
Design of Multimodal Transport Path Optimization Model and Dual Pheromone Hybrid Algorithm 

Youpeng Lu1, Xiao Pei1*, Changze Zhang1, Haiyan Luo1, Bin Liu1, Zhide Ma2 

1 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China 
2 China Railway Lanzhou Group Co., Ltd, Lanzhou 730000, China  

Corresponding Author Email: youpenglu@mail.lzjtu.cn 

https://doi.org/10.18280/jesa.520506 ABSTRACT 

Received: 2 February 2019 

Accepted: 18 August 2019 

This paper aims to optimize the largescale complex multimodal transport path in an efficient 

and accurate manner. To this end, the genetic algorithm (GA) was embedded into the ant 

colony optimization (ACO), creating a dual pheromone hybrid algorithm. The GA guides and 

speeds up the ACO to avoid the local optimum trap and enhance the optimization ability. 

Considering the scale effect of transport cost, a combinatorial optimization model was 

established to minimize the cost under the constraints of delivery time and path capacity, and 

tested in largescale multimodal transport networks. The test results show that the hybrid 

algorithm converged to the optimal solution through 46.17% and 45.25% fewer iterations, and 

lowered the transport cost by 4.23% and 2.39% than the GA and ACO, respectively. In 

addition, the hybrid algorithm was relied on to explore the factors affecting path selection. The 

research findings lay a solid basis for decision-making on multimodal transport. 
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1. INTRODUCTION

Container Multimodal Transport (CMT) is so efficient that 

its standard logistics system can organically integrate multiple 

transport modes to achieve seamless joint of all logistics 

chains. Today, with the further development of “The Belt and 

Road” strategy, the CMT will usher in a new development 

opportunity. 

By far, the studies both at home and aboard mainly focus on 

how to improve the combination of optimal path and transport 

mode in a constraint environment. Reddy and Kasilingman [1] 

took the lead in designing a linear model that aims to minimize 

the total transportation cost. It is believed that the total 

transportation cost includes inter-node and node transit 

expenses. Further, Moccia et al. [2] allowed for the influence 

from arrival, departure time points set for transportation 

services at the nodes and the full transport time limit when 

selecting the path. GrBener et al. [3] analyzed the two methods 

for building the multimodal transport network and designed 

the improved Martins algorithm for solution. Zhang et al. [4] 

developed the bi-objective optimization model most reliable at 

the minimization of total cost, and that integrate the Genetic 

Algorithm (GA) and the Simulated Annealing Algorithm (SA) 

for solution. Rekik and Mellouli [5] established the multi-

objective model that took the service quality first. Wang and 

Wang [6] considered uncertain factors in the transportation 

process and implemented the optimization model under the 

fuzzy demand. Jiang and Zhang [7] improved the ACO for a 

successive solution by randomly selecting nodes and 

introducing pheromone update strategies using the generalized 

cost as the objective function. Literature usually involves 

transportation cost as continuous function, but ignores such a 

fact that average transportation cost tends to decrease 

progressively with the increase of shipment volume in the 

practical transport process. As for the transportation time, it is 

almost impossible to differently consider the arrival and node 

time limits, only whichever of both. 

Based on the results of previous studies, this paper involves 

the transportation economy “scale effect”, time window and 

path capacity constraints. The continuous piecewise linear 

function is used to express the transportation cost to make the 

model more adaptable to practical transportation process. The 

concept of "dual pheromone" is proposed to optimize the path 

and transportation mode. This is the GA-ACO hybrid 

algorithm that integrates the ACO and the GA which, as 

proved in practice, is feasible and effective. 

In this paper, the main structure includes the following four 

sections: Section 1 describes the Problem description and 

modeling; Section 2 elaborates the hybrid algorithm to fill the 

gaps of other algorithms, for example, it is prone to local 

optimum; Section 3 affirms by an example that the hybrid 

algorithm is feasible and effective, and discusses the influence 

of traffic volume, transportation time limit and path capacity 

on path selection; Section 4 gives the Conclusion of the full 

text. 

2. PROBLEM DESCRIPTION AND MODELING

2.1 Model assumptions 

(1) In the inland cities, for example, only two modes of

transportation, roads and railways, are considered, and only 

one of both can be used between any two nodes; 

(2) The transfer of transportation modes can only occur at

the node. Except for the nodes O and D, any node can allow 

the transfer of transportation modes, but only once at most. 

(3) The carrier only undertakes one logistics task at a time,

which can not be split halfway. 

(4) The traveling time involves the route length. The railway

transportation will be limited by the timetable, that is, there is 

a specified time for arrival or departure, but no such constraint 
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on road transportation; 

(5) Transit cost and time limit have a linear relation with the 

traffic volume, and the facilities at any node should meet the 

requirements of the transit process. 

 

2.2 Model description 

 

Assume there is an undirected graph G= (V, E, K), where V 

is the set of nodes in the transport network; E is the set of 

transport segments; K is the set of transport modes. There are 

the goods of the transport volume q that require to be 

transported from the starting point O to the destination D. 

First, the transport cost should be considered. Generally, the 

greater the shipment volume, the lower the transport cost 

allocated to each unit of goods. On every road segment (i, j), 

the relationship between transport cost and shipment volume 

can be expressed by continuous piecewise linear function. The 

shipment volume is divided into R linear segments. For 

r∈R={1,2,…,|R|}, the intercept 𝑓𝑖𝑗
𝑘𝑟 ∈ 𝐹𝑖𝑗

𝑘  represents the fixed 

cost; the slope 𝑐𝑖𝑗
𝑘𝑟 ∈ 𝐶𝑖𝑗

𝑘  represents the variable cost; 𝑚𝑖𝑗
𝑘𝑟and 

𝑚𝑖𝑗
𝑘(𝑟−1)

 are upper and lower limits of each segment; and 

𝑐𝑖𝑗
𝑘1 > 𝑐𝑖𝑗

𝑘2 > ⋯ > 𝑐𝑖𝑗
𝑘𝑟 , 𝑓𝑖𝑗

𝑘𝑟 = 𝑓𝑖𝑗
𝑘(𝑟−1)

+ (𝑐𝑖𝑗
𝑘(𝑟−1) −

𝑐𝑖𝑗
𝑘𝑟)𝑚𝑖𝑗

𝑘(𝑟−1)
. 

For transport time, assume 𝐴𝑖
𝑘 , 𝐷𝑖

𝑘 , 𝑆𝑖
𝑘  are actual arrival, 

planed departure and actual transit time points for transport 

mode k at node i, respectively, it is easy to know the actual 

departure time of each node can be represented by 

max{𝐷𝑖
𝑘 , 𝐴𝑖

𝑘 + 𝑆𝑖
𝑘}. 

Other parameters are defined as follows: 

𝑥𝑖𝑗
𝑘 = {

1Goodsaretransportedfromnodes𝑖to𝑗usingthetransportmode𝑘
0Othertransportmodeisused

 

𝑦𝑖
𝑘𝑙 = {

1Goodsaretransitedfromnode
0Thereisnotransit

 

𝑐𝑖
𝑘𝑙—Goods are transited from transport modes k to l at node 

i 

𝑞𝑖𝑗
𝑘𝑟—Traffic volume of goods between nodes (i.j) 

𝑡𝑖𝑗
𝑘—Transport time limit of goods from nodes i to j using 

the transport mode k 

𝑇𝑘—Overall time limit for transporting the goods 

[𝑇𝑒
𝑘 , 𝑇𝑙

𝑘]—Arrival time limit in the transport process of 

goods. 

As described above, the following mathematical model can 

be created: 

s.t. 

 

( )
1

, , ,

min kr kr kr k kl kl

ij ij ij ij i i

i j E k K r R i j E k l K

Z

f c q x c y q
    

= + +   

(1) 
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     (4) 
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                               (9) 

 

where, Formula (1) is the objective function, representing that 

the total cost is the minimum; (2) and (3) are the traffic 

constraints, namely, (2) is the traffic balance condition, and (3) 

gives the upper and lower bounds of cost incurred on the 

selected path. It is known that 𝑚𝑖𝑗
𝑘|𝑅|

 is the upper limits of the 

volume between segments (i,j). The "Squeeze" can ensure that 

the traffic volume is zero if there is no cost incurred on a 

segment. (4) is the overall time window constraint. The early 

arrival of the goods will give rise to the inventory cost. Once 

delayed, penalty cost will be incurred; (5) is the relationship 

between the goods flow and the time variable. If there is traffic 

volume between the segments (i, j), individual time nodes have 

a closed relationship. (6) and (7) makes sure there is only one 

transport mode selected on a road segment, and only one active 

transit performed at a node. (8) makes it certain that the 

transportation is continuous, that is, if the transport mode is 

transferred from k to l at the node i, the transport mode adopted 

from node i-1 to node i is k, and l from node i to node i+1. (9) 

is an integer constraint, ensuring that the goods are not split.  

 

2.3 Model transformation 

 

The above is a single-objective optimization model with 

nonlinear constraints. To further streamline it, the constraint 

(4) can be transformed into a penalty factor added to the 

objective function, thereby reducing one constraint, as shown 

in Formula (10): 

 

            (10) 

 

This is the time deviation penalty function relevant to 

deviation time and freight volume, 𝑓(𝑇𝑘 , 𝑞) = 𝑎(𝑇𝑒
𝑘 −

𝑇𝑘)𝑞 + 𝑏 represents the warehouse cost of goods early arrived, 

and is a linear function; 𝑓(𝑇𝑘 , 𝑞) = 𝛿2(𝑇
𝑘−𝑇1

𝑘)𝑞/(𝑇𝑙
𝑘−𝑇𝑒

𝑘) 

represents the penalty cost of goods arrived in unduly time, 

and is an exponential function, wherein a and b all are non-

negative constants, 𝑎 ≠ 0, 𝛿  is a constant greater than 1 

(where a, b, 𝛿 take 2, 50, 1.1, respectively). Then the original 

objective function turns into 
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 (11) 

 

The constraints are (2), (3), and (5)-(9). Since the (5) is still 

a nonlinear constraint, the solution process gets very 

complicated when using the common commercial software. It 

is therefore necessary to design an intelligent algorithm for 

solving the objective [8]. 

 

 

3. DUAL PHEROMONE HYBRID ALGORITHM 

 

3.1 Description 

 

For this purpose, the GA-ACO hybrid algorithm is designed 

to solve the above problem. The dual pheromone matrix used 

for searching stores the paths and transportation modes 

separately. Refer to Figure 1 for specific structure. Given that 

the ACO algorithm converges at a slow rate due to less 

pheromone accumulation in the initial phase, the hybrid 

algorithm first uses the GA to generate better individual, 

records the combination of its path and transport mode, and 

used it as update basis for initial parameters of prior matrices 

of initial path and transport mode. Then, the ant colony 

generate the path and transport mode selection probabilities 

based on the prior and pheromone matrices, and select the next 

node and the transport mode using the roulette until the 

destination. The path and transportation mode pheromone 

matrices are updated with the results of every generation of 

elite ants, and the adaptive catastrophe operator is referenced 

based on the max and min ants to dynamically adjust the 

pheromone matrix and allow it timely jump out of the local 

optimum solution generated by the GA, narrow the gap 

between the best and the worst individual pheromones, 

enhance the random option of the ant colony for paths and 

transport modes, and improve the global search ability. The 

process of the hybrid algorithm is shown in Figure 2. 

 

 

Transport Mode 

Priori Matrix

Transport Mode 

Pheromone 

Matrix

Path Priori 

Matrix

Path Pheromone 

Matrix

Dual Pheromone 

Matrix

Path Information

Matrix

Transport Mode 

Information
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Figure 1. Information storage structure for dual pheromone hybrid algorithm  
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Figure 2. Process of dual pheromone hybrid algorithm 
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3.2 Genetic manipulation description 

 

3.2.1 Genetic operator description 

Coding: the chromosome is divided into two areas using the 

real-number parallel coding. Assume there are n urban nodes 

in the whole transportation network. The first area is the 

priority of each node, and n in length. The second area is 

arrangement of random transit modes with length n-1, so that 

this area does not need to be decoded. The whole area 

constitutes a chromosome of length 2n-1. 

Decoding: For the decoding of the first area, the priority-

based chromosome is used to decode [9]. Each node randomly 

generates different priorities. Then the priority of nodes is 

reachable in line with the connectivity comparison. Those 

nodes with higher priority are chosen. When the chromosome 

is traversing, an appropriate path is output and guaranteed for 

its connectivity. This method also thoroughly avoids the 

infeasible solution caused by the intersection and mutation. It 

has been proven to greatly improve the algorithm efficiency 

[10]. 

Fitness function: The algorithm fitness is the reciprocal of 

the objective function. The lower the objective function, the 

better the transport program. 

Crossover: The priority-based crossover is in fact to 

intersect the priorities. For the selected individuals, a partially 

consistent crossover method is performed [11], the crossover 

process is shown in Figure 3: 

 

6 5 4 2 3 1Father 1

4 2 5 3 6 1Father 2

Step2:Exchange strings

6 5 5 3 3 1Father 1

4 2 4 2 6 1Father 2

Step3:Determine the mapping 

relationship

4 5

2 3

Step4:Legalization

6 4 5 3 2 1Father 1

5 3 4 2 6 1Father 2

 
 

Figure 3. Crossover operation 

 

Mutation: doppel mutation is performed on two areas of the 

chromosome. 

Choice: The roulette selection method is used, and the 

probability that a chromosome is selected involves the fitness 

quality. 

 

3.2.2 Genetic operator improvement strategy 

Since the population more and more converges to better 

individuals after a certain number of iterations, the crossover 

has an obvious role at this time. The mutation operation 

continues to lead the population to converge to a better 

solution, so that it is feasible to use the crossover and mutation 

rates subjected to change with the number of iterations of the 

algorithm [12], as shown in Formulas (12) and (13): 

 

Crossover rate:𝑝𝑐𝑖 = 𝑚𝑎𝑥{0.6, 𝑝𝑐𝑖−1 − 0.05}         (12) 

 

Mutation rate𝑝𝑚𝑖 = 𝑚𝑖𝑛{0.7, 𝑝𝑚𝑖−1 + 0.05}         (13) 

 

where, pc0=0.8, pm0=0.2 

 

3.3 Ant colony operation description 

 

3.3.1 Dynamic pheromone update strategy: 

To avoid the hybrid algorithm trapping in the local optimum 

solution at the very start, before the ant colony uses the dual 

pheromone matrix, set the initial pheromone quantity 𝜏𝑔 

stored from the set of better solutions generated by the GA is 

different from the pheromone update quantity iterated by the 

post-GA-ACO in the late. the dual pheromone matrix contains 

the optimization factors of the two algorithms. The initial 

value of each path and transport mode pheromone is set to 

𝜏𝑠(𝜏𝑠 = 𝜏𝑔 + 𝜏𝑐) . In this way, the ant not only has good 

contrast objects but also can search more new programs in the 

initial phase [13]. 

To avoid the hybrid algorithm stagnating search, the 

pheromone on each arc must fall within the interval 

(𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥). The initial pheromone range of better solution 

available by the GA can be determined by Formulas (14) and 

(15), where, L(Sbest) is the better solution of the GA algorithm, 

taking the median of the range, (𝜏𝑚𝑖𝑛 + 𝜏𝑚𝑎𝑥)/2 as 𝜏𝑔. 

 

𝜏𝑚𝑎𝑥(𝑡) =
1

2(1−𝜌)
×

1

𝐿(𝑆𝑏𝑒𝑠𝑡)
                   (14) 

 

𝜏𝑚𝑖𝑛(𝑡) =
𝜏𝑚𝑎𝑥(𝑡)

20
                         (15) 

 

After the end of the GA, 𝜏𝑚𝑎𝑥(𝑡) is determined by Formula 

(16), and 𝜏𝑚𝑖𝑛(𝑡) is still determined by Formula (15). At this 

time, 𝜏𝑚𝑖𝑛(𝑡)  represents a better solution of the hybrid 

algorithm, and taking the median of its range, 𝜏𝑐. 

 

𝜏𝑚𝑎𝑥(𝑡) =
1

2(1−𝜌)
×

1

𝐿(𝑆𝑏𝑒𝑠𝑡)
+

1

𝐿(𝑆𝑏𝑒𝑠𝑡)
         (16) 

 

Pheromone update function: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) × 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑏𝑒𝑠𝑡        (17) 

 

∆𝜏𝑏𝑒𝑠𝑡 = 1/𝐿(𝑆𝑏𝑒𝑠𝑡)                     (18) 

 

𝜏𝑚𝑖𝑛 ≤ 𝜏𝑖𝑗(𝑡) ≤ 𝜏𝑚𝑎𝑥                    (19) 

 

where, 𝜏𝑖𝑗(𝑡) represents the pheromone strength of the path (i, 

j) at the time t; 1 − 𝜌 represents the pheromone attenuation. 

Formula (17) is the pheromone added to the arc (i, j) in this 

cycle; Formula (18) is the pheromone released by elite ants. 

Formula (19) is the pheromone that falls within a given 

interval [14]. 
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3.3.2 Migration probability function: 

Suppose 𝑝𝑖𝑗
𝑎 (𝑡) is the probability that ant a migrates from 

node i to node j at t, similarly, the probability from transport 

mode i to j can be obtained. The migration probability function 

is as follows: 

 

𝑝𝑖𝑗
𝑎 (𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽

∑ [𝜏𝑖𝑟(𝑡)]
𝛼[𝜂𝑖𝑟(𝑡)]

𝛽
𝑟∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎

0

𝑗 ∈ allowed𝑘

Others

    (20) 

 

where, allowedk represents the set of optional nodes or 

transport modes of ants.a is the pheromone influence factor 

that represents the dependence of ants on the pheromone when 

they selects the node or the transport mode; β is a priori 

influence factor that represents the dependence of the hybrid 

algorithm on better solution of GA; 𝜂𝑖𝑗(𝑡)  is the heuristic 

function, 𝜂𝑖𝑗(𝑡) = 1/𝑍𝑖𝑗. 

 

3.3.3 Local optimum solution 

The GA-ACO hybrid algorithm is designed to fill the gap 

that the hybrid algorithm is trapped in the local optimum 

solution due to the convergence of the GA algorithm to the 

local optimum. The following algorithm mechanism is 

designed. 

(1) Adaptive catastrophe factor 

The information volatilization factor has a direct influence 

on the global search ability and convergence rate of the 

algorithm. 𝜌 sets the initial value to 0.2. When the feasible 

solution available by the algorithm is not improved after 

multiple iterations, the information volatilization factor can be 

adaptively adjusted using the following rules to further let ant 

balance between “search” and “usage”: 

 

 

( )
( ) ( ) min

min

0.95 1 0.95 1

Others

t t
t

  




− − 
= 
          (21) 

 

In Formula (21), 𝜌𝑚𝑖𝑛 is the minimum volatilization factor 

0.1, avoiding 𝜌 too lower that will affect the convergence rate 

of the algorithm. 

(2) Random choice of jumping out operation 

When the algorithm traps in local optimum in the iteration 

process, the probability that the current optimal solution is 

equal to the local optimal one will increase. At this time, the 

next node can be selected from the option in a random manner. 

This randomness can change the original search trajectory of 

the algorithm, effectively prevent the pheromone 

accumulating in the local optimal solution, thereby improving 

the efficiency of ants for searching the best solution [15]. The 

ant a at node i randomly selects the next node according to the 

Formula (22): 

 

(1, ); allowedkj random n j= 
                (22) 

 

 

4. CASE TEST 

 

4.1 Case description 

 

In the existing multimodal transport network, as shown in 

Figure 4, a batch of goods is transported from node 1 to node 

35. The length of each segment is represented by km (railway 

/road distance), and its maximum transport capacity is t 

(railway / highway capacity). At each node, the departure time 

specified on the railway is represented by h (DT). To simply 

the calculation, the DT at each node is calculated according to 

the accumulated time [16]. 
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Figure 4. Conjunction of urban nodes 

 

Table 1. Features of transport modes 

 

Transport 

Mode 

Average 

speed (km/h) 

Transportation 

quantity charge (t) 

Freight 

charge (yuan/t.km) 

Transfer cost 

(yuan/t) 

Railway 80 

(0,20] 

(20,40] 

(40,60] 

0.18 

0.25 

0.29 
10 

Highway 90 

(0,10] 

(10,30] 

(30,60] 

0.24 

0.33 

0.37 
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4.2 Algorithm test 

 

According to the above algorithm, the relevant parameters 

set herein are listed in Table 2. Since both the GA and the ACO 

belong to the heuristic algorithm that has convergence result 

with certain randomness. The algorithm runs 10 times to take 

the best solution and performance evaluation indices for 

comparison. The best results of each algorithm are shown in 

Table 3. The comparison in the iterative convergence between 

them is shown in Figure 5. 

By comparison, it is known that the average convergence 

iterations of dual pheromone hybrid algorithm proposed 

herein can be 20.08% and 17.49% lower than those of single 

GA and the ACO, respectively, and the average fitness 

function by 4.23% and 2.39%, respectively, under the constant 

conditions, which shows that this algorithm has a faster 

convergence and better optimization performance, so is 

efficient and feasible in practical transportation operations. 

 

Table 2. Initial values of algorithms 

 
Parameters Symbol Initial value 

Number of nodes c 35 

Population size m 100 

Crossing rate Pc0 0.8 

Variability rate Pm0 0.2 

Max generations g 20 

Number of ants n 50 

Pheromone factors α 1 

Priori factors β 3 

Volatile factors ρ 0.1 

Cycle number of hybrid algorithm G 100 

Freight volume q 50 

Delivery time limit [Tk
e,Tk

l] [72,84] 

 

 

Table 3. Solutions of algorithms 

 

Algorithm Best route Best transport mode 
Benefit 

(yuan) 

Time 

(h) 

Average 

Convergence 

Algebra 

Hybrid 

Algorithm 
1→2→8→9→13→24→30→32→34→35 R→R→R→R→R→H→H→R→R 85347 77.751 38.2 

GA 1→4→5→12→16→21→27→28→35 R→R→R→R→R→R→H→H 89112 80.681 47.8 

ACO 1→2→7→11→15→17→22→27→28→35 R→R→R→R→R→R→R→H→H 86816 82.546 46.3 

 

 
 

Figure 5. Convergence iteration of algorithms 

 

4.3 Case analysis 

 

To further test how the final path selection is subject to 

relevant conditions in the model and whether the proposed 

algorithm is effective, the paper analyzes the capacity limits, 

the arrival time limit and the transportation cost, respectively, 

see below for details: 

(1) Given how the sensitivity of goods is to the time limits, 

that is, change the arrival time limit of the goods, find the 

solution using the hybrid algorithm, as shown in Table 4, the 

algorithm iteration is shown in Figure 6; 

 

 
 

Figure 6. Convergence iteration when arrival time limits 

change 

 

Table 4. Solution of hybrid algorithm when arrival time limits change 

 
Delivery 

time 

limit 

Best route Best transport mode 
Benefit 

(yuan) 

Time 

(h) 

Average 

Convergence 

Algebra 

[60,72] 1→3→7→11→15→17→21→27→28→35 R→R→R→R→R→R→R→H→H 76776 72.942 31.3 

[72,84] 1→2→8→9→13→24→30→32→34→35 R→R→R→R→R→H→H→R→R 85347 77.751 38.2 

[84,96] 1→2→8→9→13→19→24→30→32→34→35 R→R→R→R→R→R→H→H→R→R 87725 88.380 32.8 
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(2) Given that the capacity of certain segment decreases due 

to congestion or the like, for example, the departure at the node 

2 is restricted, or the path capacity increases due to the 

rebuilding and expansion (it is true for the network capacity), 

the solutions of hybrid algorithm are listed in Table 5. The 

algorithm iteration is shown in Figure 7; 

 

Table 5. Solutions of hybrid algorithm when path capacity limits change  

 

Capacity 

constraints 
Best route Best transport mode 

Benefit 

(yuan) 
Time(h) 

Average 

Convergence 

Algebra 

Decreased 

capacity 
1→4→5→12→16→21→27→28→35 R→R→R→R→R→R→H→H 89122 80.238 37.4 

Normal 

capacity 
1→2→8→9→13→24→30→32→34→35 R→R→R→R→R→H→H→R→R 85347 77.751 38.2 

Increased 

capacity 
1→3→7→11→15→17→21→27→28→35 R→R→R→R→R→R→R→R→R 71630 82.561 33.6 

 

Table 6. Solution of dual pheromone hybrid algorithm when traffic volume changes 

 

Freight 

volume(t) 
Best route Best transport mode 

Benefit 

(yuan) 

Time 

(h) 

Average 

Convergence 

Algebra 

60 1→4→5→12→16→21→27→28→35 R→R→R→R→R→R→H→H 89122 80.649 29.6 

70 1→2→8→9→13→24→25→26→28→35 R→H→R→R→H→R→R→R→H 95514 79.498 42.3 

80 1→4→5→6→11→15→17→22→26→28→35 R→R→R→R→R→R→H→H→H→H 106375 89.262 28.9 

 

 
 

Figure 7. Convergence iterations of algorithms when there is 

no capacity limit 

 

 
 

Figure 8. Convergence of dual pheromone hybrid algorithm 

when traffic volume changes 

 

(3) Given that the shipper and the carrier sign a long-term 

contract under which the quantity is constant, that is, the 

average cost instead of the segment cost is used for calculation. 

For different traffic volumes, the hybrid algorithm finds the 

solution, as shown in Table 6. The algorithm iteration 

convergence is shown in Figure 8.  

By comparison, it is found that the model mentioned herein 

is feasible, and the finally selected path is inseparable from 

capacity limit, the arrival time limit and the transportation cost. 

The proposed algorithm is effective and can converge quickly. 

 

 

5. CONCLUSION 

 

(1) The combined optimization model is established to 

minimize the transport cost, considering the "scale effect" of 

the transport economy, based on the practical operation of 

multimodal transport and customer demand, and with a 

constant piecewise linear function as the transport cost. 

(2) In view of the good global search capacity of genetic 

algorithm in early stage and the strong convergence of positive 

and negative feedback in the late stage of the ACO, the dual 

pheromone hybrid algorithm is designed with the solutions of 

rapid convergence. 

(3) To avoid the hybrid algorithm trapping in the local 

optimal solution, the dynamic genetic operator is designed in 

the genetic algorithm; the adaptive catastrophe factor is 

introduced in the ant colony optimization process, and the 

jump operation is randomly selected to improve the global 

optimization capacity of algorithm based on the population 

diversity. 

(4) The feasibility and efficiency of the algorithm is further 

tested with a case, and the different results of path selection 

under different constraints are discussed in detail. 

(5) The assumptions are made on the transshipment process 

hereof. The model does not describe the practical 

transshipment process in detail. When the transshipment cost 

and constraints change greatly, it should be further improved. 
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