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The accuracy of tourist flow prediction is crucial to the sustainable development of tourism 

industry. However, it is very difficult to forecast the highly nonlinear tourist flow in an accurate 

manner. The artificial neural network (ANN) has been widely adopted to predict nonlinear 

time series, but its shallow structure cannot effectively learn the features of high-dimensional 

tourist flow data. To solve the problem, this paper puts forward a tourist flow prediction model 

based on deep learning (DL). First, the deep belief network (DBN), with its strong ability to 

extract nonlinear features, was employed to extract effective features through unsupervised 

learning of historical tourist flow. Next, the echo state network (ESN) was effectively fused 

with the DBN. The ESN was placed at the top layer of the tourist flow prediction model, 

serving as the logic regression layer. Finally, the offline training and prediction effects of the 

proposed ESN-DBN were verified through experiments on the holiday tourist flow data 

extracted from a tourist center, and compared with those of two classical prediction models, 

namely, backpropagation neural network (BPNN) and autoregressive integrated moving 

average (ARIMA). The results show that the ESN-DBN achieved a mean absolute percentage 

error was below 12% and a rational computing time; the proposed model also outperformed 

the two classical models in prediction accuracy. The research results provide an important 

reference for the forecast of tourist flow and planning of tourism development.  
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1. INTRODUCTION

Tourism is playing an increasingly important role in the 

development of local economy [1, 2]. With the steady growth 

in living standards, the tourism industry in China is booming 

in recent years [3, 4]. However, the fast-growing tourist flow 

has sown the seeds of safety incidents, such as overcrowding 

and stranding in scenic spots. These incidents occur more 

frequently during holidays, posing a heavy burden on scenic 

spots, airports and hotels.  

In tourism, decisions on planning, transport and lodging are 

made based on the predicted tourist flow. Therefore, it is 

crucial to optimize the allocation of tourism resources and 

rationally divert the tourist flow. Otherwise, the human, 

financial and material resources of scenic spots, airports and 

hotels will soon deplete, rather than planned and allocated 

effectively.  

The tourist flow often changes nonlinearly from season to 

season, under the influence of weather conditions, stochastic 

events and varied lengths of holidays. The complex 

nonlinearity and seasonality cannot be measured accurately by 

existing methods. Therefore, it remains a difficult problem to 

predict tourist flow in an accurate manner. This calls for a 

novel technique that can accurately forecast the tourist flow. 

Recent years has seen great progress in tourist flow 

prediction, thanks to the emergence of many forecast methods. 

The prediction of tourist flow is either model-driven or data 

driven. The model-driven methods, also known as parametric 

methods, include exponential smoothing (ES) [5, 6], 

autoregressive moving average (ARMA) [7, 8], autoregressive 

integrated moving average (ARIMA) [9, 10], etc. These 

methods generally project the future tourist flow based on 

historical data, using univariate or multivariate mathematical 

functions. Nevertheless, the model-driven methods assume 

that the tourist flow obeys linear distribution, which goes 

against the nonlinear, seasonal changes of real-world data on 

tourist flow. As a result, the model-driven methods cannot 

achieve desirable results in actual applications. 

With the advent of artificial intelligence (AI) technologies 

like neural networks (NNs) [11, 12] and fuzzy theory [13], 

data-driven methods have attracted more and more attention 

from scholars. The data-driven methods autonomously learn 

the historical data on tourist flow, especially the nonlinear, 

dynamical changes in the data. Typical examples of data-

driven methods are: backpropagation neural network (BPNN) 

[14, 15], support vector regression (SVR) [16], locally 

weighted learning (LWL) [17], etc. Among them, the artificial 

neural network (ANN) has been widely adopted to predict 

tourist flow [18, 19], and proved to outshine model-driven 

methods like ES or ARIMA. However, there are several 

defects with the data-driven methods: the systematic modeling 

process of traditional NNs is lacking; the model parameters 

need to be selected through repeated tests; the ANN cannot 

predict the tourist flow in complex systems with multiple tasks. 

Currently, a growing number of researchers tend to solve 

forecast problems with hybrid models. For instance, Hong et 

al. [20] put forward an SVR model based on chaotic genetic 

algorithm to predict tourist demand. Chen et al. [21] combined 

adaptive genetic algorithm (AGA) and the SVR into the AGA-

SSVR algorithm, which can effectively forecast the tourist 
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flow in holidays. Based on deep belief network (DBN) and the 

SVR, Huang et al. [22] designed an improved strategy called 

deep learning-support vector regression (DL-SVR), and 

verified the high prediction accuracy and robustness of the 

DL-SVR through experiments.  

The DBN is a typical unsupervised learning algorithm 

developed by Hinton et al. [23] in 2006. The DBN consists of 

layers of restricted Boltzmann machines (RBMs) for the pre-

train phase, and extracts the intrinsic features from the big data 

through its multi-layered structure. Over the years, the DBN 

has been successfully applied to speech recognition, graphics 

processing, context awareness and behavior recognition. This 

DL algorithm enjoys great advantages in prediction of tourist 

flow, for it is capable of extracting the features from complex 

tourist flow data without prior experience. 

Through the above analysis, this paper innovatively 

integrates the DBN with the echo state network (ESN) into a 

hybrid model for tourist flow prediction. Firstly, the DBN was 

employed to extract the features from the input historical data. 

Then, the DL model for tourist flow prediction was established 

by fusing the decision-making layer of the DBN with the ESN. 

Next, the proposed method was trained and evaluated based 

on the data on holiday tourist flow (2013-2017) provided by a 

tourist center. This research mainly makes the following three 

contributions: 

(1) To the best of our knowledge, this research is the first 

attempt to predict tourist flow based on the DBN, which is 

suitable for handling complex nonlinear tourism systems. 

(2) In the logistic regression layer, the ESN was adopted for 

model prediction. With short-term memory, the ESN is more 

efficient than the fine-tuning based on supervised 

backpropagation (BP), because most of the data on tourist flow 

depends on the state in the previous moment. 

(3) The proposed model can effectively forecast the tourist 

flow in holidays, providing an effective basis for the strategic 

planning of tourism development. 

The remainder of this paper is organized as follows: Section 

2 introduces the preliminary knowledge of our model; Section 

3 sets up the novel tourist flow prediction model based on the 

ESN and the DBN; Section 4 presents the experimental results 

of our model and compares the model with traditional 

prediction methods; Section 5 wraps up this research with 

conclusions. 

 

 

2. PRELIMINARY KNOWLEDGE 

 

2.1 RBM 

 

The RBM is a type of Markov random field and also an 

energy-based model. As shown in Figure 1, the RBM is a 

typical undirected graph, where the visible layer v is connected 

to the hidden layer h via undirected weighted connections. 

 

 
 

Figure 1. The structure of the RBM 

However, there is no connection between the nodes within 

the visible layer v or the hidden layer h. The high-order 

correlation can be reflected in the output of the hidden layer. 

The RBM can define a probability distribution model p(v,h;θ) 

based on an energy function E(v,h;θ). For a binary RBM, we 

have: 
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where, θ=(w,a,b) is the set of parameters; wij is the connection 

weight between visible layer node I and hidden layer node j; 

aj and bi are the biases of the visible layer and the hidden layer, 

respectively; |V| and |H| are the number of visible layer nodes 

and hidden layer nodes, respectively. If v and h remain 

unchanged, the conditional probability distribution can be 

computed easily by: 
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where, sigm(x)=(1/(1+e-x)) is a sigmoid function. The 

parameter set θ=(w,a,b) can be learned through Contrastive 

divergence (CD-k) algorithm [23]. 

 

2.2 DBN 

 

In the traditional DBN, the bottom layer is a stack of RBMs, 

while the top layer uses the BP algorithm for global finetuning 

(i.e. computing the error of each layer and adjusting the weight 

and bias of each layer). The network is a supervised learning 

with data labels as supervisory signals. The structure of the 

DBN is illustrated in Figure 2 below. 

 

 
 

Figure 2. The structure of the DBN 

 

The DBN is trained by a series of RBMs. The core idea of 

the training can be explained as follows: The parameter set 

θ=(w,a,b) obtained through RBM training can be used to 

define p(v|h,θ) and prior distribution p(h|θ). Hence, the 

probability of generating a visible layer node can be written as: 
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Once the parameter set θ has been learned from an RBM, 

the p(v|h,θ) will remain constant. In addition, p(h|θ) can be 

replaced by a continuous RBM, i.e. the hidden layer of the 

previous RBM can be treated as visible input. Therefore, the 

DBN can serve as an unsupervised feature learning method, in 

the absence of data labels. 

 

2.3 ESN 

 

The ESN is a special form of recurrent neural network. As 

shown in Figure 3, an ESN is generally composed of an input 

layer, a dynamic reservoir and an output layer. 

 

 
 

Figure 3. The structure of the ESN 

 

The state update of the reservoir and the network output can 

be respectively defined as: 

 

( ) ( ( 1) ( ))
res in

u n f W u n W x n= − +                   (5) 

 

( ) ( ( ))
out out

y n f W u n=                             (6) 

 

where, 1( ) Dx n C   and 1( ) Ky n C  are the input and output 

signals of the ESN, respectively; 1( ) Nu n C   is the internal 

state of the reservoir at t=n; Wres is the internal weight matrix 

of the reservoir. Let N, D and K be a reservoir node, an input 

layer node and an output layer node, respectively. Then, the 

weights of linear input and linear output can be described as 
N D

in
W C   and K N

out
W C  , respectively. The tanh function 

is generally adopted as the activation function f(•) of the 

reservoir, and fout as the readout function of the output layer. 

The fout can be a simple function selected manually (e.g. 

fout(•)=1) or a complex function. 

In the ESN, the weight matrix Win of the input layer and the 

weight matrix Wres of the reservoir require no training. Both of 

them are randomly generated and constant. The only 

parameter to be trained is the weight matrix Wout of the output 

layer, which is generally trained by pseudo-inversion of 

known sequence. The ESN boasts a very useful function called 

the short-term memory, because the numerous sparsely 

connected neurons in the reservoir can record the state of the 

network before operation. As a result, this network is suitable 

for predicting factors that are highly correlated with the 

historical data, namely, tourist flow, traffic flow and shipping 

traffic. 

 

 

3. TOURIST FLOW PREDICTION MODEL 

 

To set up our tourist flow prediction model, the first step is 

to improve the traditional binary DBN. The tourist flow data 

were constructed based on real value units with Gaussian noise. 

Then, the conditional probability distribution and energy 

function can be written as: 
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where, σ is the standard deviation vector; 
2( , )
i

N    is the 

Gaussian distribution with the mean of σ and the variance of μ. 

The learning of wij is realized through CD-k. The weight 

update formula can be expressed as: 

 

( , , )ij i j i jdata recon
w v h v h = −                  (10) 

 

where, η is the learning rate. 

 

Before inputting the tourist flow data, the sparse model must 

be regularized first. The activation function with 

regularization penalty can be described as: 

 

2
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where, vk is a sample in the training set; ρ is sparsity. 

 

 
 

Figure 4. ESN-DBN tourist flow prediction model 

 

As shown in Figure 4, the DBN was improved based on the 

ESN. Specifically, the highest-level data features eventually 

extracted by the RBMs in the DBN were expressed as 

 1 2
, , ,p p p p

m
H h h h= , where p is the top layer and m is the 
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number of top layer features. In the architecture of our model, 

the most representative feature Hp was taken as the input 

vector for prediction (the ESN layer of the top layer). The 

operations of the proposed ESN-DBN model can be summed 

up as follows: the DBN learns representative and robust 

features from the inputs through multi-layer nonlinear feature 

transformation, and uses them to describe the complex 

mappings of the inputs and features in the tourism system; then, 

the prediction results are generated in the ESN regression layer 

based on the DBN features.  

During the supervised ESN training at the top level, the 

weights between reserve state and output layer state can be 

updated by: 

 

( 1) ( ( 1) ( ) ( ))

( 1) ( 1)

in back

out

x t f W u t Wx t W y t

y t W x t

+ = + + +

+ = +
         (12) 

 

where, x(t) and y(t) are the input and output signals of the 

reservoir, respectively; W is the weight matrix of internal 

connections of the reservoir; Win and Wout are the weight 

matrices of input layer and output layer, respectively; Wback is 

the feedback matrix initialized randomly from the mean 

distribution. The tanh function was adopted as the activation 

function f(•) of neurons. The local weight adjustment of the 

ESN is explained in Table 1. 

 

Table 1. Local weight adjustment of the ESN 

 

Algorithm 1: Local weight adjustment of the 

ESN 

Inputs: u(t), x(t), y(t),  

λ (the spectral radius),  

Win, W, Wout  

h1 (the state of the final DBN output). 

Output: Wout (the weight matrix of the output 

layer) 

1: Network initialization 

2: Random definition of Win, W and Wout 

3: ( )0,1   

4: x(0)=0 

5: Dynamic sampling for network training  

6: u(t)←h1 

7: for t=0 to T do 

8: Updating the reservoir state 

9: Setting up the reservoir state matrix X  

10: Setting up the output layer matrix Y 

11: Computing the output layer weight matrix 

 

The ESN-DBN algorithm can be implemented in the 

following steps: 

Step 1. Initialize network parameters (Wi,bi) (1≤i≤r+1) as a 

close-to-zero random number. 

Step 2. Train the first RBM by CD-k and denote its visible 

layer as v and hidden layer as h1. 

Step 3. For(1≤i≤r-1), take hi-1 and hi as the visible layer and 

the hidden layer of the i-th RBM, respectively; train the RBM 

layer by layer by CD-k. 

Step 4. For i=r, set up a RBM classifier with hr-1 and y as 

the visible layer and hr as the hidden layer, and train the RBM 

classifier by CD-k. 

Step 5. Take the biases between the trained RBMs as the 

initial weight and bias of the ESN, and finetune the local 

weight and bias of each layer based on the ESN. 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

The predictive performance of the ESN-DBN was verified 

through experiments, and compared with that of the BPNN 

and the classical ARIMA. For our experiments, the tourist 

flow dataset of seven yearly holidays (2013-2017) was 

collected from a tourist center. As shown in Figure 5, the 

dataset covers both the daily tourist flow on holidays, and the 

daily tourist flow before 9am on holidays. The data in 2013-

2016 were taken as the training set, and the data in 2017 was 

adopted to verify the prediction results. 

 

 
 

Figure 5. Holiday tourist flow dataset 2013-2017 

 

The model prediction was divided into two parts, aiming to 

enhance the real-time performance of the prediction and 

reduce the time lag of online data training. First, the 

preliminary prediction model was obtained through offline 

training based on historical data. Next, the prediction process 

was further optimized. Offline training can greatly shorten the 

computing time of the prediction model, because it does not 

occupy the time for online data prediction of the ESN-DBN. 

Figure 5 presents the structure of the ESN-DBN prediction 

model for tourist flow. 
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Figure 6. The structure of the ESN-DBN prediction model 

for tourist flow 

 

The parameters of our ESN-DBN were calibrated 

empirically and adjusted through trial-and-error. Each RBM 

has three hidden layers, each of which has 30 nodes. The 

learning rate and number of iterations are 0.1 and 450, 

respectively. The sigmoid function was adopted as the 
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activation function. In the ESN, the initial number of nodes 

was set to 60. The experiments were conducted on 

Matlab2018b in Windows 10, using the same hardware (Intel 

Core i7-6850K-3.60GHz; RAM 16G). 

The ESN-DBN was compared with the BPNN and the 

ARIMA in terms of accuracy and computing time. The 

prediction accuracy was measured by three indices, namely, 

mean absolute error (MAE), root-mean-square error (RMSE) 

and mean absolute percentage error (MAPE): 
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where, yi is the actual value; 
iy  is the predicted value. 

 

The ESN-DBN was trained by the data in 2013-2016. The 

actual tourist flow in each year was compared with that 

predicted by the trained model (Figures 7 and 8). It can be seen 

that the curve of predicted tourist flow basically has the same 

trend with that of actual tourist flow, and the prediction error 

was controlled within 6%. 

 

 
 

Figure 7. Training results 

 

 
 

Figure 8. Prediction error 

Furthermore, the ESN-DBN was applied to predict the 

holiday tourist flow in 2017, and compared with the prediction 

results of the BPNN and the ARIMA. The comparison is 

illustrated in Figure 9 below. 

 

 
 

Figure 9. The 2017 holiday tourist flows predicted by 

different models 

 

The MAEs and RMSEs of the three models in tourist flow 

prediction are displayed in Figure 10. The three models were 

also compared by the MAPE and computing time (Table 2).  

 

 
 

Figure 10. MAE and RMSE of the three models 

 

Table 2. Comparison of the three models in prediction 

accuracy and computing time 

 

Model 

Accuracy and computing time 

MAPE MAE RMSE 
Mean computing 

time/s 

ARIMA 23.87% 1,100 1,430 12 

BPNN 19.07% 810 1,004 30 

ESN-DBN 11.25% 475 573 24 

 

It can be seen that the MAE and RMSE of the proposed 

ESN-DBN were 475 and 573, respectively, those of the 

ARIMA were 1,100 and 1,430, respectively, and those of the 

BPNN were 810 and 1,004, respectively. Hence, the ARIMA 

had the poorest predictive performance, due to the high 

nonlinearity of tourist flow; the ESN-DBN achieved better 

prediction accuracy than the BPNN, which has a shallow 

structure. The MAPEs of the BPNN, ARIMA and ESN-DBN 

were respectively 19.07%, 23.87% and 11.25%, indicating 

that our model boasts the most accurate prediction of tourist 

flow. 
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5. CONCLUSIONS 

 

This paper introduces the ESN to improve the DBN for 

tourist flow prediction. In the proposed ESN-DBN, the bottom 

layer is a stack of RBMs that extract features from the input 

historical data, and the top layer is an ESN-based DL 

prediction model for tourist flow. The bottom layer adopts the 

structure of a typical DBN and could realize unsupervised 

feature learning in an effective manner. The ESN is effectively 

integrated with the DBN to perform supervised learning in the 

decision-making layer. In this way, the weights and biases of 

the entire network are adjusted, such that the network can 

effectively map the complex relationship in the tourism 

network. Several experiments were conducted on actual 

dataset of holiday tourist flow. The results prove that the ESN-

DBN enhances the prediction accuracy of tourist flow, because 

it can carry out effective feature learning with very limited 

prior knowledge. In addition, it is learned that the ESN-DBN 

outperformed the BPNN and ARIMA in prediction 

performance, realizing the lowest MAE and RMSE. What is 

more, the ESN-DBN also achieved the lower MAPE (11.25%) 

than the two contrastive models. The computing time of the 

ESN-DBN fell between that of the ARIMA and that of the 

BPNN, and basically satisfies the requirement on computing 

speed. With these advantages, the ESN-DBN can be applied 

to the tourist system very easily. The future research will 

optimize the ESN-DBN to further reduce its computing time, 

and will promote the model to tourist flow prediction in even 

shorter periods. 
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