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This study is dealing with the numerical simulation of natural convection, in a cubic shaped 

cavity. The surrounding walls are partially porous, homogeneous, and isotropic. The horizontal 

walls are adiabatic. The vertical walls of the cavity are maintained at constant temperatures 

(Dirichlet's boundary conditions), and the fluid is the air. The flow in the porous environment 

is modeled by Darcy-Brinkman-forchheimer model. The finite volumes are used for the 

resolution of the equation of continuity, momentum and energy. The obtained results were 

reported to the following: Rayleigh number, Darcy number, and dimensionless thickness of 

the porous layer and the Nusselt number. 

The obtained results show that the increase is proportional to the increase of Rayleigh and 

Darcy numbers and proportionally inverted with dimensional thickness of the porous layer.
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1. INTRODUCTION

Fluid flows through a porous medium are frequently 

encountered in both nature and industry. The fields of 

application are many and varied, we can mention the problems 

of purification of water, soil remediation, oil and gas 

extraction, etc. For this, the transfers in saturated porous media 

have been the subject of numerous theoretical and 

experimental work. Because of their importance in many areas. 

Natural convection in porous media has been a topic of 

research for many authors, such as: 

- In 2005, Sami Ben Amara did a work on natural

convection flows and heat transfer in macro-porous food 

environments: application to refrigerators. The approach is 

both experimental and numerical [1]. 

- Yacine Ould-Amer et al. are interested in natural

convection in a porous multilayer square cavity. Each layer of 

porous medium is considered homogeneous, isotropic and 

saturated by a single fluid [2]. 

- For a numerical and analytical study of the natural

convection heat transfer in porous layers to optimize the effect 

of the Darcy drag, R. Rebhi et al. proposed the following 

model: a horizontal rectangular cavity subjected to a Vertical 

thermal gradient with transition flow governing a single-cell 

or multi-cell convective flux [3]. 

- F. Habbachi et al. are interested in the three-dimensional

simulation of natural convection in a cubic cavity partially 

filled with porous media [4]. 

In this study, we are interested in the heat and mass transfer 

induced by natural convection in a partially porous cavity. It is 

a question of studying the influence of the control parameters 

on the flow and the mechanisms of heat transfer. The vertical 

walls of the entire domain are subjected to constant 

temperatures. The Darcy-Brinkman-Forcheimer formulation 

in anisotropic saturated permeable porous medium has been 

retained in the present work. 

2. MATHEMATICAL FORMULATION

The physical model studied is shown in Figure 1. It is a 

cubic cavity of geometrical parameter (H), partially filled with 

a porous layer of thickness 𝑒, and saturated by a single fluid. 

We call η=e / H the dimensionless thickness of the porous 

layer. 

Vertical surfaces are subjected to Dirichlet temperature 

conditions, while horizontal surfaces are adiabatic (Neumann 

conditions). 

Figure 1. Geometry of the problem 

Some approximations have been considered to simplify the 

formulation of the mathematical model. We limit ourselves to 

the hypotheses commonly used in natural convection studies 

which are: The fluid is Newtonian, incompressible and 

satisfies the Boussinesq hypothesis; the flow of fluid within 

the cavity is laminar and three-dimensional; it is assumed that 

the porous matrix is isotropic, homogeneous and in 

thermodynamic equilibrium with the fluid; the thermo-

physical properties of the fluid are constant in the temperature 

range studied; and we neglect the energy transfer by radiation 

and by conduction. 
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In this study, we will therefore adopt the single-domain 

approach of writing a single equation for the whole domain 

(Navier Stokes including the term Darcy), and the transition 

from the porous medium to the fluid medium is done by a 

variation of permeability [5]; Navier Stokes equations 

including the terms Darcy-Brinkman and Forchheimer. Given 

the assumptions made previously, the classical conservation 

equations are as follows: 

 

▪ The continuity equation: 

▪  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                  (1) 

 

▪ The amount of movement x following equation: 

 

𝜌𝑓 (
1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2 (�⃗� . ∇⃗⃗ )𝑢) = −
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                                                                                              (2) 

 

▪ The amount of motion equations is following: 

 

𝜌𝑓 (
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𝜀

𝜕𝑣

𝜕𝑡
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𝐹|�⃗� |𝑣    

                                                                          (3) 

 

▪ The amount of movement following equation z: 

▪  

𝜌𝑓 (
1

𝜀

𝜕𝑤

𝜕𝑡
+

1

𝜀2 (�⃗� . ∇⃗⃗ )𝑤) = −
𝜕𝑝

𝜕𝑧
+ 𝜇𝑒𝑓𝑓∇

2𝑤 − 
𝜇

𝐾
𝑤 −

𝜌𝑓

√𝑘
𝐹|�⃗� |𝑤 + 𝜌𝑓𝑔                                                                    (4) 

 

▪ Energy equation in porous media: 

▪  

(𝜌𝑐)𝑚
𝜕𝑇

𝜕𝑡
+ (𝜌𝑐)𝑓(𝑉.⃗⃗  ⃗ ∇⃗⃗ )𝑇 = ∇.⃗⃗⃗  (𝐾𝑒𝑓𝑓 . ∇⃗⃗⃗⃗ 𝑇)                          (5) 

 

The equations of the problem are made dimensionless with 

the following guideline values: 

 

𝑋 =
𝑥

𝐻
 ; 𝑌 =

𝑦

𝐻
 ; 𝑍 =

𝑧

𝐻
 ; 𝑈 =

𝑢𝐻

𝑎
 ; 𝑉 =

𝑣𝐻

𝑎
 ; 𝑊 =

𝑤𝐻

𝑎
; 

𝜂 =
𝑒

𝐻
 ; θ = ((𝑇 − 𝑇0) ∆𝑇⁄ ) 

 

So the system of equations defining the movement is then 

written as follows dimensionless: 

▪ The continuity equation: 

▪  
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
+

𝜕𝑊

𝜕𝑍
= 0                                                                 (6)  

 

▪ The amount of equation of motion according to X: 

 

(𝜀
𝜕𝑈

𝜕𝑡
+ (�⃗� . ∇⃗⃗ )𝑈) = −

𝜕𝑃

𝜕𝑋
+ 𝜀𝑅𝑣𝑃𝑟∇

2𝑈 − 𝜀2 (
𝑃𝑟

𝐷𝑎
)𝑈 −

𝐹𝜀2

√𝐷𝑎
|�⃗� |𝑈                                                                                (7) 

 

▪ The following movement amount of the equation Y:   

 

(𝜀
𝜕𝑉

𝜕𝑡
+ (�⃗� . ∇⃗⃗ )𝑉) = −

𝜕𝑃

𝜕𝑌
+ 𝜀𝑅𝑣𝑃𝑟∇

2𝑉 − 𝜀2 (
𝑃𝑟

𝐷𝑎
)𝑉 −

𝐹𝜀2

√𝐷𝑎
|�⃗� |𝑉                                                                                (8) 

 

▪ The amount of movement in Z equation: 

 

(𝜀
𝜕𝑊

𝜕𝑡
+ (�⃗� . ∇⃗⃗ )𝑊)

= −
𝜕𝑃

𝜕𝑍
+ 𝜀𝑅𝑣𝑃𝑟∇

2𝑊 − 𝜀2 (
𝑃𝑟

𝐷𝑎
)𝑊 

−
𝐹𝜀2

√𝐷𝑎
|�⃗� |𝑊 

+𝜀2𝑅𝑎. 𝑃𝑟θ                                               (9) 

 

▪ Equation porous medium energy: 

▪  

𝜎
𝜕θ

𝜕𝑡
+ (𝑉.⃗⃗  ⃗ ∇⃗⃗ )θ = 𝑅𝐾∇2θ                                                    (10) 

 

With: RD: mass diffusivity Report; Rk: thermal conductivity 

ratio; 

RV: viscosity of the Report the term Brinkman; β: the 

coefficient of thermal volumetric expansion of the fluid. 

Or:                              𝜌𝑓 = 𝜌0(1 − 𝛽∆𝑇) 

Turning the dimensionless form of the conservation 

equations shows numbers without the characteristic 

dimensions of the problem. These parameters are: 

 

Table 1. Nombres  adimensionnelles 

 
Types  Expressions 

Le nombre de Prandtl 𝑃𝑟 =
𝜈

𝑎
 

Le nombre de Grashof 
𝐺𝑟 =

𝑔𝛽∆𝑇𝐿3

𝜈2
 

Le nombre de Rayleigh 𝑅𝑎 =
𝑔𝛽∆𝑇𝐿3

𝜈𝑎
= 𝐺𝑟. 𝑃𝑟. 

Le nombre de Darcy 
𝐷𝑎 =

𝐾

𝑒2 

l’épaisseur adimensionnelle 

de la couche poreuse. 
𝜂=

𝑒

𝐻
 

 

In the end, we express heat transfer on the active surfaces of 

the dimensionless Nusselt number (Nu) defined by: 

 

𝑁𝑢̅̅ ̅̅ = ℎ. 𝐿
𝐾𝑓

⁄ = −(𝑎(𝐾𝑒𝑓𝑓 − 1) + 1)
𝜕𝑇

𝜕𝑥
                                    (11) 

 

Ḱ = 𝐾𝑒𝑓𝑓/𝐾𝑓; 𝐾𝑒𝑓𝑓=𝐾𝑠(1-𝜀)+𝜀𝐾𝑓 

 

The initial and boundary conditions corresponding to this 

problem are: 

 

Table 2. Terms speed and temperature 

 

 
 

 

3. RESULTS AND DISCUSSIONS 

 

In this part, we will present the results obtained by fluent of 

natural convection in laminar regime in a closed cubic cavity 

 
surfaces Condition de vitesse Condition de température 

Surface  H U=V= W=0 𝜕θ

𝜕𝑌
= 0, 

𝜕θ

𝜕𝑧
= 0 

Surface  B U=V= W=0 𝜕θ

𝜕𝑌
= 0, 

𝜕θ

𝜕𝑧
= 0 

Surface  S U=V= W=0 𝜕θ

𝜕𝑌
= 0, 

𝜕θ

𝜕𝑧
= 0 

Surface N U=V= W=0 𝜕θ

𝜕𝑌
= 0, 

𝜕θ

𝜕𝑧
= 0 

Surface  W U=V= W=0 0.5 

Surface  E U=V= W=0 -0.5 

70



 

and partially porous. Calculations will allow to show the 

influence of the number of Rayleigh (Ra) and the permeability 

(η, Da) on the thermal and dynamic fields. 

And for a better accuracy of the results, the choice of an 

optimal mesh is not random. The independence of the mesh is 

a simulation test carried out with an increasingly refined mesh 

until the solution no longer varies with the refinement of the 

mesh. The choice of geometry is shown in Figure 2. 

 

 
 

Figure 2. Hybrid mesh of tetrahedral form 

 

And Figure 3, shows the temperature and speed profiles as 

a function of the horizontal position. We can notice that the 

profiles are identical, so we can choose a mesh that does not 

take much time to analyze the maximum cases in our study. 

Our choice was oriented towards the mesh of 15625 nodes. 

 

 
 

Figure 3. Mesh test 

 

The simulation by the software "Fluent" was realized, and 

the results obtained are compared with the results of F. 

Habbachi [4]. 

- Isotherms, velocity vectors and current lines: 

 
 

(a)                                             (b) 

 

Figure 4. Thermal and dynamic fields for η=20%; 

(a) Present study and (b) F. Habbechi [4] 

 

 
(a)                                     (b) 

 

Figure 5. Thermal and dynamic fields for two values of 

η = 90%; 

(a) Present study and (b) F. Habbechi [4] 

 

3.1 Heat transfer effect: Nu as a function of Ra 

 

The Nu interprets the quality and the type of heat exchange: 

an increase in this number, reflects an important contribution 

of the flow to the exchange of heat with the wall, for this 

reason it can be concluded that the increase in Nu is 

proportional to the increase in Rayleigh Figure 5. And this 

increase is all the more important as the permeability increases. 

The thermal transfer takes place essentially by conduction at 

(Ra=103) and with the increase of this number the natural 

convection will be dominant. 

 

 
 

Figure 6. Profiles average Nusselt according to (Ra), 

Da = 10-6, η = 20%, Η = 50% and η = 80% 
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3.2 Thermal transfer effect: Nu as a function of η 

 

We analyzed the influence of the permeability of the porous 

medium in different thicknesses of η that is to say the study of 

the effect of the dimensionless thickness of the porous layer η, 

on the structure of the flow, and on the heat transfer. 

Then for low values of the permeability, the presence of a 

porous layer has for an abrupt fall of the transfers. This 

decrease is even lower when the permeability increases. For 

high values of permeability, the flow structure as well as the 

heat transfer are no longer sensitive to the thickness of the 

porous layer. That is, for low permeability (Da=10-6), the 

porous layer behaves like a solid zone. Or the flow is confined 

in this zone. The introduction of a porous layer of low 

permeability (Da=10-6) causes an abrupt drop in the maximum 

velocity in the fluid zone, while in the porous zone, the 

velocity remains almost zero whatever η, which shows that 

transfers are essentially conductive in this area. 

 
 

Figure 7. Speed profiles as a function of the position y and 

for different values of η 

 

 
(a)                                     (b) 

 

Figure 8. Temperature profiles for different values of η as a function of the position y; 

 (a) Present study, (b) F. Habbechi [4] 

 

The Nusselt number is inversely proportional to the increase 

of η. It tends to a constant value, when the thickness of the 

porous layer approaches zero corresponding to pure natural 

convection. Similarly, as the thickness of the porous media 

approaches unity, the flow tends to a purely conductive 

situation through the body. While the intermediate zone is 

characterized by a sharp decrease in the number of Nusselt as 

a function of η according to the following correlation: 

𝑁𝑢𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = −17 ∗ 𝜂+14.71. 

 

 
 

Figure 9. Mean Nusselt profiles as a function of (η),  

for Ra = 105, Da = 10-2; 

(a) Present study, (b) F. Habbechi [4] 
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3.3 Heat transfer effect: Nu as a function of Darcy (Da) 

 

The variation of the permeability of the porous layer, the 

variation of the Darcy number, and the influences on heat 

transfer have been highlighted. The increase in the number of 

Darcy makes it possible to have much more the presence of 

the thermal and dynamic fields inside the porous layer. This 

means that when the permeability increases, we approach the 

fluid medium (cavity differentially heated). 

 

 
Figure 10. Lines currents for different numbers of Da 

 

The results show that for low values of permeability 

(Da≥10-6), the Nusselt numbers remain virtually constant, the 

porous medium in this Darcy range behaves like an impervious 

area where the flow is almost negligible. That is, conduction 

is dominant over natural convection. For the Darcy values 

between:(10-6 ≤ Da ≤ 10-1), there is an increase of Nusselt, and 

in this zone the flow tends towards a purely convective 

situation through the body, and for the high values of the 

permeability (Da ≥10-1), the heat transfer increases further up 

to the value of Nu=3.35 where the porous medium is 

considered as a fluid medium. 

 

 
 

Figure 11. Evolution of the number of Nusselt according to 

Darcy (Da), for Ra = 105, η = 20% and η = 50% 

 

 

4. CONCLUSION 

 

The numerical study of natural convection heat transfer in a 

porous cubic cavity containing a fluid in a laminar regime was 

carried out. The left and right walls of the enclosure are heated 

and cooled, respectively, while the upper and lower walls are 

maintained adiabatic. The effects of the Rayleigh number, the 

Darcy number, the adimensional number of the porous layer 

thickness and the Nusselt number on heat transfer were 

considered. 

This study is carried out by the "fluent" code of calculation 

allowing to solve the governing equations of the flow with 

transfer of heat by natural convection in a porous media. The 

flow field is governed by the Navier-Stokes equation in the 

fluid region and the Darcy-Brinkman-Forchheimer equation in 

the porous region. The thermal field is governed by the energy 

equation. 

This study concluded that: 

Thermal transfers increase with the number of Rayleigh, 

and this increase is all the more important as the permeability 

increases. The thermal transfer takes place essentially by 

conduction at (Ra=103) and with the increase of Rayleigh the 

natural convection will be dominant. 

- The presence of a porous layer produces a sharp drop in 

transfers. This decrease is even lower when the permeability 

increases. For high values of permeability, the flow structure 

as well as the heat transfer are no longer sensitive to the 

thickness of the porous layer. 

- The increase in the number of Darcy makes it possible to 

have much more the presence of the thermal and dynamic 

fields inside the porous layer. This means that as the 

permeability increases, we approach the fluid medium 

(differentially heated cavity). 

 

 

REFERENCES 

 

[1] Sami Ben Amara. (2005). Flows and heat transfer in 

natural convection in environments Macro-porous food 

application to household refrigerators. Physics [physics]. 

INAPG (AgroParisTech), 2005. English. <NNT: 

2005INAP0006>. <Pastel-00001581> 

[2] Ould-Amer Y, Slama S. (2007). Natural convection in a 

multilayer porous medium. J. Jacques, B. JITH 2007, 

Aug. 2007, Albi, France. ENSTIMAC, 5. 

[3] Rebhi R, Alliche M, Mamou M. (2016). Numerical and 

analytical study of natural convection heat transfer in 

porous layers. NRC Publications Archive, NRC 

Publications Archive. 

 

η =20%  et Da=10-6                     η =20%  et Da=10-1                              η =20%  et Da=1     

73



 

[4] Habbachi F, Oueslati FS, Bennacer R, Ganaoui M, 

Elcafsia A. (2017). Three-dimensional simulation of 

natural convection in cubic cavity. Partly filled with 

porous media. Energy Procedia 139: 617-623. 

https://doi.org/10.1016/j.egypro.2017.11.262 

[5] Le Breton P, Caltagirone JP, Arquis E. (1991). Natural 

convection in a square cavity with thin porous layers on 

its vertical walls. J. Heat Transfer 113(4): 892-898. 

https://doi.org/10.1115/1.2911218 

 

 

NOMENCLATURE 

 

Latin letter 

 

�⃗⃗�   Darcy velocity or filtration velocity (m / s); 

P  Averaged magnitude of the pressure (Pa) 

T Averaged magnitude of the temperature (s); 

𝑲𝒇  Thermal conductivity of the fluid medium (W / m.K); 

𝑲𝒔  Thermal conductivity of the solid matrix (w / m.k); 

𝑲𝒆𝒇𝒇  Effective thermal conductivity (w / m.k);  

g  Gravitational acceleration (m / s2); 

𝐹 Empirical factor which depends on the porosity and 

microstructure of the porous medium(-) 

(X Y Z) dimensionless coordinate system (-); 

(U, V, W)  Component dimensionless speed (-);  

 

Greek symbols 

 

ε  Porosity of the porous medium (-); 

𝝆𝟎 Referential density (kg / m3); 

𝝆𝒇 Volumetric mass of the fluid (kg / m3); 

μ Dynamic viscosity of the fluid (kg / ms); 

𝝁𝒆𝒇𝒇  Dynamic viscosity of the porous medium (kg / ms); 

σ  Report of specific heats of the equivalent medium and 

fluid (-); 

Ḱ  Thermal conductivity of equivalent medium (-); 

η Thickness dimension without the porous layer (-); 

𝚯  Dimensionless temperature (-);  

∆𝑻 Variance of temperature (S); 

β  Coefficient of thermal volume expansion of the fluid 

(𝑘-1). 

 

Indices 

 

eff  Effective  

𝑓  Fluid 

S  Solid 
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