
Design and Performance Verification of an Optimized Multi-agent System

Tianfan Zhang1∗, Zhe Li1,2, Zhihao Chen2, Xiao Jing2

1 School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
2 College of Economics and Management, Hubei Engineering University, Xiaogan 432000, China

Corresponding Author Email: alitasoft@hotmail.com

https://doi.org/10.18280/ejee.210115 ABSTRACT

Received: 19 Demcember 2018

Accepted: 11 January 2019

The multi-agent system (MAS) mainly focuses on group control and network control. The

existing studies on the MAS have not clearly defined the system performance, especially

network saturation, agent load capacity and data transfer delay. To solve the problem, this

paper develops a basic MAS communication framework, and proposes the optimized serial

line Internet protocol (O-SLIP). The protocol can be deployed in any agent object and any

layer, unifying the communication between the objects in the MAS system, and lays the basis

for group control, consistency check, etc. Then, the proposed framework and the O-SLIP were

verified through tests on network saturation, agent load capacity and transmission delay.

Finally, the author summed up the important issues in the selection and design of MAS

communication systems.

Keywords:

multi-agent system (MAS), socket-based

connection, optimized serial line Internet

protocol (O-SLIP), network saturation,

agent load capacity, performance

analysis

1. INTRODUCTION

Recent years has seen extensive research into

communication, a fundamental function of the multi-agent

system (MAS). However, the existing studies are either

limited to the communication of complex protocols like robot

operating system (ROS) and ad-hoc network, or failing to

create a communication system satisfying the requirements on

bandwidth or other properties.

The ROS, as an important achievement of the open design

movement, has been widely investigated and modified over

the years. For instance, B.G. Morgan [1] integrated robotics

techniques like perception, positioning and navigation into the

key concepts, tools and models of the ROS. S.S.H. Hajjaj [2]

developed a private, secure and direct ROS-to-ROS through

port forwarding, eliminating the need for a dedicated

middleware, detailed the setting, configuration and

troubleshooting of port forwarding for ROS applications, and

compared the setting conditions and performance between port

forwarding and cloud-based solutions. Z. Obdrazlek [3]

created a MAS in the form of a swarm of unmanned aerial

vehicles (UAVs), and described the simulation environment

and tools for agent communication in the MAS.

The ad-hoc is a special wireless mobile network, in which

all nodes have equal status, i.e. there is no central control node.

A.I. Alshbatat [4] coupled the decentralized pattern with self-

organization, multi-hop routing and dynamic topology.

Considering the negative correlation between propagation

delay and network throughput of the MAS, Lmai [5] designed

a UAV that improves the throughput of linear network in three

scenarios using nonzero propagation delays, and confirmed

that the normalized throughput, i.e. channel utilization, is

below one in most of the available protocols for linear network.

T. Yang [6] probed into the global optimal consensus problem

for discrete time MASs with bounded control protocols over a

fixed and directed communication network. With the aid of

stochastic geometry, Thornburg [7] characterized the one-way

and two-way (SNR) distributions of a millimeter wave

(mmWave) ad hoc network with directional antennas, random

blockages, and ALOHA channel access, revealing that

mmWave networks have much greater density and spectral

efficiency than low-frequency communication networks at

certain link distances, despite the presence of blockage, and

can improve the load capacity of the MAS. T. Hayet [8] put

forward a client/server architecture based on the MAS, aiming

to survey sites in a workspace with a set of mobile robots. S.X.

Guo [9] set up a point-to-multipoint network that supports

multiple robot links and verifies its effectiveness using XBee

modules with ZigBee protocol.

Other robotics studies on communication are as follows. M.

Rubenstein [10] proposed a low-cost, infrared-based, non-

ROS system called the Kilobot, which enables the collective

testing of hundreds or thousands of robots, as well as designing,

implementing and validating a kilobot collective, where the

number of robots is an order of magnitude larger than that of

the largest existing robot collective. To mitigate the operator’s

visual perception delay over the network, N.Y. Chong [11]

introduced an online predictive simulator to the multi-

operator-multi-robot (MOMR) teleoperation, performed

various tasks in a local area network (LAN) with delays by two

slave robots and two operators, and evaluated the performance

of the predictive simulator in the MOMR teleoperation.

Considering the execution of operator’s command, F.

Penizzotto [12] prepared a control plan for delayed bilateral

teleoperation of wheeled robots with force feedback, and

analyzed the system stability under the dynamic model of the

master as well as the remote mobile robot under asymmetric

and time-varying delays of the communication channel. H.I.

Son [13] suggested assessing the MAS maneuverability by a

frequency response function. Focusing on two MASs, Y. Xie

[14] presents a bounded local control protocol for each agent,

which uses the information acquired from the underlying

communication topology and that of its own objective function.

European Journal of Electrical Engineering
Vol. 21, No. 1, February, 2019, pp. 99-105

Journal homepage: http://iieta.org/Journals/ejee

99

In summary, many algorithms and control methods have

been developed for groups (i.e. swarms or collectives) of

decentralized cooperating robots, called a swarm or collective.

These algorithms are generally meant to control collectives of

hundreds or even thousands of robots. However, they are

generally validated in simulation only, or on a limited number

of robots, for reasons of cost, time, or complexity. The

network architecture and its organization are explained in

terms of components. What is worse, there is a lack of a widely

applicable, protocol-wide communication protocol across the

MAS compartment. The performance of the MAS and its

communication has not been fully described and discussed,

especially under multiple agents. To overcome these problems,

this paper designs a communication framework and an

optimized serial line Internet protocol (O-SLIP) for the BigPan

series MAS system.

The remainder of this paper is organized as follows: Section

2 introduces the basic requirements on the MAS design,

reviews the main techniques of wireless communication, and

explains the reasons for choosing WiFi; Section 3 designs the

basic communication network, highlighting the system

architecture, socket-based connection, the O-SLIP, as well as

message encapsulation and parsing; Section 4 sets up an MAS

communication system and details the two key processes:

agent registration-logout and terminal control; Section 5

verifies the performance of the proposed system in terms of

network saturation, agent load capacity and data transmission

delay; Section 6 wraps up this paper with several conclusions.

2. MAS WIRELESS NETWORK ENVIRONMENT

This paper mainly considers common low-power wireless

communication techniques like Bluetooth and Wi-Fi. This is

because low power consumption is conducive to the service

life of the system, while the power and frequency bands of

wireless communication are restricted by national laws and

regulations. General civil license requires that the power

consumption of wireless communication system should fall

between 100mW and 500mW.

2.1 Basic requirements of the MAS

Three kinds of entities are generally involved in a typical

MAS application: the objects to be controlled, a server to

provide network support, and agents (humans and/or artificial

intelligences) controlling the network and objects. These

entities should satisfy the following basic requirements:

(1) The communication between the server and the client

(agents) should have low bandwidth and high real-time

performance to transmit control commands or data on agent

status, and high bandwidth and low real-time performance to

transmit images.

(2) The server or sink node should enjoy a large coverage,

because the data needs to be analyzed in the local office or a

center thousands of kilometers away. The typical coverage for

remote management or system status monitoring is 10,000m2,

requiring a communication distance between 50m and 100m.

(3) The system should have a sufficiently large load

capacity, i.e. support the simultaneous access of the required

number of agents and provide them with effective services.

(4) The system should provide on-site or remote terminal

accesses, allowing users to control the objects using various

devices (even informal devices like Microsoft Xbox

controller).

2.2 Typical wireless network techniques

Bluetooth, Wi-Fi, Zigbee, infrared data association (IrDA),

dedicated short-range communication (DSRC), long-term

evolution-vehicles (LTE-V) and WiMax are the most popular

techniques for wireless communication. The latter two

techniques are not introduced here, as they are designed for

ultra-long-distance communication. The first five techniques

were explained and compared below.

(1) The Bluetooth is an open, short-range standard for

wireless communication between mobile phones, headsets and

handsets. Despite the fast transmission speed, the Bluetooth is

constrained by a short transmission distance and protocol

incompatibility between different devices [15].

(2) The Wi-Fi is a fast, wireless data transmission technique

that covers the distance of several hundred meters and offers

easy access to the Internet. This technique has become a

necessity in modern life. However, the Wi-Fi is power-

consuming and prone to interference, owing to its high

communication frequencies [16].

(3) ZigBee is a short-range, low-power wireless

communication technology for sensing control applications. It

has been widely adopted in the LANs with low requirements

on transmission and a close distance. On the upside, ZigBee

can support the communication between tens of thousands of

nodes; on the downside, the low-power design limits the

transmission speed and makes it unsuitable for long-term

communication [17].

(4) The IrDa is a point-to-point communication based on

infrared technology. The main drawbacks include the easily

obstructed line-of-sight transmission, and the proneness to

temperature and humidity interferences [18].

(5) The DSRC is an efficient short-range technique for

wireless communication between vehicles [19]. The technique

is too complex and costly to implement.

The main parameters of the above wireless communication

techniques under limited power consumption are presented in

Table 1 below.

Table 1. Comparison of major wireless communication

technologies

Name
Distance

(m)

Transmission

rate

(Mb/s)

Dissipation

(mW)

IrDA 2~10 4~16(VFIR) 100~400

ZigBee 10~50 ≤1 20~150

Bluetooth 10~50 ≤1 1~100

Wi-Fi (2.4G) 10~100 ~300 50~100

LET-V6 ~5000 ~300 50~300

DSRC 10~100 0.5~27 50~300

The comparison shows that the Wi-Fi enjoys a high

transmission rate, a moderate distance and a low power

consumption, not to mention its ease of implementation; the

Bluetooth consumes only a little power but its transmission

rate is too slow to support high load applications in the main

network. Therefore, the Wi-Fi was adopted as the access mode

of our main communication framework, while the Bluetooth

was employed for terminal connection.

100

3. DESIGN OF BASIC COMMUNICATION

FRAMEWORK

Our communication framework was developed based on the

analysis on MAS requirements and wireless communication

techniques.

3.1 System architecture

Inspired by the MAS model in Reference [20], the author

constructed a simplified abstract framework (Figure 1).

Figure 1. System architecture

As shown in Figure 1, the communication framework

mainly involves several agent entities, a sever and users. An

agent entity refers to a control object or its physical

entity/simulator. The server manages the access and

communication requests of the agents. Once an agent entity

accesses the server, a virtual mapping agent will be created for

it, and included to the agent list. The users are typically server

administrators or consumers, including AIs. After the user

obtains the virtual mapping of an agent entity, a terminal

controller (TC) will be created to control the entity.

3.2 Socket-based connection

Figure 2 illustrates connection and transmission processes

of the basic communication model based on the transmission

control protocol and the Internet protocol (TCP-IP) socket. It

can be seen that the client and the server communicate in the

following steps:

Step 1: The server and client initialize their respective

socket object. On the server side, the user should bind the IP

address and port number to be exposed, then start monitoring

and wait for the client to access the request.

Step 2: The server, using the blocking Accept() method,

waits for the user to establish a connection by the

Soket.Connect() method. The connection establishment

involves the classic three-way handshake process.

Step 3: Both sides can send and receive data separately by

Send() and Receive() methods during the establishment of the

connection. The Receive() method should be served with a

thread to prevent blocking the main program and improve

efficiency.

Step 4: The server will end the proxy mapping service for

the agent after the connection is closed.

The user object was created because of two reasons: (1) the

user is responsible for system configuration and task

scheduling for each agent/agent group; (2) the user should

monitor the state of each agent and the completion of tasks.

Direct agent control is necessary as it is inefficient and unsafe

to send the state information to the server without pushing it

to all users. There are two application scenarios: (1) the tasks

too complex for the AI can be completed remotely by a

specific operator; (2) the faulty robot can be controlled by the

operator with the terminal access device on site.

Figure 2. Connection and transmission processes

3.3 O-SLIP protocol

The O-SLIP protocol was developed from the SLIP to

accommodate different tasks. This protocol is simple,

lightweight, easy to implement and fault-tolerant. The O-SLIP

can be used in various positions or layers in the system, such

as a microcontroller without an operating system (OS) at the

bottom layer, and an embedded AI control platform that may

include an OS, provided that the intermediate and terminal

PCs are deployable. The underlying tasks are simple but have

high real-time requirements and limited hardware conditions.

For example, the Nordic nRF905 single-chip transceiver can

greatly reduce the complexity of the microcontroller unit

(MCU) software by using data ready (DR), but the reduction

is limited by the internal cache size of the MCU and the chip.

If the cache is only 32B, then the minimum number of valid

bytes will be limited to 15B. Meanwhile, the upper-middle

tasks are complex but requires low real-time performance (e.g.

image processing). Both kinds of tasks can be solved

excellently by the O-SLIP protocol. Similar to the SLIP

protocol, the package structure of the O-SLIP can be defined

as:

(), , , ,packageSLIP Header CMDs Datas CRC End= (1)

where 𝐻𝑒𝑎𝑑𝑒𝑟 and 𝐸𝑛𝑑 are both terminators 0xFF; 𝐶𝑀𝐷𝑠 is

the control command bit; 𝐷𝑎𝑡𝑎𝑠 is the data bit. The lengths of

the latter two are user-defined. The default verification method

is CRC16. Figure 3 shows a complete O-SLIP package.

Figure 3. A complete O-SLIP package

101

The shortest package is only 3B if CRC8 is used with no

data bits and the maximum transmission unit (MTU) can be up

to 65kB using CRC16. Compared with the original SLIP, the

O-SLIP has the following advantages: (1) the short structure

can be adapted to the most cache-constrained system

(nRF905); (2) 253 first-level commands and 216 double-byte

commands can satisfy all kinds of needs, and Datas can be

NULL when the instruction can meet the demand; (3)The

variable 𝐶𝑀𝐷𝑠 and 𝐷𝑎𝑡𝑎𝑠 can support different applications

within a single protocol, e.g. image transmission and other

complex applications can be supported with up to 64kB of

valid data bits.

The O-SLIP differs from the general protocol in the

following aspects: First, the O-SLIP contains two terminal and

cyclic redundancy check (CRC) bits, Head and End. Second,

the device address is not indispensable to the data portion of

the protocol, and the basic operating mode is the broadcast

mode. Third, the count trigger of the general protocol is

replaced with the special character trigger, which is

compatible with the count trigger mode. Fourth, the rules in

the data portion are fully customizable, in addition to the

special character transfer rules.

Based on the terminator trigger, the design enjoys two

distinct advantages: First, both fixed-length and variable-

length formats are supported without needing to know the

message length; Second, the system-level errors arising from

truncation and misalignment in data transmission can be fully

avoided. If a problem occurs, the current invalid datagram will

be discarded when the most recent terminal is encountered.

The datagram will be reinitiated from the next message, thus

acquiring strong fault tolerance. Note that both Head and End,

as 0x7E terminators, will be triggered invalidly in this case; in

actual use, the Head is generally removed. The testing results

show that system stability will not change greatly under high

load.

3.4 Message encapsulation and parsing

The O-SLIP contains two abstract functions: message

encapsulation and parsing. The users can implement and

optimize the two functions according to the language they use.

The process of encapsulation is shown as Algorithm 1 below.

Algorithm 1 Pseudo code of message encapsulation.

Input: The 𝐶𝑀𝐷𝑠 and/or Datas are unified into

𝐷𝑎𝑡𝑎𝐼𝑛𝑝𝑢𝑡{𝑑1, 𝑑2, ⋯ , 𝑑𝑚} for simplification.

Output: The encapsulated, directly transmittable data

result 𝐷𝑎𝑡𝑎𝑂𝑢𝑡𝑝𝑢𝑡

1: 𝑖𝑛𝑡   𝐼𝑛𝑑𝑒𝑥_𝑂 = 0 // set length and index in conversion

2: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0xFF //starting character

3: for each 𝑖 ∈ [0,𝑚 − 1] do // traversing the input data set.

4: if 𝑑𝑖 == 0xFF then // is equal to terminator character

5: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C

6: else if 𝑑𝑖 == 0x7C then // is equal to escape character

7: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C

8: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C

9: else

10: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 𝑑𝑖
11: end if

12: end for

13: 𝐶𝑎𝑙𝑐𝑢_𝐶𝑅𝐶(∗ 𝐷𝑂, 1, 𝐼𝑛𝑑𝑒𝑥_𝑂 − 1)
14: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0xFF // end character

15: return 𝐷𝑂 and 𝐼𝑛𝑑𝑒𝑥_𝑂

Note whether the input data is included in the terminator and

the escape character needs to be converted separately. The

MTU was limited to 32kB to control character escaping in

extreme cases. The process of message parsing is shown as

Algorithm 2 below.

Algorithm 2 Pseudo code of message parsing.

Input: Received 𝐷𝑎𝑡𝑎𝑅𝑒𝑐{𝑑𝑟1, 𝑑𝑟2, ⋯ , 𝑑𝑟𝑛} , denoted as

𝐷𝑅.

Output: The result 𝐷𝑎𝑡𝑎𝑈𝑠𝑒𝑟 , denoted as 𝐷𝑈, may include

both 𝐶𝑀𝐷𝑠 and 𝐷𝑎𝑡𝑎𝑠, depending on the needs of the user

𝑖𝑛𝑡   𝐼𝑛𝑑𝑒𝑥_𝑅 = 0, 𝐼𝑛𝑑𝑒𝑥_𝑈 = 0

2: 𝑏𝑜𝑜𝑙 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false // mark of escape character

for each 𝑗 ∈ [0, 𝑛 − 1] do

4: if 𝑑𝑗 == 0xFF then

// CRC16 default and minimum length is 3

6: if 𝑏𝑢𝑓𝑓 ≠ NULL and 𝑏𝑢𝑓𝑓. 𝑙𝑒𝑛 ≥ 3 then

𝑖𝑠𝑉𝑒𝑟𝑖 = 𝐶𝑎𝑙𝑐𝑢_𝐶𝑅𝐶(∗ 𝑏𝑢𝑓𝑓, 0, 𝐼𝑛𝑑𝑒𝑥_𝑈)
8: if 𝑖𝑠𝑉𝑒𝑟𝑖 == true then

return 𝐷𝑈 and 𝐼𝑛𝑑𝑒𝑥_𝑈

10: else// there is no verified data

𝐼𝑛𝑑𝑒𝑥_𝑈=0, continue

12: end if

end if

14: else if 𝑑𝑗 == 0x7C then // escape character

if 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 == false then

16: 𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈 + +] = 0xFF, 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = true

else

18: 𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈 − 1] = 0x7C, 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false

end if

20: else//general data

𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈++] = 𝐷𝑅[𝑗], 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false

22: end if

end for

Data parsing is the reverse process of encapsulation. The

main difference between the two processes lies in the

acceptance timing and fault toleration. Loop triggering was

adopted (3~12) at data reception due to the possible packet

truncation. Besides, the validity of the data n the DU should

be determined whenever a terminator 0xFF is read. If valid,

the data should be returned to the caller.

4. DESIGN OF MAS COMMUNICATION SYSTEM

Registration, logout and terminal control are the three main

functional modules in the MAS. Among them, registration and

logout are responsible for access management of the MAS,

while terminal control provides two basic methods for the

users to control the system.

4.1 Registration and logout

With similar processes, registration and logout were merged

into one module (Figure 4).

The registration is realized in seven steps. First, the client

and the server establish a connection through socket and the

O-SLIP; if the client succeeds in connection, the MAS_UI

sends a registration notification to the Agent Manager; then,

the Agent Manager creates the agent proxy object, and adds

the authenticated object to the Agent List, such that the agent

entity can be managed and served by the agent; after being

created and activated, the agent entity will receive a

102

verification confirmation message from the agent; when the

entity verifies the message, it will reply the status is “online”;

then, the agent will notify the Agent Manager to update the

entity status; finally the UI will be updated.

Figure 4. Registration and logout module

The logout process is basically the same as the registration

process. The only difference lies in the last two steps. Logout

was divided into normal and abnormal situations. For normal

logout, the agent entity should send a request (the server may

also demand the entity to logout); abnormal logout may occur

when the network fails and should be treated in two ways: (1)

Socket Exception will be detected at network failure, triggering

the logout; the daemon thread in Agent Manager periodically

requests all agents in the Agent List to confirm their statuses,

and the offline agents will be removed.

4.2 Terminal control

MAS applications generally demand the single and group

controls of agent entities. The group control can be realized

based on Agent Manager and Agent List, but the process and

algorithm vary from system to system. Thus, the

implementation process is not discussed at length here. Instead,

the process of user’s direct terminal control over a single agent

entity was explained in details (Figure 5).

Figure 5. Process of terminal control over a single agent

entity

To directly control a single agent entity, the user should

send a request to the server. Then, the TC will be created in the

MAS_UI, making the user an administrator or authorizing

him/her the control power. The TC will obtain the access

permission of the current agent, including the socket

connection object. The manual control command will be

entrusted to the agent by the TC and sent to the entity. The

status feedback by the entity will still be sent to the Agent

instead of the TC, and sent to TC after data parsing. This

process requires no understanding of the details on the internal

implementation, thus reducing the difficulty in user

customization.

Multiple TC objects can be created by colleagues in

administrator mode, but only one of them can be directly

controlled at a time (the group control function should be

called to control all these objects at the same time). In addition,

the TC may be controlled by humans or AIs. To realize single

or group control, the user only needs to request for a proper

number of TCs.

5. SYSTEM TESTS AND RESULTS ANALYSIS

This section verifies the performance of our MAS

communication framework in terms of network saturation,

agent load capacity and data transmission delay.

5.1 Test environment and key parameters

To simulate the MAS network environment, a PC (Intel®

Core™ i7-7700K Processor @4.2GHz,16 GB DDR4 memory)

was selected to act as the server, two agent simulators were

deployed separately in laptops (Intel® Core™ i7-4700MQ

Processor @2.4GHz, 8GB DDR4 RAM, 150Mbps TP-Link

TL-WN726N WiFi Wireless USB Adapter) to simulate the

agents, while a WiFi router (300Mbps TP-Link TL-WDR5620

@ 2.4G, 802.11AC) was employed to simulate the connection

between the sever and the agents. The proposed framework

and protocol were implemented based on .NET 4.0.

The key test parameters were configured as network speed

𝑁𝑆𝑀𝐴𝑋=150Mbps at 2.4GHz, package length 𝑃𝐿 s=38B and

send cycle 𝑃𝑇=10ms. The test framework is illustrated in

Figure 6 below.

Figure 6. The test framework

Each simulator was controlled by a management thread

called Agent Manager, and each cycle 𝑇𝑐𝑟𝑒𝑎𝑡 attempted to

create and initialize an agent object and add it to the Agent List

𝐴𝑔𝑒𝑛𝑡𝑠 = (𝐴𝑔𝑒𝑛𝑡1, 𝐴𝑔𝑒𝑛𝑡2, ⋯ , 𝐴𝑔𝑒𝑛𝑡𝑛) . The network

traffic (𝑁𝑇) generated by these agents can be expressed as:

()
1

/
n

i iNT PL PT Bytes s= (2)

If the message length and transmission cycle are constant,

equation (2) can be rewritten as 𝑛 × (
𝑃𝐿

𝑃𝑇
) . The network

saturation 𝑁𝐵 can be defined as:

103

() ()100 %MAXNB NT NS= (3)

The number of agents can be calculated when the network

reaches saturation:

(), intcount NB MASAgents NS PT PL= (4)

5.2 System tests

Three sets of tests, each of which lasted 200min, were

performed in the above environment, respectively concerning

network saturation, agent load capability and data

transmission delay. The results on the three test sets are shown

in Figures 7~9, respectively. In each test, over 9.5 million

records were saved on the server side in the basic format: "[IP]:

[PortNo]-[SendTime]-[ReceivedTime]-[AgentCount]". The

records were divided into two groups: "LogMag.Log" and

"Receive*.log". The test time was measured in the unit of

“ticks” or nanoseconds, which is supported by the OS. Then,

the mean transmission delay in the test period was determined

under the current conditions of at least 5s. Due to the shear

amount of data, the aggregated log records were processed in

MS SQL Server before the statistical analysis.

Figure 7. Network saturation vs. the number of agents

Figure 8. Acceptance time vs. the number of accepted agents

As shown in Figure 7, the actual transmission speed

averaged at about 90Mbps and the number of agent

𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵 ≈ 2960 . The speed was attenuated by

computers, routers and the environment, failing to reach the

theoretical value of 150Mbps. Obviously, the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵

did not appear as scheduled. The actual bandwidth was

basically equivalent to the theoretical value when the number

of agents was fewer than 1,000, and gradually decreased after

the number surpassed 1,000. Even if the number of agents

eventually reached 5,000, there was no frequently

disconnection, an evidence of the system stability.

As shown in Figure 8, the server and routers were under

tremendous pressure as the number of agents continued to

grow. With the increase in data transmission demand, it was

increasingly unstable and time-consuming for new agents to

access the network.

When the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 ∈ [1,3100] , the access response

was generally stable; when the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 ∈ 3100,3650 ,

there was a certain degree of oscillation in the access response;

when the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 > 3650, the response delay increased

dramatically to unacceptable levels. Therefore, the agent load

of the system was saturated at 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵
′ ≈ 3650. This

explains why the network failed to reach the theoretical limit

and saturated under the growing number of agents. After all,

lots of time and bandwidth were wasted by excessive service

requests.

Figure 9. Mean transmission delay vs. the number of agents

It can be seen from Figure 9 that network saturation

increased the data transmission delay. The mean transmission

delay was evaluated by a curve with 95% of fitness, revealing

that the transmission delay increased to 500ms when the

number of agents reached 130. This delay is unacceptable for

general applications like the out-of-sequence measurement

(OOSM) [20]. In addition, the delay surpassed 5,000ms when

the agent count reached 220, and surged up to 105 ms level

when the latter was 380, which is unacceptable for general

control.

In the system tests, the actual network load, the number of

agents, and the transmission delay all deviated far away from

the theoretical values, which were not discovered in previous

studies. Hence, our research reveals two important issues in

the selection or design of MAS network systems:

(1) Data transmission delay is the primary factor to consider

in addition to control demand. Despite its proportional

relationship to the number of agents, the delay will not grow

linearly under ideal conditions, even if the total bandwidth is

lacking. The proper delay and agent count can be determined

through simple tests or cited from this paper, e.g. the agent

count within 130 is acceptable for a delay of 500ms.

(2) The system’s bandwidth redundancy decreases with the

growth in the number of agents. Hence, the number of agents

should be controlled to release more bandwidth for additional

operations. Special attention should also be paid to the access

104

timing of the agents. Numerous concurrent acess requests will

drag down the performance of the system in a short time even

if there seems to be enough resources.

6. CONCLUSIONS

This paper designs a communication framework,

highlighting the system architecture, socket-based connection,

the O-SLIP, as well as message encapsulation and parsing, and

proposes an optimized serial line Internet protocol (O-SLIP)

for the MAS system. The protocol can be deployed in any

agent object and any layer, unifying the communication

between the objects in the MAS system, and lays the basis for

group control, consistency check, etc. After that, the author

verified the performance of the proposed system in terms of

network saturation, agent load capacity and data transmission

delay. Finally, the author summed up the important issues in

the selection and design of MAS communication systems.

ACKNOWLEDGMENT

This research was partially supported by Hubei Provincial

Natural Science Foundation (2018CFB314). Hubei Provincial

Department of Education (B2017505). Science and

Technology Commission of Shanghai Municipality

(16391902702).

REFERENCES

[1] Quigley M, Gerkey B, Smart WD. (2015). Programming

robots with ROS: A practical introduction to the robot

operating system. Rotobs and Computer, 170-172.

http://doi.org/10.1017/CBO9781107415324.004

[2] Hajjaj SSH, Sahari KSM. (2017). Establishing remote

networks for ROS applications via port forwarding: A

detailed tutorial. Inter- national Journal of Advanced

Robotic Systems 14(3): 172988141770335.

[3] Obdrzalek Z. (2016). Software environment for

simulation of UAV multi-agent system. International

Conference on Methods and Models in Automation and

Robotics, 720-725.

http://doi.org/10.1109/MMAR.2016.7575225

[4] Alshbatat AI, Liang D. (2010). Cross layer design for

mobile Ad-Hoc unmanned aerial vehicle communication

networks. International Conference on Networking

Sensing and Control, 331-336.

http://doi.org/10.1109/ICNSC.2010.5461502

[5] Lmai S, Chitre M, Laot C, Houcke S. (2017).

Throughput-efficient super-TDMA mac transmission

schedules in ad hoc linear underwater acoustic networks.

IEEE Journal of Oceanic Engineering 42(1): 156-174.

http://doi.org/10.1109/JOE.2016.2537659

[6] Yang T, Wan Y, Wang H, Lin Z. (2018). Global optimal

consensus for discrete-time multi-agent systems with

bounded controls. Automatica 97: 182-185.

http://doi.org/10.1016/j.sysconle.2017.02.002

[7] Bai TT, Heath RW. (2016). Performance analysis of

outdoor mmWave ad hoc networks. IEEE Transactions

on Signal Processing 64(15): 4065-4079.

http://doi.org/10.1109/TSP.2016.2551690

[8] Hayet T, Knani J. (2016). A navigation model for a multi-

robot system based on Client/Server model. International

Conference on Control Decision and Information

Technologies, pp. 644-648.

http://doi.org/10.1109/CoDIT.2016.7593638

[9] Guo SX, Li X, Guo J. (2016). Study on a multi-robot

cooperative wireless communication control system for

the spherical amphibious robot. International Conference

on Mechatronics and Automation, pp. 1143-1148.

http://doi.org/10.1109/ICMA.2016.7558723

[10] Rubenstein M, Ahler C, Nagpal R. (2012). Kilobot: A

low cost scalable robot system for collective behaviors.

International Conference on Robotics and Automation,

pp. 3293-3298.

http://doi.org/10.1109/ICRA.2012.6224638

[11] Chong NY, Kotoku T, Ohba K. (2000). Use of

coordinated online graphics simulator in collaborative

multi-robot teleoperation with time delay. Robot and

Human Interactive Communication, 167-172.

http://doi.org/10.1109/ROMAN.2000.892489

[12] Penizzotto F, Garcia S, Slawinski E, Mut V. (2015).

Delayed bilateral teleoperation of wheeled robots

including a command metric. Mathematical Problems in

Engineering, 1-13.

http://dx.doi.org/10.1155/2015/460476

[13] Son HI, Chuang LL, Franchi A, Kim J, Lee DJ, Lee S,

Bülthoff HH, Giordano PR. (2011). Measuring an

operator's maneuverability performance in the haptic

teleoperation of multiple robots. Intelligent Robots and

Systems, 3039-3046.

http://doi.org/10.1109/IROS.2011.6094618

[14] Xie YJ, Lin ZL. (2017). Global optimal consensus for

multi-agent systems with bounded controls. Systems and

Control Letters 102: 104-111.

http://doi.org/10.1016/j.sysconle.2017.02.002

[15] Khan LU. (2017). Visible light communication:

Applications, architecture, standardization and research

challenges. Digital Communications and Networks 3(2):

78-88. http://doi.org/10.1016/j.dcan.2016.07.004

[16] Yiakoumis Y, Bansal M, Covington GA, Van Reijendam

J, Katti S, Mckeown N. (2014). Behop a testbed for dense

WIFI networks. Workshop on Wireless Network

Testbeds Experimental Evaluation and Characterization

18(3): 71-80. http://doi.org/10.1145/2721896.2721912

[17] Khan WM, Zualkernan IA. (018). SensePods: A ZigBee-

based tangible smart home interface. IEEE Transactions

on Consumer Electronics 64(2): 145-152.

http://doi.org/10.1109/TCE.2018.2844729

[18] Biddlestone S, Redmill K, Miucic R, Ozguner U. (2012).

An integrated 802.11p wave dsrc and vehicle traffic

simulator with experimentally validated urban (los and

nlos) propagation models. IEEE Transactions on

Intelligent Transportation Systems 13(4): 1792-1802.

http://doi.org/10.1109/TITS.2012.2213816

[19] Palattella MR, Dohler M, Grieco A, Rizzo G, Torsner J,

Engel T, Ladid L. (2016). Internet of things in the 5g era:

Enablers, architecture, and business models. IEEE

Journal on Selected Areas in Communications 34(3):

510-527. http://doi.org/10.1109/JSAC.2016.2525418

[20] Li Z, Zhang H, Mu D, Guo L. (2016). Random time delay

effect on out-of-sequence measurements. IEEE Access 4:

7509-7518. http://doi.org/10.1109/access.2016.2610098

105

