
A Linked List-Based Exact Algorithm for Graph Coloring Problem

Ajay Narayan Shukla*, Vishal Bharti, Madan L. Garag

DIT University, Dehradun 248001, India

Corresponding Author Email: ajay.narayan.shukla@dituniversity.edu.in

https://doi.org/10.18280/ria.330304 ABSTRACT

Received: 22 March 2019

Accepted: 7 June 2019

Graph coloring is an NP-hard problem. There is ample room to further reduce the number of

colors being used under the strict constraints of the problem. This paper proposes an algorithm

that stores the information of the vertices in the graph, together with the color and the next

address field of a node in a singly linked list. The coloring of a particular vertex is decided on

the content of color field of node corresponding to the searched vertex for coloring. The

adjacency matrix of the graph was adopted to select the feasible color to be allocated to a

vertex, without violating the constraints for coloring of the vertices in the graph. The proposed

algorithm was tested on DIMACS benchmark graphs, using Python 3.6. The results show that

our algorithm produced the result with the optimal number of colors required to solve the

problem. This research provides a new strategy to find the optimal coloring solution for each

type of graphs.

Keywords:

graph coloring, adjacency matrix, singly

linked list, undirected graph

1. INTRODUCTION

Graph coloring problem is most studied combinatorial

problem in graph theory. Graph coloring explored in literature

for solution due wide verity of its uses in many real world

engineering applications. Given an undirected graph G=(V,E)

where V is set of vertices & E is set of edges in the graph G,

the coloring problem involve to find the distinct colors that can

use in assigning the colors to the vertices in the graph. The

number of distinct colors used to color the graph should be

minimum with the constraints such that no adjacent vertices

in graph have assigned same color. The graph colored with

minimum number of distinct colors is also referred as the

chromatic number of the graph.

The coloring problem of graph is itself a NP-class problem

and therefore researchers tried to find the solution of the

problem by adopting some new techniques compared to

previous existing techniques for their proposed algorithms so

that it running time may be more optimized. There are mostly

two categories of algorithm exists in literature to solve the

problem: approximate algorithms and exact algorithms. The

applications where graph coloring has used to find the efficient

solution are satellite range scheduling problem [1]. The

communication scheduling problem between satellite and

ground station was addressed by using the heuristics of graph

coloring problem. The researchers have addressed the problem

for allocation of variables in a loop to the available registers in

computer by encoding the problem instance into graph

coloring problem [2]. The researchers have also addressed the

a-graph coloring problem for near-triangulation of the plane

with a face size of 4 and develop the coloring condition by

transforming it to a 4-color problem [3]. Since the coloring of

the vertices in the graph is NP-class problem and therefore one

aspect of the problem is also related to complexity of the

algorithms available in literature. The issue of complexity for

special classes of graphs related to coloring of vertices in the

graph also discussed by the researchers and well reported [4].

Usefulness of this problem has discussed in parallel computing

environment [5] and researchers gave their new approach in

the form of balanced coloring models. The problem of

coloring is addressed by the researchers for partition graph

coloring [6] and gave the solution for the problem based on

hybrid ant-local search technique that involves the partitioning

of the given graph into number of different sets. The

applications of graph coloring problem are such a versatile in

nature that researchers have always tried to solve the problem

using techniques that may suitable to apply the solution for a

particular application. The different heuristics [7] has analyzed

and discussed for the working of the procedures to get the

solution of the problem. The time table scheduling for exam

conduction in University using graph coloring is also reported

[8]. Authors addressed the constraints for time table

scheduling of examination and proposed the solution for the

problem using cluster heuristics & sequential heuristic.

Several more applications of graph coloring problem have

reported in literature [9-11]. The problem of simultaneous

utilization of base antennas for multi cell multiple–input

multiple-output system is addressed by the researchers [12]

and proposed the solution in the form of weighted graph

coloring.

In this research work we propose the algorithm which uses

singly link list to store the information of the vertices of the

graph along with color and next address field of a node in the

created link list. The coloring of a particular vertex is decided

on the content of color field of node corresponding to the

searched vertex for coloring. The proposed procedure uses

adjacency matrix for the graph that is used to make a decision

for feasible color that may be allocated to a vertex without

violating the constraints for coloring of the vertices in the

graph.

The proposed procedure is always terminated by assigning

appropriate color to each vertex in the graph and since it never

generated other implicit constraints during coloring process

therefore the running time is efficient. This algorithm can be

Revue d'Intelligence Artificielle
Vol. 33, No. 3, June, 2019, pp. 189-195

Journal homepage: http://iieta.org/journals/ria

189

used for solving any real world application that involves the

use of graph coloring problem without affecting its

complexity.

2. RELEATED WORK

The algorithms proposed by various researchers may

generally falls into two categories: exact algorithms &

approximate algorithms. The exact algorithms include the

solution of graph coloring problem based on integer

programing formulation [13], technique based on linear

decomposition of graph [14], branch and cut algorithms [15],

using set covering formulation of the given graph [16] and

based on DSATUR algorithm [17].

The other class of algorithms includes heuristics based

greedy subroutines [18], hybrid evolutionary algorithm [19],

by strengthening the construction in existing ant colony

optimization [20] and coloring of vertices in the graph using

amalgamation of local search & constraints programming [21].

The algorithm based on clause learning is reported [22], in

which the authors gave the solution for graph coloring problem

and they used propositional logic to search implicit constraints

generated in the process of coloring of the vertices in the given

graph. The solution for coloring problem has also given by the

researchers using the concept of DNA computing [23]. In their

proposed approach authors have developed a parallel type

DNA computing model based on working of polymerase chain

reaction (PCR). The coloring problem of graph is also

addressed and given the efficient solution using list data

structure by the researchers [24-25]. The researchers have also

given the solution of the problem by adopting the approach

based on adjacency matrix to evolve the solution for the

problem, which is applicable to any kind of graph [26]. The

brief description of their proposed algorithms are as follows:

Algorithm 1

Step 1- Select any one vertex in the given graph and assign

the color from the information obtained from color adjacency

matrix.

Step 2- Update color adjacency matrix for those vertices

which are adjacent vertex to the vertex that has assigned a

color in previous step.

Step 3- Repeat step 1 & step 2 until all the vertices of the

graph have explored & assigned some color.

The researchers have created an additional color matrix with

dimension of nX k, where n is number of vertices in the graph

& k is the number of available colors. Initially color matrix is

initialized with value 1.

Assigning of the color to a particular vertex is done based

on content of color matrix and then this matrix is searched for

those non-adjacent vertices for which assigned color to current

vertex may be act as one of feasible color otherwise this

feasible may also be updated.

In another approach researchers addressed the solution for

the graph coloring problem and they proposed a new technique

by creating binary search tree and then with created binary

search tree, authors constructed the heap [27]. The authors

created a new data structure in which the available colors for

the graph represented in the form of a collection of binary

search tree. The root of each binary search tree constructed

contains information about single vertex and rest nodes of a

tree contains feasible colors. So in case if there is n number of

vertices in any graph that can colored with k number of

different colors, there proposed technique uses n number of

binary trees and in each tree contains k+1 number of nodes

initially. Entire collection of these binary search trees grouped

in the form heap. The procedure used to solve the problem is

as under:

Algorithm 2

Step 1: select a vertex from the graph (this selection has

done through adjacency matrix of graph).

Step 2: find the suitable color from the heap of binary search

tree and assign the color to selected vertex. It is children of

root node of that binary search tree whose root contains the

vertex information.

Step 3: update the heap by removing assigned color node

from those binary search trees whose root node contains the

vertex that is adjacent vertex to currently assigned color vertex.

Step 4: repeat from step 1 to step 3 until all vertices in the

graph have assigned some color.

Although the above algorithm works satisfactorily and

always terminated with coloring solution but in step 2

searching for appropriate color to any vertex involves the

traversal of the unexplored heap of previously colored vertex.

This additional cost of traversal through colored nodes may be

avoided.

Several other methodologies have also find in literature to

solve the problem of coloring of graphs that involves:

improved cuckoo optimization technique [28], using coupled

oscillatory networks [29], using local anti-magic labeling in

the graph [30], cellular learning automata based solution [31],

solving graph-b coloring problem using hybrid genetic

algorithms [32], Douglas-Rachford Algorithm based solution

[33] for graph coloring problem and branch-and-cut algorithm

for the equitable coloring problem [34].

The graph coloring problem involved in diversified area of

applications, which always enables the researchers to give the

solution for problem in a manner that can applied efficiently

to a particular application.

3. MOTIVATION FOR OUR APPROACH

Graph coloring problem is probably one of the NP-class

problems mostly studied for its various applications and

solution of the problem involves different techniques

suggested by the researchers. There are various optimization

techniques available in the literature applied to the problem for

getting the solution. Few more techniques also find in

literature that uses traditional data structures to find the

solution. Sometimes one technique use to color the vertex in

the graph may not found suitable for some classes of graphs

that may generated for a particular application and secondly

since this problem is a NP-class problem so there is always

possibility to evolve a new procedure for coloring of the

vertices in the with more optimize running time.

In the proposed work we tried to develop a procedure that

works for any kind of graph and therefore it may be apply to

solve any application problem involving graph coloring

technique.

4. DATA STRUCTURE USED FOR THE ALGORITHM

The propose algorithm uses adjacency matrix of

corresponding graph along with linear link list to solve the

190

problem. Suppose a graph given in Figure 1 which is a two-

colorable undirected graph having five vertices and five

number of edges.

Figure 1. A 2-colorable graph

The matrix required to represent the above given graph is

5X5 square adjacency matrix in which matrx(i,j) =1 if there is

a path between vertex i and j , otherwise the entry in the matrix

corresponding to matrix(i, j)=0. Therefore, for a graph with n

number of vertices required a two dimensional array of size

n*n to store graph information.

The matrix generated in the form of adjacency matrix for

the graph in Figure 1 is shown in Table 1. The content of

matrix will use to create the set of feasible colors on the basis

of created link list that requires the knowledge of adjacent

vertices of a vertex that has assigned some color.

Table 1. Adjacency matrix representation of Figure 1

 1 2 3 4 5

1 0 1 1 0 0

2 1 0 0 1 0

3 1 0 0 1 0

4 0 1 1 0 1

5 0 0 0 1 0

The objective of liner link list in the procedure is twofold:

in first phase the color field of a particular node gives the

actual color value for the vertex field of node, which will

finally store in a one dimensional array created in procedure.

Once color information fetched from node in the list for

current vertex, the list will be updated in color field for those

nodes which are adjacent to currently assigned color vertex.

The general structure of nodes in the link list used in algorithm

is shown in Figure 2.

Figure 2. Proposed structure of link list used in algorithm

In the above proposed structure of link list the first field of

a node will store the vertex information of the graph numbered

from 0 to n-1, if graph is having n number of vertices. The

second field is use to color information numbered from 0 to k-

1 for a k-colorable graph. Initially the list has created with

vertex information for all the vertices in the graph along with

color field of all nodes in the list as 0. Therefore, the list

contains n number of nodes for a graph having n number of

vertices.

5. PROPOSED ALGORITHMS

The methodology for design of propose algorithms consists

of adjacency matrix A[][] for graph, a singly link list as

represented in Figure 2 the fields of each node contains vertex

in the form of numeric value, color information in the form of

integral values and next address containing address of adjacent

node. The next address field of last node in the list will be

NULL. Initially the list has been created by filling the vertex

number, color value is 0 for all the nodes in list. The final color

information corresponding to each vertex is stored in a one

dimensional array C[] which has created with size of number

of vertices in the graph.

Algorithms 3 assign_color(n)

 {

Create adjacency matrix A[][] for the graph;

Create a list with n nodes;

Let first node of the list is pointed with start pointer;

 for i= 0 to n-1

 {

 K=C[i]= start-> color

 Delete node(start,i);

 update _list(start, A, i, k);

 }

}

In the above algorithm, initially a list of n nodes has created

where n is the number of vertices in the graph. The color

information corresponding to vertex i is stored in array C along

with in another variable k. After retrieving the color from the

node containing vertex i, node has deleted from the list. Then

finally update_list procedure has called to update the colors in

all adjacent nodes to vertex i.

Algorithm 4 update_list(start, A, i, k)

{

for j= i+1 upto n-1

{

 if(A[i][j]= = 1)

 {

 p= start;

 while(p->information != j and p != NULL)

 p= p->next;

 if(p->color= = k)

 p->color= k+1;

 }

 }

}

The above procedure involves the updating of color field of

those nodes in the list which contains adjacent vertices

information of vertex i. The adjacent vertices of currently

assigned color vertex can be find the basis content of the

adjacency matrix A. If any vertex j is adjacent vertex to vertex

i then A[i][j] will be 1. Once adjacent vertex has found, the

previous color information available in the color field of

corresponding node in the list updated with new feasible color

value k+1.

Initially assign_color () procedure involves the creation of

adjacency matrix and link with described fields. After the

creation of list, the algorithm assigns the color for a particular

vertex i by fetching the color information from the node of the

list containing vertex information i and then it invoke

update_list() procedure for updating the color field of adjacent

vertices of currently colored vertex.

191

5.1 Analysis of the proposed algorithms

The proposed algorithm started with creation of creation of

liner link list containing n number of nodes along with the

creation of an adjacency square matrix of order nXn. The

running time analysis of proposed algorithms involved to find

the maximum number of times instructions executed in

proposed algorithm 3 & algorithms 4.

Suppose the graph on which the presented algorithms

applied for coloring consists of n number of vertices and the

number of colors used to color the graph is k.

Let the number of vertices in the given graph is n and the

minimum number of available colors that can use to color the

vertices of the graph is k. The execution time of the presented

procedures can be computed formally using following

computational technique available in algorithms.

(1). The list creation executed in O(n) times in

assign_color () procedure.

(2). The adjacency matrix formation required either

O(n2) time or it may involve by reading the files from disk

which is one time.

(3). The procedure assign_color() uses to compute the

actual color value for a vertex and it requires O(n) running

time.

(4). delete_node() procedure will executed with constant

running time.

(5). update_list () procedure invoked n times and the

instructions for finding the adjacent vertices for currently

assigned color node and updating the corresponding color field

in the list will require maximum O(n2) execution time.

Although in every step it will be reduced.

(6). Since the update_list() invoked n times so the total

running time for this procedure will be O(n3).

After the analysis of all the above steps the estimated

execution time by leaving the additive less significant terms

for the algorithms proposed will be O(n3).

6. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithms in section 5 is tested on few simple

graphs generated by us initially for its working. Generally,

graph coloring algorithms available in literature tested against

DIMACS graph coloring instances. We also tested the

proposed algorithms on several graph coloring instances of

DIMACS and find that in most of the cases where the graph is

a kind of undirected graph, our algorithm will always

comparable with the best known results.

We used Python 3.6 that reads the DIMACS graph coloring

instances and converted the graph into equivalent adjacency

matrix stored in the text file. The graphs that were used to test

the algorithms proposed, taken from DIMACS benchmark

graphs from the source [35]. This source contains different

class of graphs in the form of vertex-edge list. Several graphs

were taken from the above source for testing for which the

description is given in the Table 2.

All above files is in form of (V, E) for a particular file. For

example, myciel3.col (11, 20) file consists of eleven vertices

and twenty edges in the graph. We have used Python that read

the files in the above format and converted the file in the form

of adjacency matrix, which stored in a text file. The converted

text file for myciel4.col (23, 71) is shown in the form of

adjacency matrix in Table 3.

Table 2. Test cases from source [35]

Graph Name Description

myciel3.col

(11,20)

Triangle free graphs based on Mycielski

transformation which cannot solve easily

with property that coloring increase in

problem size.
myciel4.col

(23,71)

myciel5.col

(47,236)

myciel6.col

(95,755)

myciel7.col

(191,2360)

2-

Insertions_3.col

(37,720

Generalization of myciel graphs by adding

more vertices for increasing the graph size

but at the same without changing the density

of graph. 3-

Insertions_3.col

(56,110)

queen5_5.col

(25,320)

For the given graph the maximum clique is

not more than 5

david.col

(87,812)

Graphs translated from Stanford graphbase

files

huck.col

(74,602)

jean.col

(80,508)

mugg88 1.col

(88,146)

Very hard 3-coloribilty instances from

Kazunori Mizuno.

mugg88 25.col

(88,146)

4-

Insertions_3.col

(79,156)

4-Insertions graph of order 3%

1-

Insertions_4.col

(67,232)

1-Insertions graph of order 4%

1-FullIns_3.col

(30,100)

1-FullIns graph of order 3

2-FullIns_3.col

(52,201)

2-FullIns graph of order 3

Table 3. Adjacency matrix for myciel4.col (23, 71) graph

0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0

192

We implemented the algorithm in C language for the test

cases of DIMACS graph coloring instances. After converting

the graph into text file we used retrieved the adjacency matrix

from text file and stored the content of the matrix into a two

dimensional array a[][]. The command used for retrieving the

content of text file is:

FILE *in = fopen("myciel4.txt", "r");

In the above statement “in” is s file pointer and

“myciel4m.txt” is the name of the file and the file opened in

read mode for getting the content from the file. We created a

link list corresponding to each graph with fields as shown in

figure 2 with n number of nodes where n is number of vertices

in the selected graph for testing. The vertex information stored

in the form integer values varied from 0 to n-1. Similarly, color

value for each node initialized with 0. The result obtained after

running the proposed algorithms for the test cases given in

Table 2 and its comparison with existing techniques for same

set graph coloring instances is shown in Table 4. We used

Turbo C3.2.2.0 compiler over windows7 platform (32 bit) with

hardware configuration Intel Pentium D CPU clock speed 2.8

GHZ and 4 GB RAM.

We compared with MCOA technique [28] to solve the

graph coloring problem and found that for most of the above

mentioned test cases our algorithm works satisfactorily and

produced optimal coloring solution for the tested graphs.

The table below contains the results obtained after

implementing the proposed algorithms in terms of number of

colors required to color a particular graph. The first column of

the table contains the name of graph along with number of

vertices and number of edges in the graph. The values in the

second column in the table is best known number of colors

corresponding to graph in the first column. The entry in the

third column is our result that achieved after running the

proposed algorithms on the above given data set. Finlay the

last column entries are the results of technique used in

Modified cuckoo optimization algorithm [28].

The number of colors for myciel graphs myciel3, myciel4,

myciel5, myciel6, myciel7, based on Mycielski transformation

is same in our case to best known for all the above compared

graphs. It is also similar and comparable with the techniques

used in [28] for graph coloring.

Similarly, we tested graph queen5_5, david, huck, jean,

from Stanford GraphBase File and get result which is equal to

best known color value for the graph. The results after running

the proposed algorithm for the graphs mugg88.1 and

mugg88.25 graphs from Kuzunori Mizuno, the number of

colors required to color above graphs and obtained number of

color values with our algorithm is same.

When we tested the graph 1-Insertions-4, graph of order 4 %

our algorithm uses to five colors to color the entire graph

however the best known optimal color value for this graph is

four. But our result is similar to result in the case of MOCA

technique. After testing the graph 4-Insertions-3, graph of

order 3 %, our algorithm requires four colors to color the

whole graph for which the best optimal color value is three.

However, our result is similar to the result obtained in case of

MOCA technique applied to solve the problem.

When we run our proposed algorithm on the 1-FullIns_3

graph of order 3 and 2-FullIns_ 3 graph of order 3 found that

the number of colors used for the coloring of graph 1-Fullins_3

is eight and for the graph 2-Fullins3 it was ten. However, in

case of MOCA [28] technique for graph coloring for these

graphs, the optimal colors used is four colors and five colors,

respectively.

Table 4. Comparison of proposed algorithms with MOCA

[28]

Graph Name Best Known

[35]

Our

Case

MOCA

[28]

myciel3.col

(11,20)

4 4 4

myciel4.col

(23,71)

5 5 5

myciel5.col

(47,236)

6 6 6

myciel6.col

(95,755)

7 7 7

myciel7.col

(191,2360)

8 8 8

2-

Insertions_3.col

(37,720

4 4 4

3-

Insertions_3.col

(56,110)

4 4 4

queen5_5.col

(25,320)

5 5 5

david.col

(87,812)

11 11 11

huck.col

(74,602)

11 11 11

jean.col

(80,508)

10 10 10

mugg88 1.col

(88,146)

4 4 4

mugg88 25.col

(88,146)

4 4 4

4-

Insertions_3.col

(79,156)

3 4 4

1-

Insertions_4.col

(67,232)

4 5 5

1-FullIns_3.col

(30,100)

- 8 4

2-FullIns_3.col

(52,201)

- 10 5

Probably for last four cases our algorithms terminated with

considerable number of more colors as compared to existing

one is due to approach that we are using to decide a color for

a particular vertex in the graph. In our algorithm when a color

is given to a vertex, all the adjacent vertices of that that node

assigned temporarily one higher integral color value. Due to

this there may be the vertices which are non-adjacent vertex to

previous assigned colored vertex but since the color field for

current vertex is already having different than its non-adjacent

vertices. Therefore, the feasible color value for current vertex

remains unchanged and thus it increases coloring values for

successive vertices and their corresponding adjacent verities

in the graph.

In spite of except for last two graphs our algorithms work

efficiently and successfully find either best color values for the

graphs or comparable with existing known color values. We

used existing data structure link list and array for finding the

solution of the problem by focusing only constraint associated

with graph coloring problem. The proposed algorithm is

efficient in its working because we removing every vertex

from the list once it assigned a particular and therefore next

vertex for coloring is always available as the first node in the

list. Similarly, at the time of searching adjacent vertices for

193

currently assigned color and modifications of their color

values is also be done in optimize manner.

7. CONCLUSION AND FUTURE SCOPE

The proposed research work intends to devise a new

approach to address the graph coloring problem that must able

to find the exact solution for the problem. In the proposed

approach we tried to give the exact solution for graph coloring

problem. The proposed technique uses the link list to vertex

information for coloring and adjacency matrix for graph

representation. We used mentioned data structures for finding

the solution because these data structures are simple and

efficient in terms of required operation that performed in find

the solution of the problem. Although for few cases the

proposed algorithms fail work efficiently but there is no any

single technique in the literature which able to find the optimal

solution for each kind of graphs. The best known solutions for

the different category of graphs are the result of several

techniques. The proposed approach will work for any kind of

graphs however for some cases like discussed in previous

section if graph falls in that mentioned category may not works

satisfactorily.

As the graph coloring problem is a NP-class problem so

there is always hope for the optimizing the time complexity of

the algorithm for solving the problem. In our proposed

algorithms after incorporating some techniques for selecting

the feasible colors among the previously assigned colors with

minimum colour index may able to produce better results for

those class of graphs which still needs to find optimal coloring

solution.

REFERENCES

[1] Zufferey, N., Amstutz, P., Giaccari, P. (2008). Graph

coloring approaches for a satellite range scheduling

problem. Journal of Scheduling, 11(4): 263-277.

https://doi.org/10.1007/s10951-008-0066-8

[2] de Werra, D., Eisenbeis, C., Lelait, S., Marmol, B. (1999).

On a graph theoretical model for cyclic register

allocation. Discrete Applied Mathematics, 93(2-3): 191-

203. https://doi.org/10.1016/S0166-218X(99)00105-5

[3] Tilley, J.A. (2017). The a-graph coloring problem.

Discrete Applied Mathematics, 217(2): 304-317.

https://doi.org/10.1016/j.dam.2016.09.011

[4] Demange, M., Monnot, J., Pop, P., Ries, B. (2014). On

the complexity of the selective graph coloring problem in

some special classes of graphs. Theoretical Computer

Science, 540-541: 89-102.

https://doi.org/10.1016/j.tcs.2013.04.018

[5] Lu, H., Halappanavar, M., Chavarría-Miranda, D.,

Gebremedhin, A.H., Panyala A., Kalyanaraman, A.

(2017). Algorithms for balanced graph colorings with

applications in parallel computing. IEEE Transactions on

Parallel and Distributed Systems, 28(5): 1240-1256.

https://doi.org/10.1109/TPDS.2016.2620142

[6] Fidanova, S., Pop, P. (2016). An improved hybrid ant-

local search algorithm for the partition graph coloring

problem. Journal of Computational and Applied

Mathematics, 293: 55-61.

https://doi.org/10.1016/j.cam.2015.04.030

[7] Galinier, P., Hamiez, J.P., Hao, J.K., Porumbel, D.

(2013). Recent advances in graph vertex coloring. In:

Zelinka I., Snášel V., Abraham A. (eds) Handbook of

Optimization. Intelligent Systems Reference Library, vol

38. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-30504-7_20

[8] Hussin, B., Basari, A.S.H., Shibghatullah, A.S., Asmai,

S.A., Othman, N.S. (2011). Exam timetabling using

graph colouring approach. 2011 IEEE Conference on

Open Systems, Langkawi, pp. 133-138.

https://doi.org/10.1109/ICOS.2011.6079274

[9] Gaceb, D., Eglin, V., Lebourgeois, F., Emptoz, H. (2009).

Robust approach of address block localization in

business mail by graph coloring. The International Arab

Journal of Information Technology, 6(3): 221-230.

[10] Khasawneh, M.A., Malkawi, M.I., Hayajneh, T.S. (2009).

A graph-coloring-based navigational algorithm for

personnel safety in nuclear applications. 2009 6th

International Symposium on Mechatronics and its

Applications, Sharjah, pp. 1-7.

https://doi.org/10.1109/ISMA.2009.5164808

[11] Selemani, M.A, Mujuni, E., Mushi, A. (2013). An

examination scheduling algorithm using graph

colouring- the case of Sokoine University of agriculture.

International Journal of Computer Engineering &

Applications, II(I/III): 116-127.

[12] Zhu, X.D., Dai, L.L., Wang, Z.C., Wang, X.D. (2017).

Weighted-graph-coloring-based pilot decontamination

for multicell massive MIMO systems. IEEE Transactions

on Vehicular Technology, 66(3): 2829-2834.

https://doi.org/10.1109/TVT.2016.2572203

[13] Méndez Díaz, I., Zabala, P. (2008). A cutting plane

algorithm for graph coloring. Discrete Applied

Mathematics, 156(2): 159-179.

https://doi.org/10.1016/j.dam.2006.07.010

[14] Lucet, C., Mendes, F., Moukrim, A. (2006). An exact

method for graph coloring. Computers & Operations

Research, 33(8): 2189-207.

https://doi.org/10.1016/j.cor.2005.01.008

[15] Méndez-Díaz, I., Zabala, P. (2006). A branch-and cut

algorithm for graph coloring. Discrete Applied

Mathematics, 154(5): 826-847.

https://doi.org/10.1016/j.dam.2005.05.022

[16] Malaguti, E., Monaci, M., Toth, P. (2011). An exact

approach for the Vertex Coloring Problem. Discrete

Optimization 8(2): 174-190.

https://doi.org/10.1016/j.disopt.2010.07.005

[17] Segundo, P.S. (2012). A new DSATUR-based algorithm

for exact vertex coloring. Computer & Operations

Research, 39(7): 1724-1733.

https://doi.org/10.1016/j.cor.2011.10.008

[18] Caramia, M., Dell’Olmo, P. (2008). Coloring graphs by

iterated local search traversing feasible and infeasible

solutions. Discrete Applied Mathematics, 156(2): 201-

217. https://doi.org/10.1016/j.dam.2006.07.013

[19] Porumbel, D.C., Hao, J.K., Kuntz, P. (2009). Diversity

control and multi parent recombination for evolutionary

graph coloring algorithms. 9th European Conference on

Evolutionary Computation in Combinatorial

Optimization (EVOCOP2009). Tbingen, Germany, pp.

121-132. https://doi.org/10.1007/978-3-642-01009-5_11

[20] Dowsland, K.A., Thompson, J.M. (2008). An improved

ant colony optimization heuristic for graph coloring

Discrete Applied Mathematics, 156(3): 313-324.

https://doi.org/10.1016/j.dam.2007.03.025

194

[21] Prestwich, S.D. (2008). Generalized graph coloring by a

hybrid of local search and constraint programming.

Discrete Applied Mathematics, 156(2): 148-158.

https://doi.org/10.1016/j.dam.2006.07.011

[22] Zhou, Z.Y., Li, C.M., Huang, C., Xu, R.C. (2014). An

exact algorithm with learning for the graph coloring

problem. Computers & Operation Research, 51: 282-301.

https://doi.org/10.1016/j.cor.2014.05.017

[23] Xu, J., Qiang, X.L., Zhang, K., Zhang, C., Yang, J.

(2018). A DNA computing model for the graph vertex

coloring problem based on probe graph. Engineering,

4(1): 61-77. https://doi.org/10.1016/j.eng.2018.02.011

[24] Shukla, A.N., Garg, M.L., Misra, R. (2019). An approach

to solve graph coloring problem using linked list.

International Journal of Advanced Studies of Scientific

Research, 4(2).

[25] Shukl, A.N., Garg, M.L. (2018). A list based approach to

solve graph coloring problem. 2018 International

Conference on System Modeling & Advancement in

Research Trends (SMART), Moradabad, India, pp. 265-

267. https://doi.org/10.1109/SYSMART.2018.8746966

[26] Shukla, A.N., Garg, M.L. (2019). An approach to solve

graph coloring problem using adjacency matrix. Oryzae.

Biosc. Biotech. Res. Comm., 12(2).

http://dx.doi.org/10.21786/bbrc/12.2/33

[27] Shukla, A.N., Bharti, V., Garg, M.L. (2019). An

algorithm based on heap of binary search tree to solve

graph coloring problem. International Journal of Recent

Technology and Engineering (IJRTE), 8(2): 3920-3924.

[28] Mahmoudi, S., Lotfi, S. (2015). Modified cuckoo

optimization algorithm (MCOA) to solve graph coloring

problem. Applied Soft Computing, 33: 48-64.

https://doi.org/10.1016/j.asoc.2015.04.020

[29] Parihar, A., Shukla, N., Jerry, M., Datta, S.,

Raychowdhury, A. (2017). Vertex coloring of graphs via

phase dynamics of coupled oscillatory networks.

Scientific Reports, 7: 11.

https://doi.org/10.1038/s41598-017-00825-1

[30] Arumugam, S., Premalatha, K., Bača, M., Semaničová-

Feňovčíková, A. (2017). Local antimagic vertex coloring

of a graph. Graphs and Combinatorics, 33(2): 275-285.

https://doi.org/10.1007/s00373-017-1758-7

[31] Rezapoor Mirsaleh, M., Meybodi, M.R. (2016). A new

memetic algorithm based on cellular learning automata

for solving the vertex coloring problem. Memetic

Computing, 8(3): 211-222.

https://doi.org/10.1007/s12293-016-0183-4

[32] Labed, S., Kout, A., Chikhi, S. (2018). Solving the graph

b-coloring problem with hybrid genetic algorithm. 2018

3rd International Conference on Pattern Analysis and

Intelligent Systems (PAIS), Tebessa, pp. 1-7.

https://doi.org/10.1109/PAIS.2018.8598525

[33] Aragón Artacho, F.J., Campoy, R. (2018). Solving graph

coloring problems with the Douglas-Rachford algorithm.

Set-Valued and Variational Analysis, 26(2): 277-304.

https://doi.org/10.1007/s11228-017-0461-4

[34] Bahiense, L., Frota, Y., Noronha, T.F., Ribeiro, C.C.

(2014). A branch-and-cut algorithm for the equitable

coloring problem using a Formulation by representatives.

Discrete Applied Mathematics, 164: 34-46.

https://doi.org/10.1016/j.dam.2011.10.008

[35] https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html

#XXCAR, accessed on 10 March 2019.

195

