

A Machine Learning-Based Lightweight Intrusion Detection System for the Internet of Things

Samir Fenanir1*, Fouzi Semchedine2, Abderrahmane Baadache3

1 Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, Bejaia 06000, Algeria
2 Institute of Optics and Precision Mechanics (IOMP), University of Setif 1, Setif 19000, Algeria
3 University of Alger 3, Algiers 16000, Algeria

Corresponding Author Email: samir.fenanir@univ-setif.dz

https://doi.org/10.18280/ria.330306

ABSTRACT

Received: 9 March 2019

Accepted: 12 June 2019

 The Internet of Things (IoT) is vulnerable to various attacks, due to the presence of tiny

computing devices. To enhance the security of the IoT, this paper builds a lightweight intrusion

detection system (IDS) based on two machine learning techniques, namely, feature selection

and feature classification. The feature selection was realized by the filter-based method, thanks

to its relatively low computing cost. The feature classification algorithm for our system was

identified through comparison between logistic regression (LR), naive Bayes (NB), decision

tree (DT), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM) and

multilayer perceptron (MLP). Finally, the DT algorithm was selected for our system, owing to

its outstanding performance on several datasets. The research results provide a guide on

choosing the optimal feature selection method for machine learning.

Keywords:

Internet of Things (IoT), intrusion

detection system (IDS), anomaly

detection, feature selection

1. INTRODUCTION

The Internet of Things (IoT) is an emerging paradigm in the

world of computer networks that allows communication

between all kinds of objects via the Internet. These objects can

be RFID tags, sensors, actuators, mobile phones, etc.; which

use a single addressing scheme to interact and cooperate to

achieve a common goal [1]. The IoT allows combining all

kinds of communications, all the time, for everyone, and on

any object, forming the ubiquitous computing [2]. It will cover

a wide range of applications and will touch almost all the areas

we face on a daily life.

IoT devices are often deployed in a hostile and insecure

environment, making them more vulnerable to different

attacks [3]. Therefore, security solutions are essential to

protect IoT devices from intruder attacks. An Intrusion

Detection System (IDS) is a tool used to detect attacks against

a system or a network by analyzing their activities and events

[4]. It can act as a second line of defense which from intruders

[5]. The main purpose of an IDS is to detect as many attacks

as possible with an acceptable accuracy while minimizing

energy consumption in resource constrained [6]. There are

mainly two types of IDS, signature-based and anomaly-based

IDS. A signature-based IDS also known as misuse-based IDS,

detects intrusions by comparing new data with a knowledge

base or signatures of known attacks. This approach detects the

known attacks, but it often fails to detect unknown attacks. The

anomaly-based IDS compares the activities considered normal

against observed events to identify significant deviations.

Many researches have been recently performed in the areas

of IoT and IDS to provide the best security mechanism.

Sedjelmaci et al. [3] were interested to a light anomaly

detection technique based on the concept of the game theory.

The authors use the Nash equilibrium to predict the

equilibrium state that allows the IDS agent to detect the

signature of a new attack. Li et al. [7] proposed a new intrusion

detection system based on the K-Nearest Neighbor (KNN)

classification algorithm in a wireless sensor network. The

system can detect a flood attack in the wireless sensor network.

It also conducts experiments to study the effects of a flood

attack. Thanigaivelan et al. [8] presented a distributed internal

anomaly detection system for the Internet of Things. The main

features of the system are monitoring, ranking, isolation and

reporting. Nodes monitor and note their neighbors at one hop,

and if a neighbor does not maintain the required rating, the

neighboring node is classified as an anomaly. Shahid Raza [4]

proposed a real-time intrusion detection system in the IoT

called SVELTE. It is an IDS available in IoT that is

implemented in Contiki OS. This approach only detects

content spoofing attacks within the network, gulp and selective

transfer attacks. Douglas et al. [9] presented an ultra-

lightweight deep-packet anomaly detection approach that is

possible to run on small IoT devices. The approach uses n-

gram bit-patterns to model payloads and allows the n-gram

size to vary by dimension.

Although all the above research claims that a detection

system is implemented and that some attacks are successfully

detected, it is necessary to make the detection system

lightweight if we want to implement an efficient detection

system in IoT environments.

The aim of our research is to build a lightweight IDS. For

that purpose, two techniques of machine learning have been

applied, feature selection and classification methods. Feature

selection methods can be used to select relevant features that

decrease computational and storage costs and even, improve

the accuracy of detection. There are three main approaches for

feature selection [10]: filter-based, wrapper-based and

embedded-based approaches. In this paper, we used the filter

method because it has low computational cost compared to

wrapper and Embedded methods. In addition, in order to find

the best classification model suitable for the IoT environment,

several popular algorithms such as Decision Trees, k-Nearest

Revue d'Intelligence Artificielle
Vol. 33, No. 3, June, 2019, pp. 203-211

Journal homepage: http://iieta.org/journals/ria

203

Neighbor, Support Vector Machines, etc.; have been

implemented using the Scikit-Learn tool.

This study concludes with a comparative analysis of feature

selection methods and their effects on various classification

algorithms using three different data sets, such as KDD99,

NSL-KDD and UNSW-NB15 datasets.

The remainder of this paper is organized as follows: in

Section 2, we briefly discuss the technologies involved in the

IoT, while Section 3 details our proposed system. In Section 4

we describe a test of our system. And, we conclude this work

in Section 5.

2. BACKGROUND

In this section, we review the technologies involved in the

Intrusion Detection System to handle security issues in IoT

environments.

2.1 IoT architecture

Internet of Things is a collection of many interconnected

objects allowing people and objects to interact and create

smart environments like transportation, agriculture, healthcare,

energy, cities, etc. Figure 1 shows the IoT architectural model

which is composed of 3 layers [1, 11]:

Figure 1. The IoT architectural model

- Perception layer: This layer includes devices for

detecting and collecting information from the environment,

and then transmits them to the network layer.

- Network layer: At this layer, the data transmission is

operated by using some of the recent technologies such as

WiFi, Bluetooth, 3G, Zigbee, etc. The IoT gateway serves

as a bridge between devices and the cloud.

- Application layer: This layer provides the services

required by the users, such as the services necessary for

smart homes, health care, etc. At this layer, the authenticity,

the integrity, and the confidentiality of the data are

guaranteed [12].

The security policy must be fully integrated with the

architecture to avoid hardware and software vulnerabilities at

all the levels of the system.

2.2 Security in the Internet of Things

With the development of IoT applications, security remains

the most important issue that cannot be ignored because of the

connectivity and the sensitivity of the collected data. Also, the

IoT has many restrictions and limitations in terms of

components and devices such as limited processing capacity,

memory, and power consumption, and even the heterogonous

and the ubiquitous nature of IoT that introduce additional

concerns [13]. The implementation of a security policy around

these systems is therefore essential. In addition to the

implementation of firewalls and increasingly secure

authentication systems, it is necessary to complete such

security policy by monitoring tools to audit the information

system and to detect possible intrusions.

Intrusion means penetration of information systems and

also attempts of local users to access higher privileges than

those assigned. In this paper, we will see how to protect

ourselves effectively against these intrusions. Therefore, it is

important to understand the precise role of these intrusion

detection systems.

2.3 Intrusion detection system

An Intrusion Detection System (IDS) is a mechanism that

detects intrusions or attacks against a system or a network by

analyzing the activity of the network and the system. Such

intruders can be internal or external [14]: Internal intruders are

users inside the network that attempt to raise their access

privileges to misuse non-authorized privileges while external

intruders are users outside the target network attempting to

gain unauthorized access to the network [15]. The IDS

monitors the operations of a host or a network, alerting the

system administrator when it detects a security violation.

There are mainly three components of the IDS [16]:

- Monitoring: This component mostly monitors traffic

patterns, internal events, and resource utilization;

- Analysis and detection: This is the main component that

detects the intrusions according to a specified algorithm.

- Alarm: This component generates an alarm when the

intrusion occurs.

2.4 Types of IDS

IDSs can be classified as Network-based IDS (NIDS) and

Host-based IDS (HIDS) [15]. Network-based IDS (NIDS)

monitors the network traffic for malicious activities. Host-

based IDS (HIDS) monitors malicious activities occurring

within the host.

IDSs approaches may also be classified as signature-based,

anomaly-based or specification based [14-15]:
Signature Based IDS: IDS has a database of signatures or

patterns and each attack can be detected according to patterns

or signatures. This technique is simple to use. However, it is

very expensive; it needs more storage space when the number

of attacks increases. On the other hand, the main disadvantage

of this method is that only the attacks recognized by the

signatures will be detected [17]. So, it needs a regularly up-

gradation of the database with new signatures of attacks [18].

Anomaly Based IDS: This technique consists in detecting

an intrusion according to the behavior of the system. It

predefines the normal behavior of the system and observes

changes in the normal behavior. If any activity differs from the

normal behavior, it is marked as an intrusion [14, 19]. The

main advantage of this technique is that it can be used to detect

new attacks by signaling any deviation from the normal

behavior. However, it often generates many false positives

204

because a deviation from the normal behavior does not always

correspond to an attack.

Specification Based IDS: This technique combines the two

previous techniques, due to their complementary nature [19].

It takes advantage of the both technologies to detect new

attacks on the one hand and to reduce false positives on the

other hand. However, such mechanisms consume more energy

and more resources [16].

3. THE PROPOSED SYSTEM

One of our main goals is that the IDS should be lightweight

and comply with the processing capabilities of the constrained

nodes. Thus, according to [20], it is not possible to have an

active intrusion detection agent in each node of an IoT due to

the limited processing capacity and power consumption.

Therefore, we have adopted a centralized IDS architecture to

overhead the problem of limited capacity on the one hand and

the peripheral heterogeneity issue on the other hand, where the

IDS is implemented on the network layer of the IoT above the

Gateway component.

Figure 2 shows the activity diagram of our Lightweight

Intrusion Detection System (LIDS) that consists in detecting

an intrusion by observing the current behavior and comparing

it to the normal behavior. If there is a deviation between the

two behaviors, an alarm will be triggered. It is composed of

three phases:

Figure 2. LIDS architectural model

A- Events collection: In this phase, the component Events

collector of LIDS collects and records all the events performed

by the IoT devices in order to build the current behavior that

will be represented as a feature vector as follows: Vi(t) = (c1,

c2, …, c n).

B- Anomaly detection: The detection phase analyzes and

detects intrusions. It is the main component of our LIDS,

which will be detailed in the next section.

C- Alarm: After attack detection, the proposed system

blocks the user and finishes his session, and then it sends an

alert to the administrator to take the appropriate action.

4. EXPERIMENTS AND RESULTS

Based on the proposed approach, the classification process

of the system is showed in Figure 3.

Figure 3. Classification process in the IoT context

The first process is the dataset acquisition. In this process,

the dataset is collected and splitted into training and testing

datasets. After, the process of pre-processing allows to clean

the data while the feature selection process allows to reduce

the data dimension. In this work, we have employed different

classifiers model like: Logistic Regression, Random forest,

Decision Tree, SVM, etc. The training set is used to train the

models. Then, these models are evaluated against the testing

set using different evaluation metrics. Finally, these processes

will be repeated for three datasets.

4.1 Dataset

In our experiments, we employed three datasets such as

KDD Cup 99 [21], NSL-KDD dataset [22] and UNSW-NB15

dataset [23].

KDD Cup 1999: This dataset is developed by MIT Lincoln

Labs and provides a standard dataset generated from

simulations in military network environments and by

encompassing various intrusions. The dataset includes three

independent sets: “whole KDD”, “10 % KDD”, and “corrected

KDD”. We used “10 % KDD” and the “corrected KDD” as

training and testing dataset, respectively. A connection in the

KDD Cup 99 dataset is a sequence of TCP packets which

contains 42 features and they are labeled as either normal or

an attack.

NSL-KDD: This dataset is collected by Canadian Institute

for Cyber security for 9 weeks [6]. It is a new and a reduced

version of KDD Cup 99 dataset. The data structure and the

classification of attacks in the NSL-KDD dataset remain the

same as KDD Cup 99, with eliminating duplicate records in

the dataset. So, the classifiers will not be biased towards more

frequent records. NSL-KDD data consists of training and

testing data stored in 2 separate files, the “KDD Train+”

dataset as the training set and “KDD Test+” datasets as the

testing set.

The KDD Cup99 and NSL-KDD datasets include four

categories of attack [24]. The Table 1 shows the number of

205

rows for each category:

Table 1. Class distribution in KDD Cup 99 and NSL-KDD

datasets

KDD Cup 99

 Normal DoS Prob R2L U2R Total

Train 97,278 391,458 4,107 1,126 52 494,021

Test 60,593 229,855 4,166 16,345 70 311,029

NSL-KDD

 Normal DoS Prob R2L U2R Total

Train 67,343 45,927 11,656 995 52 125,973

Test 9,711 7,460 2,421 2,885 67 22,544

UNSW-NB15: The network packets of this dataset were

collected by the IXIA Perfect Storm tool in the Cyber Range

Lab of the Australian Centre for Cyber Security (ACCS) to

generate a hybrid combination of real-life and contemporary

synthetic attack behaviors. It has nine categories of attack in

addition to one category representing the normal data. The

number of records of each category is given in the Table 2.

This dataset has 45 features including a class label. These

features are mixed in nature: nominal, numeric and time-stamp.

Table 2. Class distribution in UNSW-NB15 dataset

Attack Category Training set Testing set

Normal 56,000 37,000

Analysis 2,000 677

Backdoor 1,746 583

DoS 12,264 4,089

Exploits 33,393 11,132

Fuzzers 18,184 6,062

Generic 40,000 18,871

Reconnaissance 10,491 3,496

Shell Code 1,133 378

Worms 130 44

Total 175,341 82,332

The attack categories of the different datasets are explained

as follows:

DoS (Denial of Service Attack): Is an attack that makes a

service unavailable, to prevent legitimate users of that service.

U2R (Users to Root Attack): In this category, an attacker

tries to get the access rights from a normal user account in

order to obtain the root access to the system [25].

R2L (Remote to Local Attack): In this category, the

attacker looks for vulnerabilities in a network's security, to

gain access as a local user of that network.

Probe (Probing Attack): In this category, the attacker tries

to collect information about the network in order to circumvent

its security.

Analysis: Contains various attacks of port scanning, spam

and penetration of HTML files.

Backdoors: The attacker bypasses the system security

mechanism to access a system or its data.

Exploits: The attacker has previous knowledge of the

system and leverages that knowledge by exploiting the

vulnerability.

Fuzzers: It generates a huge amount of random data to

crash the system.

Generic: It works against all block ciphers.

Reconnaissance: It gathers information about the system to

supervise it.

Shellcode: A small piece of code used as the payload in the

exploitation of software vulnerability.

Worms: Attacker replicates itself in order to spread to other

computers.

4.2 Data preprocessing

Data preprocessing is a technique for transforming the

original data to a data required by the machine learning

method. It includes transformation, binarization,

standardization and normalization. Firstly, the dataset is

preprocessed to consider binary classification problem in

which only two labels, i.e., attack and normal traffic are

considered, and then we applied the data transformation and

normalization technique on the dataset.

Data transformation: We use this technique to transform

the categorical value of features into a numeric value. For

example, the KDD-Cup99 has the feature "Service" that

contains the values: Telnet, FTP, HTTP, etc. so, these values

will be transformed into numeric values: 1, 2, 3, etc.

Data normalization: Consists in transforming features by

scaling each one to a given range. A feature set X is scaled

between its minimum and maximum values. The new feature

value Z generally lies between [0, 1]. The transformation is

given by:

𝑍 =
X−min(X)

max(X)−min(X)
 (1)

Normalization makes training less sensitive at the

functional scale and ensures that a convergence problem does

not have a huge variance, which makes optimization possible.

After the data preprocessing operations, we obtain a new

structure of datasets that are shown in Table 3.

Table 3. Datasets structure after data preprocessing

KDD Cup 99

Dataset Number of records Normal Attack

Train 494,021 97,278 396,743

Test 311,029 250,436 60,593

NSL-KDD

Dataset Number of records Normal Attack

Train 125,973 67,343 58,630

Test 22,544 9,711 12,833

UNSW-NB15

Dataset Number of records Normal Attack

Train 175,341 56,000 119,341

Test 82,332 37,000 45,332

4.3 Feature selection

Feature Selection is the process of selecting the most

significant features from a given dataset. This allows

increasing the efficiency of storage, reduces computing costs,

and also improves the performance of an automatic learning

model. There are several ways to select features that can be

grouped into three categories:

Filter Methods that is selecting features using correlation

matrix. Each feature is scored based on statistical calculations;

then, we select only the attributes where the correlation is

greater than a threshold.

Wrapper Methods that is looking for the most optimal

combination of features by evaluating the model accuracy.

This means, that we feed the features to the selected Machine

Learning algorithm and based on the model performance we

add or remove the features.

206

Embedded Methods combine the advantages of both

previous methods by choosing the best features when building

model. The most common types of this method are

regularization methods.

For our experiments, we used the Filter Method because it

is much faster compared to wrapper and Embedded methods.

On the other hand, Wrapper and Embedded methods are

computationally costly; hence, they are not suitable for the

low-resource IoT devices.

To determine the relevance of features for our model, we

have used three popular correlation analysis techniques i.e.,

Pearson’s correlation technique, Spearman’s correlation

coefficient and the Kendall’s tau coefficient.

4.3.1 Pearson’s correlation coefficient (PCC)
That is a measure of dependence between two random

variables X and Y. The Pearson correlation coefficient ρ is

given by the equation:

ρ =
cov(X,Y)

√σ2(X) σ2(Y)
 (2)

where, cov is the covariance and σ is the variance. The value

of ρ lies between -1 and 1, ρ is close to the extreme values -1

and 1 if X and Y are strongly correlated, and ρ = 0 if 𝑋 and 𝑌

are totally uncorrelated. Thus, a feature which is strongly

correlated to some other features is a redundant one.

4.3.2 Spearman’s correlation coefficient (SCC)

Spearman's rank correlation coefficient can be defined as a

special case of Pearson 𝜌 applied to ranked variables. Rather

than comparing means and variances, Spearman's coefficient

looks at the relative order of values for each variable. This

makes it appropriate to use with both continuous and discrete

data. The formula for Spearman's coefficient looks very

similar to that of Pearson, with the distinction of being

computed on ranks instead of raw scores:

ρ =
cov(rankX, rankY)

√σ2(rankX) σ2(rankY)
 (3)

4.3.3 Kendall's tau coefficient (KTC)

Unlike Spearman's coefficient, Kendall's 𝜏 does not take

into account the difference between ranks, but only directional

agreement. Therefore, this coefficient is more appropriate for

discrete data.

Formally, Kendall's 𝜏 coefficient is defined as:

τ =
(concordant pairs)−(discordant pairs)

N(N−1)/2
 (4)

where, 𝑛 is the observation number of the variables 𝑋 and 𝑌.
The pairs of observations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are called

concordant, if 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 or 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 .

In the opposite case, they are called discordant.

To compare the feature selection metric for intrusion

detection on the three datasets mentioned above, we

implemented three correlation methods: Pearson’s Correlation

Coefficient (PCC), Spearman's Correlation Coefficient and

Kendall's Tau Coefficient (KTC) using different threshold

values. The goal is to find optimal feature subsets that will be

used by the different classifiers with the aim of achieving the

best classification results in the context of the Internet of

Things. All the obtained results are shown in Figure 4.

(a) KDD99

(b) NSL-KDD

(c) UNSW-NB15

Figure 4. Performance of feature selection algorithms

Figure 4 summarizes the number of features selected by

each algorithm using three datasets KDD99, NSL-KDD and

UNSW-NB15. Initially KDD99 dataset has 41 features

without the target attribute. After applying the PCC method

with three threshold values of 0.9, 0.7 and 0.5, the number of

features is reduced to 30, 22 and 20 features, respectively.

Using the SCC method, the number of features is reduced to

28, 20 and 16 features. While the number of features is reduced

to 32, 22 and 18 features using the KTC method. On the NSL-

KDD dataset, the number of features is reduced from 41 to 34,

29 and 24 after applying the PCC method. Using the SCC

method, the number of features is reduced to 35, 26, 17

features. In the case of the KTC method, the features number

is reduced to 37, 30 and 20 features. Finally, on the UNSW-

NB15 dataset, the number of features is reduced from 44 to 30,

23 and 17 using the PCC method. Applying the SCC method,

the number of features is reduced to 20, 11, 6 features. While

the number of features is reduced to 35, 13 and 9 features using

the KTC method.

207

4.4 Classification techniques

In the classification process of the proposed IDS given in

Figure 3, the two main phases of the system include the

training and the testing phase. In the training phase, a training

dataset containing labeled samples is used to train the classifier.

To evaluate the performance of the classifier, new samples

from the test dataset are presented to the classifier. There are

many types of classifiers available like Logistic Regression,

Decision Tree, Support Vector Machine, etc. To find the best

classifier model that suit to our problem, we evaluate seven

most famous machine learning classifier models and try to

optimize the parameters of each algorithm in order to obtain

an efficient classifier model with high accuracy and precision,

as well as low false negative and false positive. The tested

classifier models are briefly described below.

Logistic Regression (LR): it is a predictive analysis

algorithm based on the concept of probability. It uses the

Sigmoid function to map predicted values to probabilities

between 0 and 1. This function is defined as follows:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒𝑥 (5)

Naive Bayes (NB): The Naive Bayesian classifier is based

on Bayes theorem with the independence assumptions

between predictors. Bayes theorem is defined as follows:

𝑃(𝑋 𝐶⁄) =
𝑃(𝐶 𝑋)𝑃(𝑋)⁄

𝑃(𝐶)
 (6)

where, 𝑃(𝑋 𝐶⁄) is the posterior possibility of class (𝐶) given

predictor (𝑋).

Decision Tree (DT): it is a decision support tool that uses a

tree-like graph where each internal node denotes a test on an

attribute, each branch represents the outcome of the test, and

each leaf node represents a class label. The paths from root to

leaf represent classification rules.

Random Forest (RF): It works exactly like the decision

tree to build trees. The main difference between the two

methods is that a decision tree is built using the whole dataset

considering all features, whereas a random forest randomly

selects observations and specific features to build multiple

decision trees and then merges them together to obtain a higher

accuracy and stability prediction.

K-Nearest Neighbor (KNN): The principle of this model

is to classify a point according to its distance from the k nearest

neighbor points. The decision is taken by the majority vote of

its neighbors.

Support Vector Machine (SVM): The algorithm of the

support vector machine aims to find a hyper plane to maximize

the separation margin between two classes. The optimized

hyper plane can be expressed mathematically by:

𝑤𝑇𝑥 + 𝑏 = 0 (7)

where, 𝑤 is the vector of weights, 𝑥 is an input vector and 𝑏

represents the bias.

Multi-Layer Perceptron (MLP): is the neural network

algorithm. MLP includes a network of artificial neurons

(nodes). Three types of nodes are connected to each other:

input nodes, hidden nodes, and output nodes. The node to node

connection is adjustable.

4.5 Performance evaluation

To evaluate the performance of the IDS, many evaluation

metrics are calculated using the values in the confusion matrix.

The description of these values is as follows:

True Positive (TP): the number of records correctly

classified to the Normal class.

True Negative (TN): the number of records correctly

classified to the Attack class.

False Positive (FP): the number of Normal records

incorrectly classified to the Attack class.

False Negative (FN): the number of Attack records

incorrectly classified to the Normal class.

Based on the above values, the most commonly used

evaluation metrics are given by the following formulas:

𝑻𝑷 𝒓𝒂𝒕𝒆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

𝑻𝑵 𝒓𝒂𝒕𝒆 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (9)

𝑭𝑷 𝒓𝒂𝒕𝒆 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (10)

𝑭𝑵 𝒓𝒂𝒕𝒆 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (11)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃 +𝐹𝑁
 (12)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13)

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14)

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (15)

4.6 Evaluations and results

The results of our experiments are presented in this section.

Firstly, we measure the classification evaluation metrics of the

three datasets with full features. Then, we reduced datasets

dimension using the three popular correlation methods cited

above and we evaluate each algorithm based on the best

hyperparameters. Figure 5, 6 and 7 show the results.

(a) Accuracy

208

(b) False Positive rate

(c) Precision

(d) F1-Score

Figure 5. Performance on the KDD99 dataset

Figure 5 shows the performance of the different classifiers

with various dimension of the KDD99 dataset. As shown in

the Figure, all the classifiers used in this experiment have

similar performance in terms of accuracy, precision and F1

score, with rates that can reach 95 %, 100 % and 96 %,

respectively. In addition, SVM and MLP give a good False

Positive Rate against the other algorithms, except the SSC (20),

SCC (16) and KTC (18). However, NB and RF give a very

high false positive rate especially with the reduced dimensions.

Figure 6 represents different evaluation metrics for the

different techniques on the NSL-KDD dataset. From this

figure, it can be seen that NB have less accuracy and F1-Score

values than other classifiers, with an average rate of 80 %; it

also provides a very high false positive rate, while the other

classifiers give good results except the case of reduced

dimensions. It is seen also that the DT classifier performs

better than the others with the different metrics, where the

accuracy reached a rate of 98 % with almost all dataset

dimensions, and a false positive rate not exceeding 2 % except

the SCC (26) and KTC (20).

(a) Accuracy

(b) False positive rate

(c) Precision

209

(d) F1-Score

Figure 6. Performance on the NSL-KDD dataset

Figure 7 shows the results of the experiments on the

UNSW-NB15 dataset. In this dataset, the best result is

performed by the KKN and LR algorithms, while the worst

result is obtained by the NB algorithm.

According to the above results, the best performances are

given by the DT and KNN algorithm. Furthermore, feature

selection techniques produce generally similar results to the

original data, sometimes worse than the original features.

There are only a few cases where these techniques provide

good performances.

(a) Accuracy

(b) False Positive Rate

(c) Precision

(d) F1-Score

Figure 7. Performance on the UNSW-NB15 dataset

5. CONCLUSION

Internet of Things is increasingly used and many related

applications appeared. However, the IoT is faced with a

security problem that needs to be solved, while considering the

constraints and challenges related to the IoT context.

In this paper, we have proposed a lightweight intrusion

detection model based on machine learning techniques. This

model can detect new attacks and provide double protection to

the IoT nodes against internal and external attacks.

In order to find the best classifier model, we evaluated

several machine learning classifier models using three

lightweight feature selection algorithms and tried to optimize

the parameters of each algorithm to get an efficient classifier

model with high accuracy and precision, as well as low false

negative. In the experiments, we used KDD99, NSL-KDD and

UNSW-NB15 dataset to learn and evaluate our model.

According to the results of our study, it is observed that DT

and KNN performed better than the other algorithms; however,

the KNN takes much time to classify compared to the DT

algorithm. Furthermore, with the three correlation methods

used to reduce datasets dimension such as PCC, SCC and KTC,

the classifiers produce good performance when the threshold

of the correlation coefficient is greater than 0.9; below this

threshold, performances are poor and sometimes unacceptable.

In the case of the datasets that relate to the extent of our study

210

area, it is found that the performance obtained on the NSL-

KDD dataset is better compared to the KDD99 and UNSW-

NB15 datasets.

In Future Work we will study other feature selection

methods combined with more machine learning algorithms

applied to real-time data from IoT devices.

REFERENCES

[1] Atzori, L., Iera, A., Morabito, G. (2010). The Internet of

Things: A survey. Computer Network, 54(15): 2787-

2805. https://doi.org/10.1016/j.comnet.2010.05.010

[2] Weiser, M. (1991). The computer for the 21st century.

Scientific American, 265(3): 94-105.

[3] Sedjelmaci, H., Senouci, S.M., Al-Bahri, M. (2016).

Lightweight anomaly detection technique for low-

resource IoT devices: A game-theoretic methodology.

IEEE ICC - Mobile and Wireless Networking

Symposium. https://doi.org/10.1109/ICC.2016.7510811

[4] Raza, S., Wallgren, L., Voigt, T. (2013). SVELTE: Real-

time intrusion detection in the Internet of Things. Ad Hoc

Networks, 11(8): 2661-2674.

https://doi.org/10.1016/j.adhoc.2013.04.014

[5] Anand, A., Patel, B. (2012). An overview on intrusion

detection system and types of attacks it can detect

considering different protocols. International Journal of

Advanced Research in Computer Science and Software

Engineering, 2(8): 94-98.

[6] Rajasegarar, S., Leckie, C., Palaniswami M. (2008).

Anomaly detection in wireless sensor networks. IEEE

Wireless Communications, 15(4): 34-40.

https://doi.org/10.1109/MWC.2008.4599219

[7] Li, W.C., Yi, P., Wu, Y., Pan, L., Li, J.H. (2014). A new

intrusion detection system based on KNN classification

algorithm in wireless sensor network. Journal of

Electrical and Computer Engineering, 2014: 8 pages.

http://dx.doi.org/10.1155/2014/240217

[8] Thanigaivelan, N.K., Nigussie, E., Kanth, R.K., Virtanen,

S., Isoaho, J. (2016). Distributed internal anomaly

detection system for Internet-of-Things. 13th IEEE

Annual Consumer Communications & Networking

Conference (CCNC).

https://doi.org/10.1109/CCNC.2016.7444797

[9] Summerville, D.H., Zach, K.M., Chen, Y. (2015). Ultra-

lightweight deep packet anomaly detection for Internet of

Things devices. 2015 IEEE 34th International

Performance Computing and Communications

Conference (IPCCC).

https://doi.org/10.1109/PCCC.2015.7410342

[10] Huang, S.H. (2003). Dimensionality reduction in

automatic knowledge acquisition: A simple greedy

search approach. IEEE Transactions on Knowledge and

Data Engineering, 15(6): 1364-1373.

https://doi.org/10.1109/TKDE.2003.1245278

[11] Zhao, K., Ge, L. (2013). A survey on the Internet of

Things security. in Int'l Conf. on Computational

Intelligence and Security (CIS), pp. 663-667.

https://doi.org/10.1109/CIS.2013.145

[12] Leo, M., Battisti, F., Carli, M., Neri, A. (2014). A

federated architecture approach for internet of things

security. in Euro Med Telco Conference (EMTC), pp. 1-

5. https://doi.org/10.1109/ EMTC. 2014. 6996632

[13] Oh, D., Kim, D., Ro, W.W. (2014). A malicious pattern

detection engine for embedded security systems in the

Internet of Things. Sensors, 14(12): 24188-24211.

https://dx.doi.org/10.3390/s141224188

[14] Sherasiya, T., Upadhyay, H., Patel, H.B. (2016). A

survey: Intrusion detection system for Internet of Things.

International Journal of Computer Science and

Engineering (IJCSE), 5(2): 91-98.

[15] Zarpelão, B.B., Miani, R.S., de Alvarenga, S.C. (2017).

A survey of intrusion detection in Internet of Things.

Journal of Network and Computer Applications, 84(C):

25-37. http://dx.doi.org/10.1016/j.jnca.2017.02.009

[16] Alrajeh, N.A., Khan, S., Shams, B. (2013). Intrusion

detection systems in wireless sensor networks: A review.

International Journal of Distributed Sensor Networks,

2013: 7 pages. https://doi.org/10.1155/2013/167575

[17] Liao, H.J., Richard Lin, C.H., Lin, Y.C., Tung, K.Y.

(2013). Review intrusion detection system: A

comprehensive review. Journal of Network and

Computer Applications, 36(1): 16-24.

https://doi.org/10.1016/j.jnca.2012.09.004

[18] Maharaj, N., Khanna, P. (2014). A comparative analysis

of different classification techniques for intrusion

detection system. International Journal of Computer

Applications, 95(17): 22-26.

http://dx.doi.org/10.5120/16687-6806

[19] Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P.L.,

Iorkyase, E., Tachtatzis, C., Atkinson, P. (2016). Threat

analysis of IoT networks using artificial neural network

intrusion detection system. 2016 International

Symposium on Networks, Computers and

Communications (ISNCC).

https://doi.org/10.1109/ISNCC.2016.7746067

[20] Roman, R., Zhou, J.Y., Lopez, J. (2006). Applying

intrusion detection systems to wireless sensor networks.

In IEEE Consumer Communications & Networking

Conference (CCNC 2006), pp. 640-644.

https://doi.org/10.1109/CCNC.2006.1593102

[21] KDD cup 99 Intrusion detection dataset.

http://kdd.ics.uci.edu/databases /kddcup99/

kddcup.data_10_percent.gz, accessed on March 1, 2019.

[22] NSL-KDDDataset,

https://www.unb.ca/cic/datasets/nsl.html, accessed on

March 1, 2019.

[23] Nour, M., Slay, J. (2015). UNSW-NB15: A

comprehensive data set for network intrusion detection

systems (UNSW-NB15 network data set). Military

Communications and Information Systems Conference

(MilCIS). https://doi.org/10.1109/MilCIS.2015.7348942

[24] Hasan, M.A.M., Nasser, M., Ahmad, S., Molla, K.I.

(2016). Feature selection for intrusion detection using

random forest. Journal of Information Security, 7(3):

129-140. https://doi.org/10.4236/jis.2016.73009

[25] Paliwal, S., Gupta, R. (2012). Denial of-service, probing

& remote to user (R2L) attack detection using genetic

algorithm. International Journal of Computer

Applications, 60(19): 57-62.

https://doi.org/10.5120/9813-4306

211

https://doi.org/10.1016/j.comnet
https://ieeexplore.ieee.org/author/38320621600
https://doi.org/10.1109/MWC.2008.4599219
https://doi.org/10.1109/
https://dx.doi.org/
http://dx.doi.org/
https://doi.org/10.1155/
http://dx.doi.org/
https://ieeexplore.ieee.org/abstract/document/7348942
https://ieeexplore.ieee.org/abstract/document/7348942
https://ieeexplore.ieee.org/abstract/document/7348942

