning

and prevent it from divergence:

Expert’s trust margin: The experience replay (ER)

memory of the DRL model is filled by expert demonstrations.

After training the DRL model off-line based on the PER expert

demonstrations data set, we get an expert network, with which

we instantiate two DRL agents (same network and same

weights) and both interact with two environment instances that

have the same seed. We call the two networks respectively, the

Explorer network and the expert critic network.

The Explorer network is initialized by the expert network

but adopts an exploration strategy to discover better actions

and behaviors, and the expert critic network is used as the

expert reference network that conditions the evolution of the

learning improvement through his assessment of the Explorer

network behavior, with the goal to constrain the model to stay

in high-reward regions. Both networks interact with their

respective environments, generate their actions and calculate

their cumulative rewards using a shaped intrinsic reward

function, which values are respectively RExpert and RExplorer. The

learning improvement is checked each N steps to trigger the

update of the Expert Critic Network by the Explorer network’s

weights in an asynchronous mode. N represents the number of

steps we wait before updating the Expert critic network in an

asynchronous mode with the weights of the primary network,

in order to keep the stability of the neural network during the

training.

The computed RExpert is used as a critic signal that will

condition the validation of the explorer network performance

by the following constraint:

| 𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 − 𝑅𝐸𝑥𝑝𝑒𝑟𝑡 | < β𝐸𝑥𝑝𝑒𝑟𝑡 (1)

This condition prevents from bad learning, with βExpert as a

significant threshold and a hyperparameter that we call the

Expert's trust Margin, and are tweaked through

experimentations. βExpert value depends on the shaped reward

function and on the rewards values the agent gets through its

interaction with the environment. This condition was adopted

to fix a boundary region in order to avoid any performance

drop of the OCIRL model compared with the imitation

learning network. At the end, the resulting policy is the Expert

critic network that has progressed through the training while

obeying the constraint relating to the Expert's trust margin.

Expert gradient clipping is a customized version of

Gradient clipping [22] that limits the magnitude of the update

step of the policy network’s parameters to maintain training

stability, it’s a threshold value to keep the gradients from

getting too high. For the OCIRL algorithm, the approach

adopted is Gradient Value Clipping instead of Gradient Norm

Scaling by taking into account the βExpert value. The higher the

value of βExpert is, the higher is the risk margin that the expert

critic network skills level will get lower than the initial expert

level. So, to moderate and balance this risk, we apply in this

case an intelligent clipping by tightening its margin depending

on
1

βExpert
 value.

𝜀𝐶𝑙𝑖𝑝(βExpert) = 𝛼.
1

βExpert
 (2)

𝐽𝑐𝑙𝑖𝑝(𝑄) = 𝐸𝑡(𝑀𝑖𝑛(𝐽(𝑄), 𝐶𝑙𝑖𝑝(𝐽(𝑄), 1 − 𝜀𝐶𝑙𝑖𝑝(βExpert), 1 +

𝜀𝐶𝑙𝑖𝑝(βExpert)) (3)

The correlated combination of these two mechanisms

Expert’s trust region and Expert Gradient clipping based on

the βExpert value will balance the risk margin of divergence by

limiting the magnitude of the network update when it is too

high.

Figure 2. OCIRL architecture

Algorithm 1 OCIRL

1: Inputs: DPER: Prioritized experience replay memory,

initialized with demonstration data set, θExpert: weights for

Expert critic network (random), θExplorer: weights for

Explorer network (random), τ: frequency at which to

update Expert critic network, k: number of pre-training

gradient updates

2: for steps t ∈ {1, 2, ... k} do

3: Sample a mini-batch of n transitions from DPER

4: Calculate loss J(Q) using the Expert critic network

5: Perform a gradient descent step to update θ

6: if t mod τ = 0 then θExplorer ← θExpert end if

7: end for

8: for steps t ∈ {1, 2, . . .} do

9: Sample action from the Explorer Network’s behavior

policy a ∼ πθExplorer

10: Play action a and observe (s’, r)

267

11: Sample action from the Expert critic Network’s

behavior policy a ∼ πθExpert

12: Play action a and observe (s’’, r’)

13: Compute cumulative reward for both agents RExpert and

RExplorer

14: Store (s, a, r, s′) into DPER, overwriting oldest self-

generated transition if overcapacity

15: Sample a mini-batch of n transitions from DPER

16: Calculate loss Jclip(Q)=Et(min(J(Q), clip(J(Q, 1-

𝜀𝐶𝑙𝑖𝑝(βExpert), 1+𝜀𝐶𝑙𝑖𝑝(βExpert)) using Explorer

network

17: Perform a gradient descent step to update θExplorer

18: if t mod τ = 0 and | 𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟 − 𝑅𝐸𝑥𝑝𝑒𝑟𝑡 | < β𝐸𝑥𝑝𝑒𝑟𝑡 ,

then θExpert ← θExplorer end if

19: s ← s′

20: end for

5. OCIRL IMPLEMENTATION BASED ON A2C

We choose to build our OCIRL model on the top of the

Advantage Actor-Critic A2C DRL algorithm, that we call

A2CfDoC which leverage the robustness of Actor-Critic

methods that mix Policy Gradient and value-based approaches

and also the trickiness of prioritized experience replay (PER)

that proves its importance as the main factor that has

significant impact on DRL models performance.

For the A2CfDoC network architecture, we apply Relu

function to all the network’s layers for non-linearity purposes,

and batch normalization [14] after each convolutional layer

and at the end of the fully connected network to standardize

the inputs, allowing to use a higher learning rate and mini-

batches which speed up the training.

Figure 3. A2CfDoC: CNN, actor & critic FCN

5.1 Adapting the A2C model

To take advantage of expert demonstrations, A2CfDoC

adopt the same approach as the DQfD algorithm, as we

described in the previous chapter, the PER is filled in by

expert’s demonstrations data set which is used in the pre-

training phase to initialize the DRL network with expert’s

skills in supervised learning way. In this pre-training off-

policy phase, the data does not come from the agent’s current

behavioral policy but only from the PER memory, which

served first and foremost to break the strong temporal

/chronological relationship between transitions, and to learn to

imitate the expert with a Q function that are compliant with the

Bellman equation so we can apply TD updates once the agent

begins to interact with his environment.

More concretely, we use a loss function inspired by the

DQfD loss that combines between the A2C loss and the

supervised large-margin classification loss, an imitation loss

that comes on top of the standard TD-error. It is applied during

the pre-training phase, where the DRL agent samples

transitions from the PER expert’s demonstrations and is

encouraged to mimic expert’s actions. For the training phase

where the input data is self-generated, the supervised large-

margin classification loss is not applied (𝛌𝑬 = 0):

A2C Loss: 𝐿𝐴2𝐶 =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 with:

𝐿𝑣𝑎𝑙𝑢𝑒 = ∑(𝑅 − 𝑉(𝑠))
2

𝑎𝑛𝑑 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 = −𝑙𝑜𝑔(𝜋(𝑎|𝑠)). 𝐴(𝑠) − 𝛽. 𝐻(𝜋(𝑎|𝑠)) (4)

𝐻𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜋) = − ∑ 𝑃(𝑥). 𝑙𝑜𝑔(𝑃(𝑥)) (5)

Supervised large-margin classification loss:

𝐿𝐸(𝑄) = 𝑚𝑎𝑥𝑎𝜖𝐴 [𝑄(𝑠, 𝑎) − 𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎)] −

𝑄(𝑠, 𝑎𝐸𝑥𝑝𝑒𝑟𝑡) (6)

𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎) is the margin loss, with 𝑙 = 0 when 𝑎 =

𝑎𝐸𝑥𝑝𝑒𝑟𝑡 and positive otherwise.

𝐿A2CfDoC =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 + λ𝐸. 𝐿𝐸 (7)

𝐿A2CfDoC =
1

2
𝐿𝑣𝑎𝑙𝑢𝑒 − 𝐿𝑝𝑜𝑙𝑖𝑐𝑦 + λ𝐸(𝑙(𝑎𝐸𝑥𝑝𝑒𝑟𝑡 , 𝑎) − 𝑙) (8)

To give the model more robustness and the ability to learn

more general features, we use dropout [26] in our case, instead

of L2 regularization [27] loss that is mainly adopted for

supervised learning to avoid overfitting during the training.

Being applied to the Self-driving car context, the A2CfDoC

model must have the environment image as input and outputs

two commands, the steering angle for the orientation and the

speed to manage the acceleration and braking that are

normalized Float values [-1.0, +1.0].

5.2 Simulation environment and data preparation

Reinforcement learning algorithms are always tested on the

simulation environment due to the Markov Decision Process

that rely on trial and error principle. These environments allow

training the DRL agent without any real risks; and once the

policy is good within the defined criteria, then the tests in

ground truth can start to validate the learned policy in the

simulation.

For this paper, we adopt the context of Self-driving cars

with two open-source simulators that deal with continuous

control tasks. The first is CarRacing-v0 [28], a basic

environment made by openAI, specialized in lane-keeping and

offer measures like speed, car position, steering wheel position

and gyroscope, The second simulator is CARLA, an

autonomous driving simulator with a high-fidelity realistic

driving, developed jointly by Computer Vision Center, Intel

268

Labs and Toyota Research Institute and built on top of the

UnrealEngine4 game engine. it supports camera raw image

and provides direct measurements such as forward speed,

orientation. CARLA requires a GPU to run, for the simulations

we use a dual Xeon processor server with a Nvidia GPU

Geforce GTX 1080Ti (3584 Cuda cores) [29].

Figure 4. OpenAI carracing-v0 simulator environment

Figure 5. CARLA simulator environment

For both environment Carracing-v0 and CARLA, we design

two intrinsic reward functions that will be used during

imitation learning as a performance indicator for the expert

demonstrations, and as a reward function in the RL phase [30].

The reward function that we choose for the Carracing-v0 is

a basic one since only basic measurements are available in this

environment:

𝑅𝑒𝑤𝑎𝑟𝑑 = {
cos(𝜃) − λ sin(𝜃) −

𝑑

𝑤
 , 𝑖𝑓 𝜃 <

𝜋

2

−2 , otherwise
 (9)

With ∈ [−
𝝅

𝟐
,

𝝅

𝟐
] , d the distance to lane center, w is the half-

width of the lane and λ a coefficient that adjusts the influence

of θ. When the vehicle runs out of track or runs backward, we

terminate the episode and penalize the action with a high

penalty −2.

For CARLA, the environment affords more advanced

measures that help to craft a more accurate reward function

that encourages speed and penalizes intersecting lanes, off-

road driving, collisions, and excessive turns.

𝑅𝑒𝑤𝑎𝑟𝑑 = [𝑐𝑎𝑝𝑝𝑒𝑑 𝑠𝑝𝑒𝑒𝑑] −

𝛼1 ∗ [𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑒𝑠] −

𝛼2 ∗ [𝑜𝑓𝑓 𝑟𝑜𝑎𝑑] − 𝛼3 ∗ [𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛]
−𝛼4 ∗ |𝑠𝑡𝑒𝑒𝑟 𝑣𝑎𝑙𝑢𝑒| (10)

We choose (𝛼1, 𝛼2, 𝛼3, 𝛼4) = (100, 5, 10, 10).

Thereafter, we launch the simulation for the two

environments to collect expert demonstrations, by recording

videos using manual commands for Carraccing-v0 and the

auto-pilot mode for CARLA and store the expert

demonstrations of agent’s experiences et=(st, at, rt, st+1) at

each time-step t in a dataset Dcarla
t={e1,…,et} and

DCarracing
t={e’1,…,e’t}. As we indicate above, the reward is also

calculated as a performance signal.

5.3 The pre-training

We populate the PER memory with the transitions from

Expert Demonstrations and choose a medium buffer size to get

better performance (with a total of 5.104 steps, instead of the

106 default value that is usually used). This part of the buffer

filled with expert data will never be overwritten since it

represents reliable and highly recommended transitions.

We start the off-policy training of the A2CfDoC model

before starting to explore the environment for a set number of

steps (60.000 for Carracing-v0 and 150.000 steps for CARLA),

based only on the PER memory that contains the expert’s

demonstrations, like for supervised imitation learning phase

[31]. This allows to initialize the model’s network by expert’s

skills, and shorten the slow initial learning of DRL algorithms.

At this phase, both explorer and expert critic networks are

instantiated by the expert’s driving skills.

5.4 Training phase

The next step starts by allowing the A2CfDoC two agents

to interact with the Carracing-v0 and CARLA environments

(with the same seed) and run for a set number of steps

(respectively 200.000 and 450.000), with a lower exploration

rate to prevent instability. During the training, the expert critic

network brings stability to improving learning. It is a

mandatory brick that allows constraining the update of the

explorer network, whose role is to discover better driving ways

and improve the initial expert policy. The synchronization

between the explorer network and the expert critic network,

only if the expert's trust margin reward is respected every N

steps (10,000), to ensure that the A2CfDoC is in the right way

to outperform the expert demonstrations, and to prevent from

a performance drop.

Also, the use of Expert Gradient clipping limits the size of

the update of the network that can provoke large changes from

the previous policy, by keeping the update in a secured region

and avoiding a dramatic decrease in performance.

Figure 6. Optimal Combination of Imitation and A2C

(A2CfDoC)

We also activate the prioritization for the experience replay

memory, where we begin to inject the agent’s self-generated

sequences that have the higher importance transitions based on

TD error criteria (the higher the TD value, the more interesting

it is and the more often it is sampled), when the replay buffer

is full, we replace the less important transitions by the new

more important ones based on their priorities.

269

The resulting PER memory contains a mix of both a

changing agent self-generated data and fixed and prioritized

expert demonstrations data in the same buffer. During the

training, the sampling from the PER is done from both

populations with a higher probability for the expert

demonstrations to avoid catastrophic forgetting.

6. EXPERIMENTS: APPLICATION TO SELF-

DRIVING CAR

In this section, we first train our model with different values

of the hyperparameter β𝐸𝑥𝑝𝑒𝑟𝑡 the Expert's trust margin, to

find out the right value that gives the best results, and then we

assess the three models the A2C, the A2C from

Demonstrations that we call A2CfD and our model, the

A2CfDoC, by training them and assessing them based on the

average cumulated reward. These two experiments were

launched on both OpenAI Carracing-v0 and CARLA

simulation environments.

6.1 Defining the Expert's trust margin

The β𝐸𝑥𝑝𝑒𝑟𝑡 Expert's trust margin is a model hyper-

parameter involved in two complementary mechanisms that

balance the exploration vs stability of the algorithm, through

the limitation of the risk of divergence by conditioning the

network update and also, by clipping the loss magnitude to

avoid important network changes.

For the OCIRL algorithm applied to A2C model, we have

to define the optimal value of the β𝐸𝑥𝑝𝑒𝑟𝑡 Expert's trust margin

value that leads to an improvement of the learning level

compared to the expert skills level, and we evaluate this

performance by running the model with several β𝐸𝑥𝑝𝑒𝑟𝑡 values

(100, 300 and 1000).

The experimentations show that when β𝐸𝑥𝑝𝑒𝑟𝑡 is high, the

model underperforms and finishes by lowering the agent initial

expert skills acquired during the pre-training phase using PER

memory, it then fails to meet the expectations of improving the

expert level. Also, when β𝐸𝑥𝑝𝑒𝑟𝑡is too low, the improvement

margin is very small and the model stays at the same expertise

level since the trust margin condition is mostly unfulfilled and

the expert critic network is rarely updated. For the context of

self-driving car in CARLA simulator, the best value of β𝐸𝑥𝑝𝑒𝑟𝑡

is 300, it allows to capitalize on the expert demonstrations and

push the learning further to outperform the cumulative reward

of the teacher.

Figure 7. Carracing-v0 & CARLA: A2CfDoC training with various β𝐸𝑥𝑝𝑒𝑟𝑡 Expert’s trust margin values

270

6.2 Models training comparison

To assess our A2CfDoC model, we make a benchmark of

three algorithms, the A2C model that is a pure Deep

reinforcement learning algorithm, the A2C from

demonstrations (A2CfD), which is an adaptation of A2C to the

Deep Q-learning from Demonstrations (DQfD) that represents

a successful combination of Reinforcement and Imitation

Learning algorithm, but without any constraint on the learning

process to preserve the expert knowledge during the RL

training phase and finally our model the A2CfDoC which

leverage DQfD principles and implement mechanisms that

allow improving expert skills while avoiding any performance

drop.

We can clearly notice in figure 8 that the moments when

learning begins to improve the model, is different, and the

A2C which is a pure DRL algorithm lags to trigger the learning,

since it relies only on trial and error principle, while the

A2CfD and the A2CfDoC that both combine imitation and RL,

benefit from expert demonstrations to boost their learning at

an early stage (the pre-training phase based on expert

demonstrations). We also note for the A2CfD and A2CfDoC

that the pre-training phases (200 episodes) are quite similar

and that their behaviors start to change during the RL training

phase where the progression of the cumulative reward became

different.

Figure 8. Carracing-v0 & CARLA: training A2C, A2C with demonstrations and our algorithm A2CfDoC

For the A2CfDoC model, the cumulative reward continues

to grow even after the pre-training based on expert

demonstrations. The A2CfDoC model shows more steadiness

and does not suffer from the fluctuation of the A2CfD

algorithm, which proves that our model succeeds at

capitalizing on the learned skills, avoid any drop of

performance and manage to stabilize the improvement of

learning.

6.3 Testing results

We trained the three agents RL (A2C, A2CfD, A2CfDoC)

and a behavioral cloning (BC/IL) agent on CARLA’s Town1

circuit and then we test their saved models on both Town1 and

Town2 (another different CARLA circuit), that have

respectively 1.4 km and 2.9 km of drivable roads, and this for

100 episodes each one, in order to assess their performance,

their adaptation capacities and their abilities to reach a given

destination. For both circuits, we apply the same driving

conditions (sunny day), and for simplification, we choose to

drive an empty road with no pedestrian and no other vehicles.

The episode is considered successful for a fixed duration

when the agent made his tour without colliding any obstacle in

a blocking manner. The episodes' data have been recorded and

stored to analyze the agent’s behavior during the episodes.

Finally, we get the following summary of results:

During the tests, we notice that the BC model outperforms

the A2C RL model for the Town1 for which it was already

trained on, but underperform the RL model for the circuit

Town 2 since it’s an unseen environment. Also, the two

271

algorithms A2CfD and A2CfDoC that mixed IL and RL

succeed in outclassing both RL (A2C) and IL (BC) models on

the two circuits Town1 and Town2, which proves their

strengths and their high adaptability, however, we note a better

performance and adaptation of our model that excels on the

two circuits and outstrip all the tested models including A2C,

BC, and the combined model A2CfD, and we noticed

especially, its good result for the Town2 that represent a new

circuit that it was not trained for.

Table 1. Success rate of the three assessed models A2C,

BC(IL), A2CfD and A2CfDoC

Success Rate

 A2C BC(IL) A2CfD A2CfDoC

Town 1 58% 64% 63% 71%

Town 2 48% 43% 51% 57%

7. CONCLUSION

When comparing supervised imitation learning (IL) and

Deep Reinforcement Learning (DRL) methods, we can rapidly

note the dissimilarity of their training signals, the rewards vs

the demonstrations, and using a naive combination of the two

approaches could lead to catastrophic results. So many

endeavors have been made by researchers to associate both

algorithms and try to benefit from their strengths.

In this paper, we presented a novel hybrid algorithm that

combines DRL and IL to achieve human-level performance on

the Self-driving car simulation environments OpenAI

Carracing-v0 and CARLA. It succeeds in learning the expert

skills during the pre-training phase and allows surpassing this

expertise level using a constrained and more intelligent RL

exploration process, which has secured the taught expertise

and led to the acquisition of more advanced abilities.

The use of such an algorithm in the context of autonomous

vehicles has a very important benefit since it accelerates the

learning and at the same time, it avoids any drop of

performance that the RL agent could suffer from. By

combining two correlated principles the Expert's trust margin

and the Expert Gradient clipping, the OCRIL model succeed

in balancing the risk of divergence and promote the learning

progression toward higher expertise and better performance.

A next step could be a combination of other techniques that

can solve the many challenges that Artificial Intelligence face

in building an 100% reliable ADAS systems, by using a

hierarchical deep learning network architecture to form a true

whole single network that can deal with complex tasks and

include other sub-function like sensor fusion, occupancy grid

mapping and path planning, or handle several macro features

going from pedestrians detection, road-sign recognition and

Collision Avoidance to some more complex one like self-

parking, lane-keeping and cruise control. Also we can

combine Partial Observability Markov Decision Process

(POMDP) principle to provide the deep learning network with

the ability to deal with limited spatial and temporal perception

of the environment by using RNN/LSTM to predict what it has

not been sensed, by a historical dataset of past visual features

that compensate the lack of information. Finally yet

importantly, we can use inverse reinforcement learning to

solve the reward sparsity problem by deriving a reward

function and the goals to achieve from observed expert

behavior using supervised deep learning.

REFERENCES

[1] Sutton & Barto Book: Reinforcement Learning: An

Introduction. http://incompleteideas.net/book/the-

book.html, accessed on 27-May-2019.

[2] Artificial intelligence: A modern approach.

http://aima.cs.berkeley.edu/, accessed on 28-May-2019.

[3] Tijsma, A.D., Drugan, M.M., Wiering, M.A. (2016).

Comparing exploration strategies for Q-learning in

random stochastic mazes. 2016 IEEE Symposium Series

on Computational Intelligence (SSCI), pp. 1-8.

https://doi.org/10.1109/SSCI.2016.7849366

[4] Attia, A., Dayan, S. (2018). Global overview of imitation

learning. arXiv:1801.06503 [cs, stat], Jan. 2018.

[5] [1411.1792] How transferable are features in deep neural

networks? Available: https://arxiv.org/abs/1411.1792,

accessed on 27-May-2019.

[6] [1511.05952] Prioritized experience replay.

https://arxiv.org/abs/1511.05952, accessed on 27-May-

2019.

[7] Wang, H., Zariphopoulou, T., Zhou, X. (2019).

Exploration versus exploitation in reinforcement

learning: A stochastic control approach.

arXiv:1812.01552 [cs, math], Feb. 2019.

[8] Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,

T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband,

I., Dulac-Arnold, G., Agapiou, J., Leibo, J., Gruslys, A.

(2017). Deep Q-learning from demonstrations.

arXiv:1704.03732 [cs], Apr. 2017.

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,x

Antonoglou, A., Wierstra, D., Riedmiller, M. (2013).

Playing Atari with deep reinforcement learning.

arXiv:1312.5602 [cs], Dec. 2013.

[10] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,

Flepp, B., Goyal, P., Jackel, L., Monfort, M., Muller, U.,

Zhang, J., Zhang, X., Zhao, J., Zieba, K. (2016). End to

end learning for self-driving cars. arXiv:1604.07316 [cs],

Apr. 2016.

[11] Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D., Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

arXiv:1602.01783 [cs], Feb. 2016.

[12] Fenjiro, Y., Benbrahim, H. (2018). Deep reinforcement

learning overview of the state of the art. JAMRIS, 12(3):

20-39. https://doi.org/10.14313/JAMRIS_3-2018/15

[13] Konda, V. (2002). Actor-critic algorithms. PhD Thesis,

Massachusetts Institute of Technology, Cambridge, MA,

USA.

[14] [1805.01954] Behavioral cloning from observation.

https://arxiv.org/abs/1805.01954, accessed on 28-Nov-

2019.

[15] Pomerleau, D.A. (1989). ALVINN: An autonomous land

vehicle in a neural network. presented at the Advances in

Neural Information Processing Systems, pp. 305-313.

[16] Muller, U., Ben, J., Cosatto, E., Flepp, B., Cun, Y.L.

(2006). Off-road obstacle avoidance through end-to-end

learning. in Advances in Neural Information Processing

Systems 18, Y. Weiss, B. Schölkopf, and J. C. Platt, Eds.

MIT Press, pp. 739-746.

[17] Ross, S., Gordon, G.J., Bagnell, J.A. (2010). A reduction

of imitation learning and structured Prediction to No-

Regret Online Learning. arXiv:1011.0686 [cs, stat], Nov.

2010.

272

[18] Ross, S., Bagnell, J.A. (2014). Reinforcement and

Imitation Learning via Interactive no-regret learning.

arXiv:1406.5979 [cs, stat], Jun. 2014.

[19] Daumé III, H., Langford, J., Marcu, D. (2009). Search-

based structured prediction. arXiv:0907.0786 [cs], Jul.

2009.

[20] Ross, S., Bagnell, J.A. (2010). Efficient reductions for

imitation learning. AISTATS.

[21] Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D., Kavukcuoglu, K. (2016).

Asynchronous Methods for Deep Reinforcement

Learning. arXiv:1602.01783 [cs], Feb. 2016.

[22] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

Klimov, O. (2017). Proximal policy optimization

algorithms. arXiv:1707.06347 [cs], Jul. 2017.

[23] Wu, Y., Mansimov, E., Liao, S., Grosse, R., Ba, J. (2017).

Scalable trust-region method for deep reinforcement

learning using Kronecker-factored approximation.

arXiv:1708.05144 [cs], Aug. 2017.

[24] Sun, W., Bagnell, J.A., Boots, B. (2018). Truncated

horizon policy search: Combining reinforcement

learning & imitation learning. arXiv:1805.11240 [cs,

stat], May 2018.

[25] Cheng, C.A., Yan, X., Wagener, N., Boots, B. (2018).

Fast policy learning through imitation and reinforcement.

arXiv:1805.10413 [cs, stat], May 2018.

[26] Dropout: A simple way to prevent neural networks from

overfitting.

http://jmlr.org/papers/v15/srivastava14a.html, accessed

on 04-May-2019.

[27] Deep Learning.

https://srdas.github.io/DLBook/ImprovingModelGenera

lization.html, accessed on 04-May-2019.

[28] OpenAI. (2019). Gym: A toolkit for developing and

comparing reinforcement learning algorithms.

https://gym.openai.com, accessed on 04-May-2019.

[29] Chauvin, S. (2018). Hierarchical decision-making for

autonomous driving.

https://doi.org/10.13140/RG.2.2.24352.43526

[30] Schorner, P., Tottel, L., Doll, J., Zöllner, J. (2019).

Predictive trajectory planning in situations with hidden

road users using partially observable Markov decision

processes. 2019 IEEE Intelligent Vehicles Symposium

(IV), pp. 2299-2306.

https://doi.org/10.1109/IVS.2019.8814022

[31] Sharifzadeh, S., Chiotellis, J., Triebel, R., Cremers, D.

(2016). Learning to drive using inverse reinforcement

learning and deep Q-networks.

NOMENCLATURE

RL

DRL

Reinforcement learning

Deep Reinforcement Learning

IL Imitation learning

BC

PER

A2C

A2CfD

A2CfDoC

Behavioral Cloning

Prioritized Experience Replay

Advantage Actor-Critic algorithm

Advantage Actor-Critic algorithm from

Demonstrations

Advantage Actor-Critic algorithm from

Demonstrations optimally Constrained

Greek symbols

βExpert

𝜀𝐶𝑙𝑖𝑝

𝐿A2CfDoC

𝑅𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑟

𝑅𝐸𝑥𝑝𝑒𝑟𝑡

Expert's trust margin threshold

Expert Gradient clipping hyperparameter

A2CfDoC loss function

The Explorer Network Reward

The Expert Network Reward

273

