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The rider plays an important role in the stability and control of two-wheeled vehicles. The rider 

model must be designed carefully according to the physical and geometric features of the target 

two-wheeled vehicle. This paper aims to disclose how the rider affects the control and stability 

of two-wheeled vehicles. First, the two-wheeled vehicle-rider system was modelled and 

subjected to dynamic analysis. Next, the motion equations of a two-wheeled vehicle were 

linearized with forwarding velocity and small disturbances in displacement. Further, the 

genetic algorithm (GA) was introduced to optimize the parameters of the proportional-integral-

derivative (PID) controller, taking the steering torque and lean torque from the rider as the 

inputs. Finally, the PID controller was compared with the PI and PD controllers through 

simulation of a two-wheeled vehicle-rider system. The results show that the rider plays the role 

of derivation action; the motion of the upper body of the rider has a secondary impact on 

vehicle stability; the rider can stabilize the vehicle through both lean and steering torques 

generated by his/her upper body movements.  
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1. INTRODUCTION

The stability of the two-wheeled vehicle is an important 

aspect in the domain of mechanical engineering and control 

theory. It is significant due to its direct impact on the safety 

and comfortability of the rider; therefore, is an area that has 

attracted the attention of researchers who aimed at securing as 

granting contentment of the rider. Those researchers have 

contributed in the enlargement of the theory of the two-

wheeled vehicles, and in the description of the critical factors 

and parameters that influence on the safety, comfort, and 

efficiency of driving of the two-wheeled vehicles. They 

accomplished with mathematical and physical models more 

accurate and reliable to describe this type of vehicle. So far, 

the majority of literature focuses on mathematical models, 

both with simplified or linearized, and complex models. The 

aim behind these contributions is to describe specific aspects 

of the two-wheeled vehicles dynamic as to define the 

phenomena of instability mode [1, 2]. Whipple [3] published 

one of the first articles that discussed mathematical modeling 

in 1899. He established a nonlinear equation for a bicycle 

model to examine its stability. In this respect, several 

researchers have based their research on these dynamic 

equations. However, in literature, the rider and his influences 

on the dynamics of two-wheeled vehicles are treated 

unrealistically and modeled as simplified or passive models as 

a rigid body [4–11] attached to the body frame of two-wheeled 

vehicles while other physical models were modeled as a 

simplified biomechanical of a rider [12-14]. As an alternative, 

the third development was an artificial system acting as a 

steering system. None of these approaches of modeling was 

representative due to its low potential action of a rider while 

controlling the two-wheeled vehicles. The main reason for not 

using these kind of models exist in the difficulty of integration 

of the driver model with sufficient degrees of freedom. Among 

the various models developed in the literature, Keppler [15] 

was one from the researcher to identify the parameters of rider, 

the characteristics and the influence of the rider’s 

biomechanical parameters on the dynamic ride stability. 

Moreover, Zhu et al. [16] analyzed the rider’s effect on the 

motion of a motorcycle taking into consideration of the leaning 

motion of the rider’s upper body and rider’s arm, in steady-

state turning. Furthermore, Chung et al. [17] discuss the riding 

comfort of the electric motorcycles-rider to follow a desired 

path to maintain the stabilization of the model. The research 

considered the biomechanical proprieties and the rider model, 

which is composed of 12 rigid bodies.  

Our study aims to explain, in the first section, the effect of 

the rider in the stability of bicycle and the choice of the type 

of controller. The research goes further in demonstrating that 

the rider is able to play the role of integral or derivative action. 

The article adopts evaluating and comparative approaches that 

examine the performance of PI, PD, and PID. The second 

section gives a brief introduction about the kinematic and 

dynamic of the proposed model. Then, the third section 

describes the proposed strategy of control of a bicycle - rider 

system, based on PID, to generate the required roll and steer 

angle. The fourth section shows the simulation results. The last 

section provides a conclusion that discusses the results and 

findings of this study. 

2. TWO-WHEELED VEHICLE – RIDER MODEL

2.1 System description 

In this study, the dynamic of the two-wheeled vehicle-rider 

system is extended from the nine degrees of freedom two-

wheeled vehicle model presented in previous work [18-20]. 

The Figure 1 shows the model of the two-wheeled vehicle-
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rider system. The model used in this research consists of front 

forks that contains handlebars and front wheel; rear frame 

contains rear wheel, the rider body, and two-wheeled vehicle 

body, the rider’s upper body can lean relative to the two-

wheeled vehicle frame. The center of gravity of the rigid body 

is represented by: 𝑚R, 𝑚f, 𝑚fw, 𝑚rw, and 𝑚ur. 

 

 

 
 

Figure 1. Two wheeled vehicle – rider model 

 

The two-wheeled vehicle is described by both its wheel radii 

𝑟𝑟𝑤  and 𝑟𝑓𝑤 . The position of the two-wheeled vehicle is 

determined by coordinates x and y of the contact point of the 

rear wheel taking into consideration the 𝑥𝑦  plane coincides 

with the ground, the height to the ground plane are  ℎ𝑓  and  ℎ𝑟. 

The motion of the two-wheeled vehicle is referred to the 

inertial reference frame Σ0(O; X0; Y0; Z0) fixed on the ground, 

a reference frame ΣR(O; XR; YR; ZR)  mounted on the model at 

point 𝐺, and a frame Σff(O; Xf; Y𝑓; Zf) placed on the front fork. 

The coordinate Σe is obtained by rotating about a rake angle 𝜀 

and 𝛿 steering angle, the frame  Σur(O; Xur; Yur; Zur) is used 

to describe the motion of the rider upper body as shown in 

Figure 1. The kinematics of rider is described in terms of the 

motion of the upper body, where the rider model consists of 

two rigid bodies; the upper body, and the lower body of the 

rider respectively. The main motion of the rider model is 

leaning of the body this motion is modeled by torques. 

 

2.2 Dynamic analysis of the two wheeled vehicles 

 

To generate the dynamic equations that describe the motion 

of the two Wheeled Vehicle-Rider, we used the Lagrange 

approach: the main step is to develop the kinetic and potential 

energy of the rigid bodies after expanding the Lagrangian to 

the second-order, the kinematic and dynamic modeling of the 

two Wheeled Vehicle–Rider system is discussed by Chu and 

Chen [21].  

The kinetic energy is represented in the following equation: 

𝑇 =
1
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The potential energy is: 

 

𝑉 = 𝑚𝑔ℎ                               (2) 

 

where, 

 
𝑉 = −𝑔𝑇(𝑚𝑓𝑤𝑟𝑓𝑤 + 𝑚𝑟𝑤𝑟𝑟𝑤 + 𝑚𝐹𝑟𝐹 + 𝑚𝑅𝑟𝑅 + 𝑚𝑢𝑟𝑟𝑢𝑟) (3) 

 

The Lagrange Equations are then: 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖                            (4) 

 

where, 𝐿 = 𝑇 − 𝑉, and 𝑄𝑖  are the non-conservative forces. 

 

 

3. LINEARIZED MODEL 

 

We can linearize the equations of motion for a two-wheeled 

vehicle with forwarding velocity 𝑣  and small disturbances 

about its displacements. 

The Proposed lateral dynamics model of the two-wheeled 

vehicle-rider is defined by the linearized equations of motion: 

 

𝑴�̈� + (𝑪𝟎 + 𝑣𝑪𝟏)�̇�1 + (𝑲𝟎 + 𝑣2𝑲𝟐)𝑞 = 𝑓           (5) 

 

where, 

• 𝒒  = [𝜑 , 𝛿 , 𝜑𝒓 ] corresponds to the angles of roll, 

steering, and inclination of the rider. 

• 𝒇 = [0, 𝑇𝛿 , 𝑇𝜑𝒓
] is the steering and roll torque applied 

by rider respectively. 

• M is the mass moment of the inertia matrix, brings 

the kinetic energy into the model. 

• (𝑪𝟎 + 𝒗𝑪𝟏) are the damping matrices. 

• (𝑲𝟎 + 𝑣2𝑲𝟐) are the matrices of rigidity. 

The state vector of system is : 𝑥 = [𝜑, �̇�, 𝛿, �̇�, 𝜑𝒓 �̇�𝒓]𝑇, and 

the control input vector is : 𝑢 = [0, 𝑇𝛿 , 𝑇𝜑𝒓
]. 

It is important to write the equations in matrix form for the 

case of two-second order differential equation: 

 

[𝑀] [

�̈�

�̈�
�̈�𝒓

] + 𝑣[𝐶1] [

�̇�

�̇�
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] + {𝑔[𝐾0] + 𝑣2[𝐾2]} [

𝜑
𝛿

𝜑𝒓

] + [𝐶] [

�̇�

�̇�
�̇�𝒓

] +

[𝐾] [

𝜑
𝛿

𝜑𝒓

] = [

0
𝑇𝛿

𝑇𝜑𝒓

]              (6) 

 

 
 

Figure 2. Lean angle of two wheeled vehicle – 5m/s 
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Figure 3. Lean angle of rider– 5m/s 

 

 
 

Figure 4. Steer angle – 5m/s 

 

The values of the parameters of the system are mentioned in 

the appendix 1 (Table 1).  

The matrix 𝑴, 𝑪𝟎, 𝑪𝟏 𝑲𝟎, 𝑲𝟐 are defined in Appendix 2. 

The results of simulations in Figure 2, 3 and 4 show the lean 

angle and steer angle of the two-wheeled vehicle, and lean 

angle of rider, without any control action of rider. 

 

3.1 Stability analysis 

 

The behavior of the system is examined by plotting the 

eigenvalues for the linearized system and explaining the 

relevant two-wheeled vehicle modes of instability as shown in 

Figure 5. To illustrate this concept, we analyzed the eigenvalue 

to determine the different mode of instability as the self-

stabilizing area of an uncontrolled two-wheeled vehicle. 

 

 
 

Figure 5. Eigenvalues and stability of system, with positive 

real parts of eigenvalues, negative real parts of eigenvalues, 

and imaginary parts of eigenvalues 

 

The Eigenvalues from the linearized stability analysis where 

red line represents the imaginary part of the eigenvalues and 

black lines presents the real part of the eigenvalues, in the 

forward speed range 0-10 m/s. The speed range for the stability 

of the two-wheeled vehicle is from 𝑣𝑤 < v < 𝑣𝑐.  

There are two main velocities indicated in Figure 5. One is 

the weave velocity  𝑣𝑤  at which the weave mode becomes 

stable, and the other is the capsize velocity at which the capsize 

mode becomes unstable 𝑣𝑐 , the weave mode begins at zero 

velocity, the self-stability range disappears. 

The weave mode shows only a small torsion component of 

the upper body that adds to the roll and steering components 

that are similar to the ones of the benchmark model [2]. The 

castering mode shows a small torsion component that adds to 

the steer component. The new torsion mode shows a small 

steer component. 

 

 

4. CONTROL LAW DESIGN FOR BEHAVIOR-

ORIENTED STABILITY 

 

To develop control design for lateral configuration, the 

section aimed at comparing the three control structures for 

lateral guidance based solely on PID. The goal is to find a 

method of regulating the lateral dynamics of the vehicle valid 

throughout the speed range of 0 − 10𝑚/𝑠. 

The state-space representation is then given by: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷                                   (7) 

 

The vector 𝑥 = [𝜑, �̇�, 𝛿, �̇�, 𝜑𝒓 �̇�𝒓]𝑇  represents the state 

vector of the dimension (𝑛 𝑥 1) , 𝑢  the input vector of the 

dimension (𝑟 𝑥 1), 𝑦 the output vector of the dimension (m x 

1), 𝑨 the system matrix of the dimension (𝑛 𝑥 𝑛), 𝑩 the input 

matrix of the dimension (𝑛 𝑥 𝑚), 𝑪 the output matrix of the 

dimension (𝑝 𝑥 𝑛)  and 𝑫  the matrix of passage of the 

dimension (𝑝 𝑥 𝑚). 

The control input vector is 𝑢 = [0, 𝑇𝛿 , 𝑇𝜑𝒓
]. 

The rider lean and steer torque were the inputs for the 

controller represented into multiple sinusoidal signals. The 

stabilizing controller outputs were the roll and steer rate angle. 

Genetic Algorithm (GA) based on the PID controller was 

proposed for tuning optimized PID parameters, under multiple 

sinusoidal inputs.     

The PID is modeled by two input, which are:  

• The steering torque from the controller is: 

 

𝑇𝛿 = −𝐾𝛿𝑃
(𝛿𝑟𝑒𝑓 − 𝛿) − 𝐾𝛿𝐼 ∫(𝛿𝑟𝑒𝑓 − 𝛿) + 𝐾𝛿𝐷

�̇�    (8) 

 

• The Lean torque from the controller is: 

 

𝑇𝜑𝑟
= −𝐾𝜑𝑃

(𝜑𝑟𝑒𝑓 − 𝜑) − 𝐾𝜑𝐼 ∫(𝜑𝑟𝑒𝑓 − 𝜑) + 𝐾𝜑𝐷
�̇�  (9) 

 

where, 𝑇𝛿  the steering torque control used to obtain a desired 

steering angle, 𝛿 is the steer angle and 𝛿𝑟𝑒𝑓 is the desired steer 

angle, where 𝐾𝛿𝑃
 , 𝐾𝛿𝐼

 , and 𝐾𝛿𝐷
 are respectively the 

proportional, the derivative and the integral gain.𝑇𝜑𝑟
represent  

the steering lean torque used to obtain a desired roll angle, 𝜑 

is the lean angle and 𝜑𝑟𝑒𝑓  is the desired lean angle, where 𝐾𝜑𝑃
, 

𝐾𝜑𝐼
, and 𝐾𝜑𝐷

are respectively the proportional, the derivative 

and the integral gain. 

The Figure 6 illustrate the structure of PID controller. 

517



 

 
Figure 6. Block diagram design of Controller 

 

 

5. RESULTS AND DISCUSSION 

 

The figures below show simulations which perform both 

roll rate and steers rate angles. The controller parameters were 

obtained based on a Genetic Algorithm. 

 

 
 

Figure 7. Steer rate angle (rad/s) 

 

 
 

Figure 8. Roll rate angle (rad/s) 

 

 
 

Figure 9. Lean angle error 

 
 

Figure 10. Steer angle error 

 

Figure 7 and 8 illustrate the control results both in steer 

angle and roll angle.  

The simulation results prove that the controller ensures a 

good follow-up of the maneuvers in roll and in steering action 

of rider upper body. 

The performance of PI, PD and PID controller is analyzed 

and compared throughout the simulations that are mentioned 

before. To determine which control strategy that delivers better 

performance and to determine the action of the rider, we 

established a comparative assessment between these 

controllers, Figure 9 and 10 represent a clear vision of the 

result of error between the three controllers. 

These simulations results illustrate a good response 

obtained by tuning the PI controller. The results proved that 

the rider is able to play the role of derivative action.   

The results show that the motion of the upper part of the 

rider body has a secondary impact on the stability. In other 

words, and based on Figure 5, the integration of lean angle of 

the upper part of the rider makes it possible to stabilize the 

Capsize mode, which is characterized by the appearance of a 

new additional eigenvalue and described by a negative real 

part that is attributed to the lean motion of rider. As a result, 

the weave mode shows only a small twisting component of the 

upper body that adds to the roll and steering components, 

which are closely similar to the Whipple Bicycle model. 

 

 

6. CONCLUSION 

 

Since the stability of the two-wheeled vehicle is a 

significant field of mechanical engineering and control theory, 

we have chosen to break down some aspects in four sections. 

The first section discussed the kinematic and dynamic 

equation of two-wheeled vehicle- rider utilizing Lagrange 

approach equations with holonomic constraints. The second 

part that followed dealt with the analyses of the eigenvalues 

and stability of the two-wheeled vehicle–Rider model. The 

third part targeted the implementation of PID Controller and 

the determination of which control strategy delivers better 

performance between three controllers: PID, PD and PI, for 

controlling using for control two input, the steering and upper 

body lean torque. The main goal behind this comparison was 

to identify if the rider can affect the choice of the controller 

and illustrate if the rider has the ability to play the role of the 

integral or derivative action. The fourth section discussed the 

results and analysis, which proved that the rider contributes in 

the derivative action.  In this respect, it is recommended for 

future studies to focus on evaluating general rider’s 

characteristics and abilities such as acquisition of information, 

visual, auditory, perception, reaction time and neuromuscular 

dynamics, also, it’s interesting to implement some algorithm 

and tools to improve the safety and to prevent accidents to 
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recognize relevant driving characteristics-parameters, such as 

driving style, characteristics of the road, the treatment of 

curves, etc. 
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NOMENCLATURE 

 

𝑎 Trail 

𝑅𝑤𝑓 Radius of the front wheel 

𝑅𝑤𝑟  Radius of the rear wheel 

𝑤 Wheelbase 

𝑙𝑟  Horizontal distance from A 

𝑙𝑓 Horizontal distance from B 

ℎ𝑟 Vertical distance from A 

𝑚𝑟 Mass rear frame 

𝑚𝑓 Mass front frame 

𝑚𝑟𝑤 Mass rear wheel 

𝑚𝑓𝑤 Mass front wheel 

𝜀 Caster angle 

𝜑, 𝛿 Roll , Steer angle 

𝜑𝑟 Roll angle of rider 

ℎ𝑢𝑟, ℎℎ𝑢𝑟   Centre of mass of height body, height of 

the centre mass of trunk 

𝑔 acceleration of gravity 

𝑠𝐴 static moment 

(𝑥𝑢𝑟 , 𝑦𝑢𝑟 , 𝑧𝑢𝑟) Coordinate of rider upper body 

𝑘𝜑𝑟
𝑐𝜑𝑟

 Lean stiffness and damping 

𝑘δ, 𝑐δ Steer stiffness and damping 
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APPENDIX 

 

Appendix 1. Parameters  

 

Table 1. Two-wheeled vehicle - rider parameters 

 
Parameters Nomenclature  Values 

𝑟𝑤𝑓 radius of the front wheel 0.35 𝑚 

𝑟𝑤𝑟 radius of the rear wheel 0.3 𝑚 

𝑤 wheel base 1.02 𝑚 

𝑎 Trail 0.08 𝑚 

𝑙𝑟 horizontal distance from A 0.3 𝑚 

ℎ𝑟 vertical distance from A 0.9 𝑚 

𝑀𝑟 Mass rear frame 35 𝑘𝑔 

𝑀𝑓 Mass front frame 4 𝑘𝑔 

𝑀𝑟𝑤 Mass rear wheel 3 𝑘𝑔 

𝑀𝑓𝑤 Mass front wheel 3 𝑘𝑔 

𝐼𝑟𝑤 mass moment of inertia rear wheel  
(

0.0603 0 0
0 0.12 0
0 0 0.0603

) kg𝑚2 

𝐼𝐹𝑤 mass moment of inertia front wheel 
(

0.1405 0 0
0 0.28 0
0 0 0,1405

) 

 kg𝑚2 

𝐼𝐹 mass moment of inertia front fork 
(

0.05892 0 −0.00756
0 0.06 0

−0.00756 0 0.00708
) 

kg𝑚2 

𝐼𝑟𝑖𝑑𝑒𝑟 mass moment of inertia of the rider body  
(

4.299 0 0
0 5.186 0
0 0 1.413

) 

 kg𝑚2 

𝐼𝐵𝑖𝑘𝑒 mass moment of inertia of the chassis of the bicycle  
(

3.8690 0 1.3
0 4.667 0

1.3 0 1.272
) kg𝑚2 

𝑀𝑟 mass of rider  50 𝑘𝑔 

𝑘𝜑𝑟 Stiffness of the upper part of rider 760 𝑁𝑚/𝑟𝑎𝑑 

Appendix 2. Matrix coefficients 

 

The coefficients of the linearized equations of motion are: 

 

𝑀 = [

𝑀𝜑𝜑 𝑀𝜑𝜑𝑟
𝑀𝜑𝛿

𝑀𝜑𝜑𝑟
𝑀𝜑𝑟𝜑𝑟

𝑀𝛿𝜑𝑟

𝑀𝜑𝛿 𝑀𝜑𝑟𝛿 𝑀𝛿𝛿

] 

 

𝑀𝜑𝑟𝜑𝑟
= 𝐼𝑟𝑥𝑥𝑟

+ 𝑚𝑢𝑟ℎ𝑢𝑟
2  

𝑀𝜑𝜑𝑟
= 𝐼𝑟𝑥𝑥𝑟

− 𝑚𝑢𝑟ℎ𝑢𝑟𝑧𝑅 

𝑀𝜑𝑟𝛿 = −𝐼𝑟𝑥𝑧𝑟
+ 𝑚𝑢𝑟ℎ𝑢𝑟𝑧𝑅 

𝐶1 = [

0 0 𝐶1𝜑𝛿

0 0 𝐶1𝛿𝜑𝑟

𝐶1𝛿𝜑 0 𝐶1𝛿𝛿

] 

 

𝐶1𝛿𝜑𝑟
=

𝑎

𝑤
𝑐𝑜𝑠 𝜀 𝑚𝑢𝑟ℎ𝑢𝑟 +

𝑐𝑜𝑠 𝜀

𝑤
𝐼𝑟𝜑𝑟𝑧𝐷

 

𝐼𝑟𝜑𝑟𝑧𝐷
= −𝐼𝑟𝑥𝑧 + 𝑚𝑢𝑟𝑠ℎ𝑢𝑟𝑥𝑅 

𝑆𝐴 = 𝑚𝑇

𝑎𝑇 + 𝑙𝑟

𝑤
𝑐 + 𝑚𝐹𝑒𝐹 

Mass and center of gravity Distances of the overall system 

T: 

 

𝑧𝑇 =
𝑚𝐹𝑧𝐹 + 𝑚𝑅𝑧𝑅 + 𝑚𝑢𝑟𝑧𝑢𝑟

𝑚𝑇

 

𝑎𝑇 =
𝑚𝐹𝑎𝐹 + 𝑚𝑢𝑟𝑎𝑢𝑟

𝑚𝑇

 

𝑚𝑇 = 𝑚𝑟 + 𝑚𝑢𝑟 + 𝑚𝐹  

 

𝐶0 = [
0 0 0
0 𝐶𝜑𝑟

0

0 0 0

] 

𝐾0 = [

𝐾0𝜑𝜑 −𝑚𝑢𝑟ℎ𝑢𝑟𝑔 𝐾0𝜑𝛿

−𝑚𝑢𝑟ℎ𝑢𝑟𝑔 𝑐𝜑𝑟
− 𝑚𝑢𝑟ℎ𝑢𝑟𝑔 −𝐶𝛿 𝑠𝑖𝑛 𝜀

𝐾0𝛿𝜑 0 𝐾0𝛿𝛿

] 

𝐾2 = [

0 0 𝐾2𝜑𝛿

0 0
𝑐𝑜𝑠 𝜀

𝑤
𝑚𝑢𝑟ℎ𝑢𝑟

0 0 𝐾2𝛿𝛿

]
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