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To achieve effective oil management, it is critical to disclose the laws of oil supply, 

consumption, and natural loss through data analysis. However, the accuracy of data analysis is 

often suppressed by the mistakes and irrelevance of the input data, which are inevitable due to 

the large size and diversity of the data collected from the oil depots. To solve the problem, this 

paper proposes an abnormal oil data detection approach based on feature selection (AODDFS). 

In the AODDFS, the format of the input data was preprocessed to satisfy the requirements of 

feature selection; the fisher score was then employed to compute the relevance of each entry 

with normal features; finally, the abnormal entries were located based on the relevance values. 

Then, the AODDFS results were analyzed with boxplot and standard deviation. Finally, the 

AODDFS was verified through a case study on the data collected from several large oil depots. 

The results show that the AODDFS can effectively detect abnormal oil data with a precision 

of 85.00% and a recall of 80.94%. 
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1. INTRODUCTION

The key to scientific and reasonable oil management [1-4] 

include identifying the most typical oil depots, collecting the 

data from these depots, and disclosing the laws of oil supply, 

consumption, and natural loss through data analysis [5-10]. 

With the rapid development of information technology, many 

computing methods suitable for oil management have emerged. 

The effectiveness of these methods depends on the quality of 

the input data, i.e. the data on oil supply, consumption, and 

natural loss [11, 12]. However, it is very difficult to collect a 

reliable set of input data, because they exist in large quantities 

and with high diversity [13].  

Many errors are likely to occur during the collection of the 

massive and diverse data, such as wrong entries, irrelevant 

entries and typos. If inputted to the computing methods, the 

erroneous data will affect the accuracy of the data analysis and 

the ensuing decisions on oil management, and are thus called 

the abnormal oil data [14]. This type of data must be 

eliminated to ensure the reliability of the input data. 

Nevertheless, it takes a long time to detect the abnormal oil 

data out of the huge and diverse input data. What is worse, the 

existing detection methods mainly rely on manual checking 

(e.g. setting abnormal intervals and making empirical 

judgements). This calls for an automated detection approach 

that can deal with large and various datasets. 

Recently, feature selection, a.k.a. variable selection or 

attribute selection, has attracted much attention for its ability 

to filter out abnormal oil data [15, 16]. Feature selection 

mainly identifies a subset of relevant features (e.g. variables 

and predictors) from the original data, facilitating data analysis, 

model construction and abnormal feature detection. This 

technique has often been adopted to pinpoint and remove 

useless, irrelevant or redundant attributes from the original 

data. An attribute is considered useless, irrelevant or redundant 

if it does not contribute and even suppress the accuracy of the 

prediction model [17]. 

Feature selection has been proved as an effective tool to 

remove abnormal features without sacrificing the prediction 

performance [18, 19]. The existing feature selection methods 

generally fall into three categories: the filter methods, the 

wrapper methods, and the embedded methods. Specifically, 

the filter methods evaluate each feature against the general 

characteristics of data, without using any learning algorithm; 

the wrapper methods select features according to the 

performance of a preset learning algorithm; the embedded 

methods identify the target features in the training process, and 

analyze feature relevance based on the objective of the 

customized learning model. The wrapper methods usually 

produce a subset of selected features. Meanwhile, the filter 

methods and embedded methods either output the relevance 

scores of all features or generate a subset of selected features. 

Depending on the type of output, the latter two kinds of 

methods can also be categorized into feature scoring 

algorithms and subset selection algorithms. 

As stated above, feature selection can identify the irrelevant 

attributes in the original data. Irrelevant attributes are 

equivalent to abnormal data, because their features differ from 

those of relevant attributes. Taking each data entry as a feature, 

the abnormal oil data can be detected naturally from the set of 

input data through feature selection. Following this train of 

thought, this paper proposes an abnormal oil data detection 

approach based on feature selection (AODDFS). The most 

popular filter method, fisher score [20, 21], was selected as the 

feature selection tool to detect abnormal oil data. The filter 

method was adopted because it does not require any learning 

algorithm like wrapper and embedded methods. In the 

AODDFS, the format of the input data was preprocessed to 

satisfy the requirements of feature selection; the fisher score 

was then employed to compute the relevance of each entry 
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with normal features; finally, the abnormal entries were 

located based on the relevance values. Then, the AODDFS 

results were analyzed with boxplot and standard deviation. 

Finally, the AODDFS was verified through a case study on the 

data collected from several large oil depots. The results show 

that the AODDFS can effectively detect abnormal oil data with 

a precision of 85.00% and a recall of 80.94%.  

The contribution of this paper can be summarized as follows: 

(1) We propose an abnormal oil data detection approach by 

using feature selection. 

(2) We conduct a case study to evaluate our approach, 

showing that our approach is effective to detect abnormal oil 

data. 

(3) We demonstrate the potential of a perspective of using 

feature selection for effective abnormal oil data detection. 

The remainder of this paper is organized as below. Section 

2 describes abnormal oil data detection based on fisher score. 

Section 3 presents the analytical tools of AODDFS results. 

Section 4 shows the case study and Section 5 draws the 

conclusion. 

 

 

2. ABNORMAL OIL DATA DETECTION BASED ON 

FISHER SCORE 

 

This section details our abnormal oil data detection 

approach AODDFS using fisher score. In recent years, fisher 

score has been increasingly used as an effective feature 

extractor for irrelevant data detection and classification [20, 

21]. The main idea of fisher score is to remove the irrelevant 

features from the original data, creating a subset of selected 

features. In the data space extended from the selected features, 

the distances between the data points in the same class are 

minimized, while those between the data points in different 

classes are maximized [21]. By this method, the relevance of 

each feature in each entry is evaluated independently against 

the score obtained under the fisher criteria. The higher the 

score, the greater the relevance of the feature, and the inverse 

is also true. The features with low relevance belong to 

abnormal oil data in the field of oil management. Below is the 

mathematical description of the fisher score-based abnormal 

oil data detection. 

For a given dataset 1{( , )}n

i i ix y = ( m

ix R ; {1,2, , }iy c ), 

the set of input data can be expressed as a matrix 

1 2[ , , , ] m n

nX x x x R =  , where xj is the oil data entry in the 

j-th row, and yi is the class label of xi. Let 1 be a vector of all 

ones with a proper length, 0 be a vector of all zeros, and I be 

an identity matrix with a proper size. 

Taking each entry as a feature, the input matrix can be 

considered to have m features. In this way, the detection of 

abnormal oil data can be transformed into a feature selection 

problem, that is, abnormal oil data are equivalent to highly 

irrelevant features. If d features are selected from the m 

features, the input matrix XRmn will be reduced to ZRdn. 

Then, the fisher score can be defined as: 
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where,  is a positive regularization parameter; S
' 

b is the 

between-class scatter matrix; S
' 

t  is the total scatter matrix; I is 

a perturbation term to make the normally singular S
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t being 

positive semi-definite. The two scatter matrices can be 
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where, 
' 

k and nk are the mean vector and size of the k-th class 

in the reduced data space Z, respectively; ' '

1

c

k k

k

n
=

=   is the 

overall mean vector of the reduced data.  

Since there are ( )m

d  candidate Z s out of X, the feature 

selection is a very difficult problem of combinatorial 

optimization. To overcome the difficulty, the commonly used 

heuristic strategy was adopted because our feature selection 

model does not concern the number of reduced features. 

Specifically, a score was computed independently for each 

feature under criterion F, that is, there are only 1( )m m=  

candidates. Thus, 
j 

k  and 
j 

k  are defined as the mean and 

standard deviations of the k-th class that the j-th feature 

belongs to, and μj and σj are defined as the mean and standard 

deviations of the whole dataset in accordance to the j-th feature. 

Then, the fisher score of the j-th feature can be defined as: 
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where, 2 2

1
( ) ( )

cj j

k kk
n

=
=  . The fisher score of each feature 

can be computed by equation (3). After the computation, the 

features with very low scores can be identified as abnormal 

ones, and each abnormal feature represents an abnormal oil 

data entry. Figure 1 gives an example of the fisher score-based 

detection of abnormal oil data. 

 

 
 

Figure 1. An example of the AODDFS 

 

As shown in Figure 1, the task is to judge if the five oil data 

entries (features) are normal. In the example, the standard 

volume of Entry_5 was incorrect (231,234 in red) and should 

be 52,386. Since “Date” differs greatly from the other 

attributes about oil parameters, the class label l was given to 

“Date” and 2 was given to the other attributes. Using fisher 

score method, the scores of the five features were computed as 

(Entry_1, 129815.00), (Entry_2, 127424.91), (Entry_4, 

125754.92), (Entry_3, 112671.39) and (Entry_5, 8371.51). 

Entry_5 is obviously an abnormal oil data entry, because it has 

a much smaller score (8,371.51) than the other features. This 

data entry must be corrected or removed from the input data. 

Otherwise, it will exert a negative impact on the data analysis. 

 

 

 

x1 x2 x3 x4 x5 x6

Date

(Y/M/D)

Oil Depth

(mm)

Oil

Temprature

(℃)

Apprarent

Density

(kg/m
3
)

Standard

Volume

(m3)

Weight

(kg)

Entry_1 20090109 2,172 0.6 807.2 51,644 42,366 x
1

Entry_2 20090109 2,183 2.8 807.2 52,159 42,703 x
2

Entry_3 20090109 2,315 3.2 807.2 60,141 49,216 x
3

Entry_4 20090109 2,192 3.2 807.2 52,509 42,970 x
4

Entry_5 20090109 2,183 3.3 807.2 231,234 42,870 x
5

y1 y2 y3 y4 y5 y6

1 2 2 2 2 2
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3. ANALYTICAL TOOLS OF AODDFS RESULTS  

 

By the AODDFS, each entry is assigned a score about its 

normality, and an entry with a low score is likely to be 

abnormal. However, the oil managers cannot identify an 

abnormal entry rapidly, if its score is low but not very low. 

Hence, the boxplot and standard deviation were employed to 

analyze the AODDFS results in visual and non-visual manners, 

respectively. 

 

3.1 Boxplot 

 

In descriptive statistics, a boxplot [22] clearly depicts a 

group of numerical data with their quartiles. It is a standard 

way to display the data distribution based on the Five-Number 

Summary: minimum, first quartile, median, third quartile, and 

maximum. In the simplest box plot (Figure 2), the central 

rectangle spans from the first quartile to the third quartile. The 

span is called the interquartile range (IQR). The median is 

indicated by the segment in the rectangle, and the minimum 

and maximum are above and below the box, respectively. 

 

 
 

Figure 2. Boxplot structure 

 

The interval between the minimum and the maximum is the 

full range of variation, the IQR is the likely range of variation, 

and the median is a typical value. The real datasets with 

surprisingly high maximums or surprisingly low minimums 

called outliers or suspected outliers. The outliers are either 

3×IQR or more above the third quartile or 3×IQR or more 

below the first quartile. The suspected outliers are slightly 

more central versions of outliers: either 1.5×IQR or more 

above the third quartile or 1.5×IQR or more below the first 

quartile. 

In this paper, the boxplot is utilized to display the AODDFS 

results, making it easier for oil managers to look for abnormal 

entries. Since a high score means high normality, the managers 

only need to focus on the entries in suspected outliers and 

outliers of low scores. Besides, the boxplot provides the 

managers with a panorama of the distribution of all scores, 

enabling them to set a lower limit for entry check. Note that 

the suspected outliers were taken as the standard to check the 

abnormal scores, that is, the low scores belonging to suspected 

outliers. 

 

3.2 Standard deviation 

 

In statistics, the standard deviation, denoted as σ, is a 

measure of the variation or dispersion of a dataset. A low 

standard deviation indicates that the data points are close to the 

mean of the dataset, while a high standard deviation means the 

data points are scattered across a wide range. The standard 

deviation is defined as follows: 

( )
2

1

1 N

i

i

x
N =

= −                                (4) 

 

where, X={x1, x2, ..., xN} is a dataset with N entries; 

1

1 N

i

i

x
N =

=   is the mean value of the dataset.  

Based on standard deviation σ, a confidence interval 

[μ+σ,μ-σ] was defined for entry check. More attention should 

be paid to the scores outside this interval. Since a high score 

means high normality, the oil managers only need to 

emphasize on the entries whose scores are below the interval, 

i.e. lower than (μ-σ). 

 

 

4. CASE STUDY 

 

4.1 Data collection 

 

To verify our approach AODDFS in realistic scenarios, the 

input data were collected from several large oil depots in 

Beijing, China.  Each of these oil depots supplies oil to smaller 

depots in Beijing and nearby provinces. The collected data 

cover the parameters of oil transmitted from one depot to 

another. Two datasets were selected for analysis, namely, 

Dataset_1 and Dataset_2. The former has 20,000 entries and 

the latter has 1,992 entries. There are 11 abnormal entries (e.g. 

wrong number, typo, and non-transmission entry) in Dataset_1 

and 10 in Dataset_2. The AODDFS results were processed and 

displayed by boxplot and standard deviation. The entire 

verification was performed on MATLAB 7.8.0. 

 

4.2 Evaluation metrics 

 

The AODDFS performance was evaluated by two metrics: 

precision and recall. Precision is the fraction of retrieved 

entries that are abnormal, and recall is the fraction of abnormal 

entries that are retrieved. The two metrics can be expressed as: 

 

/ ( )

/ ( )

precision TA TA FA

recall TA TA TN

= +

= +
                       (4) 

 

where, TA is the number of true abnormal entries detected by 

the AODDFS; FA is the number of false abnormal entries 

detected by the AODDFS; TN is the number of true abnormal 

entries not detected by the AODFS. Thus, (TA+FA) is the total 

number of entries judged by the AODDFS as abnormal, and 

(TA+TN) is the total number of true abnormal entries in the 

dataset. 

Therefore, precision reflects the usefulness of the detection 

results while recall demonstrates the completeness of the 

results. In simple terms, high precision means that the 

AODDFS returns many truer abnormal entries than false ones, 

while high recall means that the AODDFS returns most of the 

abnormal entries in the input dataset. The higher the precision 

or recall, the better the AODDFS performs. 

 

4.3 Results analysis 

 

The AODDFS was applied to detect the abnormal entries in 

each of the two datasets, yielding a score on the normality of 

each entry. Then, the scores were separately processed and 

displayed by boxplot and standard deviation. 
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Figure 3. Boxplots of two datasets 

 

The boxplots of the two datasets (Figure 3) were constructed 

with the AODDFS scores as the inputs. As shown in Figure 3, 

several entries with low scores were suspected outliers. By the 

definition of suspected outliers, oil managers checked the 

entries whose scores are 1.5×IQR or more below the first 

quartile. For Dataset_1, 10 out of the 12 entries, which were 

judged by the AODDFS as abnormal, were true abnormal 

entries. For Dataset_2, 7 out of the 8 entries, which were 

judged by the AODDFS as abnormal, were true abnormal 

entries. Hence, the AODDFS achieved the precision and recall 

of 83.33% and 90.91% in Dataset_1, respectively, and 87.5% 

and 70% in Dataset_2, respectively. 

The AODDFS scores were also analyzed by standard 

deviation. For Dataset_1, the mean score was 122,496.62, and 

the standard deviation was 7,789.11. The entries with scores 

below (122,496.62-7,789.11) =114,707.51 were abnormal. 

Hence, 10 out of the 12 entries, which were judged by the 

AODDFS as abnormal, were truly abnormal. For Dataset_2, 

the mean score was 120,603.98, and the standard deviation 

was 7,646.37. The entries with scores below (120,603.98-

7,646.37) = 112,957.61 were abnormal. Therefore, 7 out of the 

10 entries, which were judged by the AODDFS as abnormal, 

were truly abnormal. To sum up, the AODDFS achieved the 

precision and recall of 83.33% and 90.91% in Dataset_1, 

respectively, and 87.5% and 70% in Dataset_2, respectively. 

The analysis results by standard deviation agree well with 

those of the boxplot analysis, indicating that both are effective 

in evaluating the AODDFS results. 

The abnormal oil data detected by the AODDFS are 

summed up in Figure 4, where TA, FA and FN are 17, 3, and 

4 respectively. This means the AODDFS considered 20 entries 

as abnormal, among which 17 were truly abnormal. The 3 false 

abnormal ones were normal, although their scores were much 

larger or smaller than those of the other entries. This situation 

is not uncommon in practice. For example, the natural loss of 

oil is much higher than regular transmission, if a depot needs 

to supply oil to a remote place with no nearby depots. Besides, 

the two selected datasets have a total of 21 abnormal entries. 

Four of them, which are correlated, were not identified by the 

AODDFS. This is because each feature was analyzed 

independently by fisher score, with the aim to save computing 

cost. Based on the data in Figure 4, the final precision and 

recall of the AODDFS were computed as 85.00% and 80.94%, 

respectively. Thus, most of the entries detected by the 

AODDFS are truly abnormal, and most of the abnormal entries 

in the datasets were detected by the AODDFS. It is safety to 

say that the AODDFS is an effective way to detect abnormal 

oil data. 

 

 
 

Figure 4. Summary of AODDFS results 

 

 

5. CONCLUSIONS 

 

In this paper, a practical method, the AODDFS, is proposed 

to detect the abnormal oil data based on feature selection. The 

fisher score was adopted to compute the relevance of each 

entry with normal features, and the AODDFS results were 

analyzed by boxplot and standard deviation. The experiments 

on real-world datasets show that the AODDFS achieved high 

precision and recall, revealing its effectiveness in detecting 

abnormal oil data. The future research will further optimize the 

AODDFS based on the relevance of dependent attributes, and 

include restriction rules to deal with rare cases. 
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