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The multi-agent system (MAS) mainly focuses on group control and network control. The 

existing studies on the MAS have not clearly defined the system performance, especially 

network saturation, agent load capacity and data transfer delay. To solve the problem, this 

paper develops a basic MAS communication framework, and proposes the optimized serial 

line Internet protocol (O-SLIP). The protocol can be deployed in any agent object and any 

layer, unifying the communication between the objects in the MAS system, and lays the basis 

for group control, consistency check, etc. Then, the proposed framework and the O-SLIP were 

verified through tests on network saturation, agent load capacity and transmission delay. 

Finally, the author summed up the important issues in the selection and design of MAS 

communication systems. 
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1. INTRODUCTION

Recent years has seen extensive research into 

communication, a fundamental function of the multi-agent 

system (MAS). However, the existing studies are either 

limited to the communication of complex protocols like robot 

operating system (ROS) and ad-hoc network, or failing to 

create a communication system satisfying the requirements on 

bandwidth or other properties. 

The ROS, as an important achievement of the open design 

movement, has been widely investigated and modified over 

the years. For instance, B.G. Morgan [1] integrated robotics 

techniques like perception, positioning and navigation into the 

key concepts, tools and models of the ROS. S.S.H. Hajjaj [2] 

developed a private, secure and direct ROS-to-ROS through 

port forwarding, eliminating the need for a dedicated 

middleware, detailed the setting, configuration and 

troubleshooting of port forwarding for ROS applications, and 

compared the setting conditions and performance between port 

forwarding and cloud-based solutions. Z. Obdrazlek [3] 

created a MAS in the form of a swarm of unmanned aerial 

vehicles (UAVs), and described the simulation environment 

and tools for agent communication in the MAS. 

The ad-hoc is a special wireless mobile network, in which 

all nodes have equal status, i.e. there is no central control node. 

A.I. Alshbatat [4] coupled the decentralized pattern with self-

organization, multi-hop routing and dynamic topology.

Considering the negative correlation between propagation

delay and network throughput of the MAS, Lmai [5] designed

a UAV that improves the throughput of linear network in three

scenarios using nonzero propagation delays, and confirmed

that the normalized throughput, i.e. channel utilization, is

below one in most of the available protocols for linear network.

T. Yang [6] probed into the global optimal consensus problem

for discrete time MASs with bounded control protocols over a

fixed and directed communication network. With the aid of

stochastic geometry, Thornburg [7] characterized the one-way

and two-way (SNR) distributions of a millimeter wave 

(mmWave) ad hoc network with directional antennas, random 

blockages, and ALOHA channel access, revealing that 

mmWave networks have much greater density and spectral 

efficiency than low-frequency communication networks at 

certain link distances, despite the presence of blockage, and 

can improve the load capacity of the MAS. T. Hayet [8] put 

forward a client/server architecture based on the MAS, aiming 

to survey sites in a workspace with a set of mobile robots. S.X. 

Guo [9] set up a point-to-multipoint network that supports 

multiple robot links and verifies its effectiveness using XBee 

modules with ZigBee protocol. 

Other robotics studies on communication are as follows. M. 

Rubenstein [10] proposed a low-cost, infrared-based, non-

ROS system called the Kilobot, which enables the collective 

testing of hundreds or thousands of robots, as well as designing, 

implementing and validating a kilobot collective, where the 

number of robots is an order of magnitude larger than that of 

the largest existing robot collective. To mitigate the operator’s 

visual perception delay over the network, N.Y. Chong [11] 

introduced an online predictive simulator to the multi-

operator-multi-robot (MOMR) teleoperation, performed 

various tasks in a local area network (LAN) with delays by two 

slave robots and two operators, and evaluated the performance 

of the predictive simulator in the MOMR teleoperation. 

Considering the execution of operator’s command, F. 

Penizzotto [12] prepared a control plan for delayed bilateral 

teleoperation of wheeled robots with force feedback, and 

analyzed the system stability under the dynamic model of the 

master as well as the remote mobile robot under asymmetric 

and time-varying delays of the communication channel. H.I. 

Son [13] suggested assessing the MAS maneuverability by a 

frequency response function. Focusing on two MASs, Y. Xie 

[14] presents a bounded local control protocol for each agent,

which uses the information acquired from the underlying

communication topology and that of its own objective function.
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In summary, many algorithms and control methods have 

been developed for groups (i.e. swarms or collectives) of 

decentralized cooperating robots, called a swarm or collective. 

These algorithms are generally meant to control collectives of 

hundreds or even thousands of robots. However, they are 

generally validated in simulation only, or on a limited number 

of robots, for reasons of cost, time, or complexity. The 

network architecture and its organization are explained in 

terms of components. What is worse, there is a lack of a widely 

applicable, protocol-wide communication protocol across the 

MAS compartment. The performance of the MAS and its 

communication has not been fully described and discussed, 

especially under multiple agents. To overcome these problems, 

this paper designs a communication framework and an 

optimized serial line Internet protocol (O-SLIP) for the BigPan 

series MAS system.  

The remainder of this paper is organized as follows: Section 

2 introduces the basic requirements on the MAS design, 

reviews the main techniques of wireless communication, and 

explains the reasons for choosing WiFi; Section 3 designs the 

basic communication network, highlighting the system 

architecture, socket-based connection, the O-SLIP, as well as 

message encapsulation and parsing; Section 4 sets up an MAS 

communication system and details the two key processes: 

agent registration-logout and terminal control; Section 5 

verifies the performance of the proposed system in terms of 

network saturation, agent load capacity and data transmission 

delay; Section 6 wraps up this paper with several conclusions. 

 

 

2. MAS WIRELESS NETWORK ENVIRONMENT 

 

This paper mainly considers common low-power wireless 

communication techniques like Bluetooth and Wi-Fi. This is 

because low power consumption is conducive to the service 

life of the system, while the power and frequency bands of 

wireless communication are restricted by national laws and 

regulations. General civil license requires that the power 

consumption of wireless communication system should fall 

between 100mW and 500mW. 

 

2.1 Basic requirements of the MAS 

 

Three kinds of entities are generally involved in a typical 

MAS application: the objects to be controlled, a server to 

provide network support, and agents (humans and/or artificial 

intelligences) controlling the network and objects. These 

entities should satisfy the following basic requirements:  

(1) The communication between the server and the client 

(agents) should have low bandwidth and high real-time 

performance to transmit control commands or data on agent 

status, and high bandwidth and low real-time performance to 

transmit images. 

(2) The server or sink node should enjoy a large coverage, 

because the data needs to be analyzed in the local office or a 

center thousands of kilometers away. The typical coverage for 

remote management or system status monitoring is 10,000m2, 

requiring a communication distance between 50m and 100m.  

(3) The system should have a sufficiently large load 

capacity, i.e. support the simultaneous access of the required 

number of agents and provide them with effective services. 

(4) The system should provide on-site or remote terminal 

accesses, allowing users to control the objects using various 

devices (even informal devices like Microsoft Xbox 

controller). 

 

2.2 Typical wireless network techniques 

 

Bluetooth, Wi-Fi, Zigbee, infrared data association (IrDA), 

dedicated short-range communication (DSRC), long-term 

evolution-vehicles (LTE-V) and WiMax are the most popular 

techniques for wireless communication. The latter two 

techniques are not introduced here, as they are designed for 

ultra-long-distance communication. The first five techniques 

were explained and compared below. 

(1) The Bluetooth is an open, short-range standard for 

wireless communication between mobile phones, headsets and 

handsets. Despite the fast transmission speed, the Bluetooth is 

constrained by a short transmission distance and protocol 

incompatibility between different devices [15]. 

(2) The Wi-Fi is a fast, wireless data transmission technique 

that covers the distance of several hundred meters and offers 

easy access to the Internet. This technique has become a 

necessity in modern life. However, the Wi-Fi is power-

consuming and prone to interference, owing to its high 

communication frequencies [16]. 

(3) ZigBee is a short-range, low-power wireless 

communication technology for sensing control applications. It 

has been widely adopted in the LANs with low requirements 

on transmission and a close distance. On the upside, ZigBee 

can support the communication between tens of thousands of 

nodes; on the downside, the low-power design limits the 

transmission speed and makes it unsuitable for long-term 

communication [17]. 

(4) The IrDa is a point-to-point communication based on 

infrared technology. The main drawbacks include the easily 

obstructed line-of-sight transmission, and the proneness to 

temperature and humidity interferences [18]. 

(5) The DSRC is an efficient short-range technique for 

wireless communication between vehicles [19]. The technique 

is too complex and costly to implement. 

The main parameters of the above wireless communication 

techniques under limited power consumption are presented in 

Table 1 below. 

 

Table 1. Comparison of major wireless communication 

technologies 

 

Name 
Distance 

(m) 

Transmission 

rate 

(Mb/s) 

Dissipation 

(mW) 

IrDA 2~10 4~16(VFIR) 100~400 

ZigBee 10~50 ≤1 20~150 

Bluetooth 10~50 ≤1 1~100 

Wi-Fi (2.4G) 10~100 ~300 50~100 

LET-V6 ~5000 ~300 50~300 

DSRC 10~100 0.5~27 50~300 

 

The comparison shows that the Wi-Fi enjoys a high 

transmission rate, a moderate distance and a low power 

consumption, not to mention its ease of implementation; the 

Bluetooth consumes only a little power but its transmission 

rate is too slow to support high load applications in the main 

network. Therefore, the Wi-Fi was adopted as the access mode 

of our main communication framework, while the Bluetooth 

was employed for terminal connection. 
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3. DESIGN OF BASIC COMMUNICATION 

FRAMEWORK 

 

Our communication framework was developed based on the 

analysis on MAS requirements and wireless communication 

techniques. 

 

3.1 System architecture 

 

Inspired by the MAS model in Reference [20], the author 

constructed a simplified abstract framework (Figure 1). 

 

 
 

Figure 1. System architecture 

 

As shown in Figure 1, the communication framework 

mainly involves several agent entities, a sever and users. An 

agent entity refers to a control object or its physical 

entity/simulator. The server manages the access and 

communication requests of the agents. Once an agent entity 

accesses the server, a virtual mapping agent will be created for 

it, and included to the agent list. The users are typically server 

administrators or consumers, including AIs. After the user 

obtains the virtual mapping of an agent entity, a terminal 

controller (TC) will be created to control the entity. 

 

3.2 Socket-based connection 

 

Figure 2 illustrates connection and transmission processes 

of the basic communication model based on the transmission 

control protocol and the Internet protocol (TCP-IP) socket. It 

can be seen that the client and the server communicate in the 

following steps: 

Step 1: The server and client initialize their respective 

socket object. On the server side, the user should bind the IP 

address and port number to be exposed, then start monitoring 

and wait for the client to access the request. 

Step 2: The server, using the blocking Accept() method, 

waits for the user to establish a connection by the 

Soket.Connect() method. The connection establishment 

involves the classic three-way handshake process. 

Step 3: Both sides can send and receive data separately by 

Send() and Receive() methods during the establishment of the 

connection. The Receive() method should be served with a 

thread to prevent blocking the main program and improve 

efficiency. 

Step 4: The server will end the proxy mapping service for 

the agent after the connection is closed. 

The user object was created because of two reasons: (1) the 

user is responsible for system configuration and task 

scheduling for each agent/agent group; (2) the user should 

monitor the state of each agent and the completion of tasks. 

Direct agent control is necessary as it is inefficient and unsafe 

to send the state information to the server without pushing it 

to all users. There are two application scenarios: (1) the tasks 

too complex for the AI can be completed remotely by a 

specific operator; (2) the faulty robot can be controlled by the 

operator with the terminal access device on site. 

 

 
 

Figure 2. Connection and transmission processes 

 

3.3 O-SLIP protocol 

 

The O-SLIP protocol was developed from the SLIP to 

accommodate different tasks. This protocol is simple, 

lightweight, easy to implement and fault-tolerant. The O-SLIP 

can be used in various positions or layers in the system, such 

as a microcontroller without an operating system (OS) at the 

bottom layer, and an embedded AI control platform that may 

include an OS, provided that the intermediate and terminal 

PCs are deployable. The underlying tasks are simple but have 

high real-time requirements and limited hardware conditions. 

For example, the Nordic nRF905 single-chip transceiver can 

greatly reduce the complexity of the microcontroller unit 

(MCU) software by using data ready (DR), but the reduction 

is limited by the internal cache size of the MCU and the chip. 

If the cache is only 32B, then the minimum number of valid 

bytes will be limited to 15B. Meanwhile, the upper-middle 

tasks are complex but requires low real-time performance (e.g. 

image processing). Both kinds of tasks can be solved 

excellently by the O-SLIP protocol. Similar to the SLIP 

protocol, the package structure of the O-SLIP can be defined 

as: 

 

( ), , , ,packageSLIP Header CMDs Datas CRC End=                (1) 

 

where 𝐻𝑒𝑎𝑑𝑒𝑟 and 𝐸𝑛𝑑 are both terminators 0xFF; 𝐶𝑀𝐷𝑠 is 

the control command bit; 𝐷𝑎𝑡𝑎𝑠 is the data bit. The lengths of 

the latter two are user-defined. The default verification method 

is CRC16. Figure 3 shows a complete O-SLIP package. 

 

 
 

Figure 3. A complete O-SLIP package 
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The shortest package is only 3B if CRC8 is used with no 

data bits and the maximum transmission unit (MTU) can be up 

to 65kB using CRC16. Compared with the original SLIP, the 

O-SLIP has the following advantages: (1) the short structure 

can be adapted to the most cache-constrained system 

(nRF905); (2) 253 first-level commands and 216 double-byte 

commands can satisfy all kinds of needs, and Datas  can be 

NULL when the instruction can meet the demand; (3)The 

variable 𝐶𝑀𝐷𝑠 and 𝐷𝑎𝑡𝑎𝑠 can support different applications 

within a single protocol, e.g. image transmission and other 

complex applications can be supported with up to 64kB of 

valid data bits. 

The O-SLIP differs from the general protocol in the 

following aspects: First, the O-SLIP contains two terminal and 

cyclic redundancy check (CRC) bits, Head and End. Second, 

the device address is not indispensable to the data portion of 

the protocol, and the basic operating mode is the broadcast 

mode. Third, the count trigger of the general protocol is 

replaced with the special character trigger, which is 

compatible with the count trigger mode. Fourth, the rules in 

the data portion are fully customizable, in addition to the 

special character transfer rules. 

Based on the terminator trigger, the design enjoys two 

distinct advantages: First, both fixed-length and variable-

length formats are supported without needing to know the 

message length; Second, the system-level errors arising from 

truncation and misalignment in data transmission can be fully 

avoided. If a problem occurs, the current invalid datagram will 

be discarded when the most recent terminal is encountered. 

The datagram will be reinitiated from the next message, thus 

acquiring strong fault tolerance. Note that both Head and End, 

as 0x7E terminators, will be triggered invalidly in this case; in 

actual use, the Head is generally removed. The testing results 

show that system stability will not change greatly under high 

load. 

 

3.4 Message encapsulation and parsing 

 

The O-SLIP contains two abstract functions: message 

encapsulation and parsing. The users can implement and 

optimize the two functions according to the language they use. 

The process of encapsulation is shown as Algorithm 1 below. 

 

Algorithm 1 Pseudo code of message encapsulation. 

Input: The 𝐶𝑀𝐷𝑠  and/or Datas  are unified into 

𝐷𝑎𝑡𝑎𝐼𝑛𝑝𝑢𝑡{𝑑1, 𝑑2, ⋯ , 𝑑𝑚} for simplification. 

Output: The encapsulated, directly transmittable data 

result 𝐷𝑎𝑡𝑎𝑂𝑢𝑡𝑝𝑢𝑡  

1: 𝑖𝑛𝑡   𝐼𝑛𝑑𝑒𝑥_𝑂 = 0 // set length and index in conversion 

2: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0xFF //starting character 

3: for each 𝑖 ∈ [0,𝑚 − 1] do // traversing the input data set. 

4: if 𝑑𝑖 == 0xFF then // is equal to terminator character  

5: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C 

6: else if 𝑑𝑖 == 0x7C then // is equal to escape character 

7: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C 

8: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0x7C 

9: else 

10: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 𝑑𝑖 
11: end if 

12: end for 

13: 𝐶𝑎𝑙𝑐𝑢_𝐶𝑅𝐶(∗ 𝐷𝑂, 1, 𝐼𝑛𝑑𝑒𝑥_𝑂 − 1) 
14: 𝐷𝑂[𝐼𝑛𝑑𝑒𝑥_𝑂 + +] = 0xFF // end character 

15: return 𝐷𝑂 and 𝐼𝑛𝑑𝑒𝑥_𝑂 

Note whether the input data is included in the terminator and 

the escape character needs to be converted separately. The 

MTU was limited to 32kB to control character escaping in 

extreme cases. The process of message parsing is shown as 

Algorithm 2 below. 

 

Algorithm 2 Pseudo code of message parsing. 

Input: Received 𝐷𝑎𝑡𝑎𝑅𝑒𝑐{𝑑𝑟1, 𝑑𝑟2, ⋯ , 𝑑𝑟𝑛} , denoted as 

𝐷𝑅. 

Output: The result 𝐷𝑎𝑡𝑎𝑈𝑠𝑒𝑟 , denoted as 𝐷𝑈, may include 

both 𝐶𝑀𝐷𝑠 and 𝐷𝑎𝑡𝑎𝑠, depending on the needs of the user 

𝑖𝑛𝑡   𝐼𝑛𝑑𝑒𝑥_𝑅 = 0, 𝐼𝑛𝑑𝑒𝑥_𝑈 = 0  

2: 𝑏𝑜𝑜𝑙 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false // mark of escape character 

for each 𝑗 ∈ [0, 𝑛 − 1] do 

4: if 𝑑𝑗 == 0xFF then 

// CRC16 default and minimum length is 3 

6: if 𝑏𝑢𝑓𝑓 ≠ NULL and 𝑏𝑢𝑓𝑓. 𝑙𝑒𝑛 ≥ 3 then 

𝑖𝑠𝑉𝑒𝑟𝑖 = 𝐶𝑎𝑙𝑐𝑢_𝐶𝑅𝐶(∗ 𝑏𝑢𝑓𝑓, 0, 𝐼𝑛𝑑𝑒𝑥_𝑈)  
8: if 𝑖𝑠𝑉𝑒𝑟𝑖 == true then 

return 𝐷𝑈 and 𝐼𝑛𝑑𝑒𝑥_𝑈 

10: else// there is no verified data 

𝐼𝑛𝑑𝑒𝑥_𝑈=0, continue 

12: end if 

end if 

14: else if 𝑑𝑗 == 0x7C then // escape character 

if 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 == false then 

16: 𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈 + +] = 0xFF, 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = true 

else 

18: 𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈 − 1] = 0x7C, 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false 

end if 

20: else//general data 

𝐷𝑈[𝐼𝑛𝑑𝑒𝑥_𝑈++] = 𝐷𝑅[𝑗], 𝑖𝑠𝐸𝑠𝑐𝑎𝑝𝑒 = false 

22: end if 

end for 

 

Data parsing is the reverse process of encapsulation. The 

main difference between the two processes lies in the 

acceptance timing and fault toleration. Loop triggering was 

adopted (3~12) at data reception due to the possible packet 

truncation. Besides, the validity of the data n the DU should 

be determined whenever a terminator 0xFF is read. If valid, 

the data should be returned to the caller. 

 

 

4. DESIGN OF MAS COMMUNICATION SYSTEM 

 

Registration, logout and terminal control are the three main 

functional modules in the MAS. Among them, registration and 

logout are responsible for access management of the MAS, 

while terminal control provides two basic methods for the 

users to control the system. 

 

4.1 Registration and logout 

 

With similar processes, registration and logout were merged 

into one module (Figure 4). 

The registration is realized in seven steps. First, the client 

and the server establish a connection through socket and the 

O-SLIP; if the client succeeds in connection, the MAS_UI 

sends a registration notification to the Agent Manager; then, 

the Agent Manager creates the agent proxy object, and adds 

the authenticated object to the Agent List, such that the agent 

entity can be managed and served by the agent; after being 

created and activated, the agent entity will receive a 
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verification confirmation message from the agent; when the 

entity verifies the message, it will reply the status is “online”; 

then, the agent will notify the Agent Manager to update the 

entity status; finally the UI will be updated. 

 

 
 

Figure 4. Registration and logout module 

 

The logout process is basically the same as the registration 

process. The only difference lies in the last two steps. Logout 

was divided into normal and abnormal situations. For normal 

logout, the agent entity should send a request (the server may 

also demand the entity to logout); abnormal logout may occur 

when the network fails and should be treated in two ways: (1) 

Socket Exception will be detected at network failure, triggering 

the logout; the daemon thread in Agent Manager periodically 

requests all agents in the Agent List to confirm their statuses, 

and the offline agents will be removed. 

 

4.2 Terminal control 

 

MAS applications generally demand the single and group 

controls of agent entities. The group control can be realized 

based on Agent Manager and Agent List, but the process and 

algorithm vary from system to system. Thus, the 

implementation process is not discussed at length here. Instead, 

the process of user’s direct terminal control over a single agent 

entity was explained in details (Figure 5). 

 

 
 

Figure 5. Process of terminal control over a single agent 

entity 

 

To directly control a single agent entity, the user should 

send a request to the server. Then, the TC will be created in the 

MAS_UI, making the user an administrator or authorizing 

him/her the control power. The TC will obtain the access 

permission of the current agent, including the socket 

connection object. The manual control command will be 

entrusted to the agent by the TC and sent to the entity. The 

status feedback by the entity will still be sent to the Agent 

instead of the TC, and sent to TC after data parsing. This 

process requires no understanding of the details on the internal 

implementation, thus reducing the difficulty in user 

customization. 

Multiple TC objects can be created by colleagues in 

administrator mode, but only one of them can be directly 

controlled at a time (the group control function should be 

called to control all these objects at the same time). In addition, 

the TC may be controlled by humans or AIs. To realize single 

or group control, the user only needs to request for a proper 

number of TCs. 

 

 

5. SYSTEM TESTS AND RESULTS ANALYSIS 

 

This section verifies the performance of our MAS 

communication framework in terms of network saturation, 

agent load capacity and data transmission delay. 

 

5.1 Test environment and key parameters 

 

To simulate the MAS network environment, a PC (Intel® 

Core™ i7-7700K Processor @4.2GHz,16 GB DDR4 memory) 

was selected to act as the server, two agent simulators were 

deployed separately in laptops (Intel® Core™ i7-4700MQ 

Processor @2.4GHz, 8GB DDR4 RAM, 150Mbps TP-Link 

TL-WN726N WiFi Wireless USB Adapter) to simulate the 

agents, while a WiFi router (300Mbps TP-Link TL-WDR5620 

@ 2.4G, 802.11AC) was employed to simulate the connection 

between the sever and the agents. The proposed framework 

and protocol were implemented based on .NET 4.0. 

The key test parameters were configured as network speed 

𝑁𝑆𝑀𝐴𝑋=150Mbps at 2.4GHz, package length 𝑃𝐿 s=38B and 

send cycle 𝑃𝑇=10ms. The test framework is illustrated in 

Figure 6 below. 

 

 
 

Figure 6. The test framework 

 

Each simulator was controlled by a management thread 

called Agent Manager, and each cycle 𝑇𝑐𝑟𝑒𝑎𝑡  attempted to 

create and initialize an agent object and add it to the Agent List 

𝐴𝑔𝑒𝑛𝑡𝑠 = (𝐴𝑔𝑒𝑛𝑡1, 𝐴𝑔𝑒𝑛𝑡2, ⋯ , 𝐴𝑔𝑒𝑛𝑡𝑛) . The network 

traffic (𝑁𝑇) generated by these agents can be expressed as: 

 

( )
1

/
n

i iNT PL PT Bytes s=                                            (2) 

 

If the message length and transmission cycle are constant, 

equation (2) can be rewritten as 𝑛 × (
𝑃𝐿

𝑃𝑇
) . The network 

saturation 𝑁𝐵 can be defined as: 
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( ) ( )100 %MAXNB NT NS=                                             (3) 

 

The number of agents can be calculated when the network 

reaches saturation: 

 

( ), intcount NB MASAgents NS PT PL=                                      (4) 

 

5.2 System tests 

 

Three sets of tests, each of which lasted 200min, were 

performed in the above environment, respectively concerning 

network saturation, agent load capability and data 

transmission delay. The results on the three test sets are shown 

in Figures 7~9, respectively. In each test, over 9.5 million 

records were saved on the server side in the basic format: "[IP]: 

[PortNo]-[SendTime]-[ReceivedTime]-[AgentCount]". The 

records were divided into two groups: "LogMag.Log" and 

"Receive*.log". The test time was measured in the unit of 

“ticks” or nanoseconds, which is supported by the OS. Then, 

the mean transmission delay in the test period was determined 

under the current conditions of at least 5s. Due to the shear 

amount of data, the aggregated log records were processed in 

MS SQL Server before the statistical analysis. 

 

 
 

Figure 7. Network saturation vs. the number of agents 

 

 
 

Figure 8. Acceptance time vs. the number of accepted agents 

 

As shown in Figure 7, the actual transmission speed 

averaged at about 90Mbps and the number of agent 

𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵 ≈ 2960 . The speed was attenuated by 

computers, routers and the environment, failing to reach the 

theoretical value of 150Mbps. Obviously, the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵 

did not appear as scheduled. The actual bandwidth was 

basically equivalent to the theoretical value when the number 

of agents was fewer than 1,000, and gradually decreased after 

the number surpassed 1,000. Even if the number of agents 

eventually reached 5,000, there was no frequently 

disconnection, an evidence of the system stability. 

As shown in Figure 8, the server and routers were under 

tremendous pressure as the number of agents continued to 

grow. With the increase in data transmission demand, it was 

increasingly unstable and time-consuming for new agents to 

access the network.  

When the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 ∈ [1,3100] , the access response 

was generally stable; when the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 ∈ 3100,3650 , 

there was a certain degree of oscillation in the access response; 

when the 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡 > 3650, the response delay increased 

dramatically to unacceptable levels. Therefore, the agent load 

of the system was saturated at 𝐴𝑔𝑒𝑛𝑡𝑠𝑐𝑜𝑢𝑛𝑡,𝑁𝐵
′ ≈ 3650. This 

explains why the network failed to reach the theoretical limit 

and saturated under the growing number of agents. After all, 

lots of time and bandwidth were wasted by excessive service 

requests. 

 

 
 

Figure 9. Mean transmission delay vs. the number of agents 

 

It can be seen from Figure 9 that network saturation 

increased the data transmission delay. The mean transmission 

delay was evaluated by a curve with 95% of fitness, revealing 

that the transmission delay increased to 500ms when the 

number of agents reached 130. This delay is unacceptable for 

general applications like the out-of-sequence measurement 

(OOSM) [20]. In addition, the delay surpassed 5,000ms when 

the agent count reached 220, and surged up to 105 ms level 

when the latter was 380, which is unacceptable for general 

control. 

In the system tests, the actual network load, the number of 

agents, and the transmission delay all deviated far away from 

the theoretical values, which were not discovered in previous 

studies. Hence, our research reveals two important issues in 

the selection or design of MAS network systems: 

(1) Data transmission delay is the primary factor to consider 

in addition to control demand. Despite its proportional 

relationship to the number of agents, the delay will not grow 

linearly under ideal conditions, even if the total bandwidth is 

lacking. The proper delay and agent count can be determined 

through simple tests or cited from this paper, e.g. the agent 

count within 130 is acceptable for a delay of 500ms. 

(2) The system’s bandwidth redundancy decreases with the 

growth in the number of agents. Hence, the number of agents 

should be controlled to release more bandwidth for additional 

operations. Special attention should also be paid to the access 
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timing of the agents. Numerous concurrent acess requests will 

drag down the performance of the system in a short time even 

if there seems to be enough resources. 

 

 

6. CONCLUSIONS 

 

This paper designs a communication framework, 

highlighting the system architecture, socket-based connection, 

the O-SLIP, as well as message encapsulation and parsing, and 

proposes an optimized serial line Internet protocol (O-SLIP) 

for the MAS system. The protocol can be deployed in any 

agent object and any layer, unifying the communication 

between the objects in the MAS system, and lays the basis for 

group control, consistency check, etc. After that, the author 

verified the performance of the proposed system in terms of 

network saturation, agent load capacity and data transmission 

delay. Finally, the author summed up the important issues in 

the selection and design of MAS communication systems. 

 

 

ACKNOWLEDGMENT 

 

This research was partially supported by Hubei Provincial 

Natural Science Foundation (2018CFB314). Hubei Provincial 

Department of Education (B2017505). Science and 

Technology Commission of Shanghai Municipality 

(16391902702). 

 

 

REFERENCES 

 

[1] Quigley M, Gerkey B, Smart WD. (2015). Programming 

robots with ROS: A practical introduction to the robot 

operating system. Rotobs and Computer, 170-172. 

http://doi.org/10.1017/CBO9781107415324.004 

[2] Hajjaj SSH, Sahari KSM. (2017). Establishing remote 

networks for ROS applications via port forwarding: A 

detailed tutorial. Inter- national Journal of Advanced 

Robotic Systems 14(3): 172988141770335. 

[3] Obdrzalek Z. (2016). Software environment for 

simulation of UAV multi-agent system. International 

Conference on Methods and Models in Automation and 

Robotics, 720-725. 

http://doi.org/10.1109/MMAR.2016.7575225 

[4] Alshbatat AI, Liang D. (2010). Cross layer design for 

mobile Ad-Hoc unmanned aerial vehicle communication 

networks. International Conference on Networking 

Sensing and Control, 331-336. 

http://doi.org/10.1109/ICNSC.2010.5461502 

[5] Lmai S, Chitre M, Laot C, Houcke S. (2017). 

Throughput-efficient super-TDMA mac transmission 

schedules in ad hoc linear underwater acoustic networks. 

IEEE Journal of Oceanic Engineering 42(1): 156-174. 

http://doi.org/10.1109/JOE.2016.2537659 

[6] Yang T, Wan Y, Wang H, Lin Z. (2018). Global optimal 

consensus for discrete-time multi-agent systems with 

bounded controls. Automatica 97: 182-185. 

http://doi.org/10.1016/j.sysconle.2017.02.002 

[7] Bai TT, Heath RW. (2016). Performance analysis of 

outdoor mmWave ad hoc networks. IEEE Transactions 

on Signal Processing 64(15): 4065-4079. 

http://doi.org/10.1109/TSP.2016.2551690 

[8] Hayet T, Knani J. (2016). A navigation model for a multi-

robot system based on Client/Server model. International 

Conference on Control Decision and Information 

Technologies, pp. 644-648. 

http://doi.org/10.1109/CoDIT.2016.7593638 

[9] Guo SX, Li X, Guo J. (2016). Study on a multi-robot 

cooperative wireless communication control system for 

the spherical amphibious robot. International Conference 

on Mechatronics and Automation, pp. 1143-1148. 

http://doi.org/10.1109/ICMA.2016.7558723 

[10] Rubenstein M, Ahler C, Nagpal R. (2012). Kilobot: A 

low cost scalable robot system for collective behaviors. 

International Conference on Robotics and Automation, 

pp. 3293-3298. 

http://doi.org/10.1109/ICRA.2012.6224638 

[11] Chong NY, Kotoku T, Ohba K. (2000). Use of 

coordinated online graphics simulator in collaborative 

multi-robot teleoperation with time delay. Robot and 

Human Interactive Communication, 167-172. 

http://doi.org/10.1109/ROMAN.2000.892489 

[12] Penizzotto F, Garcia S, Slawinski E, Mut V. (2015). 

Delayed bilateral teleoperation of wheeled robots 

including a command metric. Mathematical Problems in 

Engineering, 1-13. 

http://dx.doi.org/10.1155/2015/460476 

[13] Son HI, Chuang LL, Franchi A, Kim J, Lee DJ, Lee S, 

Bülthoff HH, Giordano PR. (2011). Measuring an 

operator's maneuverability performance in the haptic 

teleoperation of multiple robots. Intelligent Robots and 

Systems, 3039-3046. 

http://doi.org/10.1109/IROS.2011.6094618 

[14] Xie YJ, Lin ZL. (2017). Global optimal consensus for 

multi-agent systems with bounded controls. Systems and 

Control Letters 102: 104-111. 

http://doi.org/10.1016/j.sysconle.2017.02.002 

[15] Khan LU. (2017). Visible light communication: 

Applications, architecture, standardization and research 

challenges. Digital Communications and Networks 3(2): 

78-88. http://doi.org/10.1016/j.dcan.2016.07.004 

[16] Yiakoumis Y, Bansal M, Covington GA, Van Reijendam 

J, Katti S, Mckeown N. (2014). Behop a testbed for dense 

WIFI networks. Workshop on Wireless Network 

Testbeds Experimental Evaluation and Characterization 

18(3): 71-80. http://doi.org/10.1145/2721896.2721912 

[17] Khan WM, Zualkernan IA. (018). SensePods: A ZigBee-

based tangible smart home interface. IEEE Transactions 

on Consumer Electronics 64(2): 145-152. 

http://doi.org/10.1109/TCE.2018.2844729 

[18] Biddlestone S, Redmill K, Miucic R, Ozguner U. (2012). 

An integrated 802.11p wave dsrc and vehicle traffic 

simulator with experimentally validated urban (los and 

nlos) propagation models. IEEE Transactions on 

Intelligent Transportation Systems 13(4): 1792-1802. 

http://doi.org/10.1109/TITS.2012.2213816 

[19] Palattella MR, Dohler M, Grieco A, Rizzo G, Torsner J, 

Engel T, Ladid L. (2016). Internet of things in the 5g era: 

Enablers, architecture, and business models. IEEE 

Journal on Selected Areas in Communications 34(3): 

510-527. http://doi.org/10.1109/JSAC.2016.2525418 

[20] Li Z, Zhang H, Mu D, Guo L. (2016). Random time delay 

effect on out-of-sequence measurements. IEEE Access 4: 

7509-7518. http://doi.org/10.1109/access.2016.2610098 

  

105




