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 The glucose is an important source of fuel for the body. The binding affinity is an essential 

indicator of the interaction of a glucose molecule with its binder. This paper proposes a novel 

machine learning model for predicting the binding affinity of a small glucose molecule with 

the binder. Seven regression algorithms were compared on a dataset is generated based on 

Molecular Mechanics-Generalized Born and Surface Area (MM-GBSA). Through the 

comparison, Random Forest and Decision Tree were selected for our model, in light of their 

robustness and accuracy. The established model predicts binding affinity from the interaction 

properties of compounds and glucose, which are obtained through GLIDE program from 

Schrödinger software suite 2018-4. Finally, the prediction accuracy of our model was 

confirmed through k-fold cross-validation. Our research provides an efficient and low-cost 

method for screening of molecules during the development of glucose binders. 
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1. INTRODUCTION 

 

Supra molecular chemistry continues to grow with an 

accelerated pace in biomolecular recognition [1]. It was made 

possible in developing a synthetic receptor for glucose 

recognition by mimicking the properties of naturally available 

glucose binding proteins [2]. Glucose is an essential 

carbohydrate and standard part of the daily meal. The brain of 

an organism uses half of the glucose amount present in our 

body. It involves in many diseases such as diabetes [3], 

hyponatremia [4], seizures [4], and cancer [5, 6]. It plays a 

significant role in the biological process such as the 

development of multicellular organisms, cell infection 

pathogens, distribution, and reactivity of proteins within host 

cells [7, 8]. Homeostasis of glucose concentration in tissues is 

essential for the normal functioning of our body. The 

imbalance of glucose concentration leads to severe health 

conditions. Monitoring glucose levels/concentration helps 

patients to keep control over their glucose levels through diet. 

Hence, there is a need to develop new techniques that will help 

in improving human health quality [9, 10]. Novel glucose 

binding molecules are required for developing these types of 

techniques. Binding affinity plays a crucial role that decides 

the fate of compound interaction towards glucose molecules. 

It is a challenging issue to recognize the glucose molecule in a 

solvent. Because of its abundant hydroxyl groups on glucose 

molecules and their interaction with the surrounding solvent 

medium makes a difficult task for designing a novel synthetic 

receptor [11, 12]. 

In this paper, a novel computational model is developed for 

predicting the binding affinity of a small glucose binder 

molecule. The proposed prediction model reduces not only 

computational time but also reduces the preliminary cost for 

the screening of molecules during the development of a novel 

glucose binder. The proposed dataset is generated by utilizing 

the basic concept of Molecular Mechanics-Generalized Born 

and Surface Area (MM-GBSA) [13]. The proposed 

computational model predicts binding affinity from the 

interaction properties of compounds and glucose. Those 

molecular interaction properties between glucose and small 

molecules are obtained through GLIDE [14] program from 

Schrödinger software suite 2018-4. K-fold cross-validation 

[15] is performed to measure the robustness of the best 

predictive model. The two well-known prediction techniques 

namely Random Forest [16], and Decision Tree [17] are 

utilized for the construction of the proposed framework which 

is more accurate and robust. 

The remaining structure of this paper is organized as 

follows. Section 2 describes the preliminary concepts of the 

glucose molecule. The proposed computational prediction 

model is presented in Section 3. Experimental results and 

discussions are presented in Section 4. The concluding 

remarks are drawn in Section 5. 

 

 
2. BACKGROUND 

 
This section describes the natural glucose binding proteins 

followed by machine learning techniques.  

 

2.1 Natural glucose binding molecule 

 

Lectins are natural glucose binding proteins. They are 

widely present in plants, animals, and bacteria [18-20]. 

However, they have excellent selectivity and a very low 

binding affinity towards sugars [21, 22]. Hydrogen bonds play 

a vital role in specificity and affinity during receptor sugar 

interactions. These interactions are generally stable and 

exhibit optimal geometries. These are categorized into three 

main types, namely cooperative hydrogen bonds, bidentate 
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hydrogen bonds, and hydrogen networks hydrogen bonds. The 

residues are present in sugars binding sites that have polar side 

chains with at least two functional groups having three 

hydrogen bond types. Sugars show other interactions like van 

der Waals forces with carboxylate side chains and aromatic 

residues in π−π stacking with sugar rings [23, 24]. MM-GBSA 

[13] is used to estimate relative binding affinity from the 

PRIME [25] program. Binding energies are computed by MM-

GBSA [13] method. The small binding molecules are expected 

to provide a good binding affinity. 

 

2.2 Motivation 

 

In the past few years, supramolecular chemistry boomed up 

in the field of diagnosis and therapy [1]. Davis et al. [2, 26-29] 

proposed different biomimetic receptors for carbohydrates 

known as synthetic lectins. Jiang et al. [30-33] proposed 

simple boronic acids and their aggregates for saccharide 

sensing. However, the receptors have their disadvantages. 

Such as the performance of the existing glucose binding 

molecules is not optimal. To overcome these problems, a novel 

computational prediction model is developed that predicts the 

binding affinity of small molecules towards glucose. It helps 

researchers to design and develop a selective glucose binding 

molecule. According to the best of the author's knowledge, 

there is no prediction model available in the literature for 

glucose binding small molecules. 

 
 

3. PROPOSED APPROACH 

 

3.1 Proposed prediction model 

 

The proposed computational prediction model consists of 

three main phases, namely data generation, model 

development, and prediction. In the data generation and 

preparation phase, the annoying and biased features are 

removed. The importance of features is computed as these are 

dramatical effects on the performance of the proposed model. 

In the second phase, the prediction model is developed. The 

predictive model is based on molecular interaction and binding 

energy properties. The last phase is the prediction of the 

binding affinity of glucose binder by the proposed prediction 

model. Figure 1 shows the proposed prediction model. The 

detail description of these phases is mentioned in the preceding 

subsections. 

 

 
 

Figure 1. Proposed computational prediction model 

3.2 Data generation and data pre-processing 

 

The computational model is developed for the prediction of 

binding affinity from interaction data. The data cleaning 

process removes duplicate tuples and missing values. The 

feature selection process is carried out through the Pearsons 

Correlation method after the cleaning dataset. And Selected 

features were used for constructing a prediction model. 

Seventy percentage data from the entire dataset is used for 

training the model. The model is tested with the remaining 

thirty percentage testing data. Figure 2 shows the methodology 

that is used to generate molecular interaction and binding 

affinity. 

 

 
 

Figure 2. Data collection procedure through the Molecular 

and Binding affinity calculation approach 

 

 
 

Figure 3. Hydrogen bonding (blue lines) between 

electronegative atoms of glucose and compound with ZINC 

ID ZINC40222112 

 

3.2.1 Glucose structure preparation and grid generation 

Glucose is a non-amino acid biomolecule. 3D structure of 

glucose in glucopyranose form was retrieved from PubChem 

[27] compound database. Macro Model [34] program is used 

for conformational search and optimizing glucose molecule 

structure using OPLS3e [35] forcefield. A grid box is 

generated on prepared glucose molecule with dimensions 40, 

40, and 40 as x, y, and z coordinates, respectively. 

 

3.2.2 Small molecule preparation 

Forty thousand natural compounds are extracted from the 

ZINC database [36] and prepared using the LigPrep program 

[37]. It filters compounds that are based on drug-likeness rules 
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by using QikProp and Epik module [38]. It is used for 

generating possible protonation states between pH 7 +/- 2. 

 

3.2.3 Molecular Interaction and Binding affinity calculations 

The interaction studies and scoring of small compounds 

with glucose molecules are performed by the Standard 

Precision (SP) method of GLIDE [14] program. From 40,000 

molecules, only 13,000 are screened out. After that, the 

screened-out compounds are submitted to MM-GBSA [13] 

method that presents in the PRIME [25] program. OPLS3e 

[35] is used to compute the binding affinity of screened out 

compounds. Figure 3 shows the interactions between glucose 

and compound with ZINC ID ZINC40222112. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

4.1 Dataset and features used 

 

Forty thousand small molecules of natural compounds are 

taken from the ZINC [36] compound database. After that, 

thirteen thousand small particles are screened out from forty 

thousand using the SP method. The molecular interactions 

towards glucose are generated using GLIDE [14]. Based on 

small molecules interact with glucose, the binding affinity 

energies are produced using Molecular Mechanics-

Generalized Born Surface Area (MM-GBSA) method [13]. 

Sixty-nine features are selected using PRIME [25]. MM-

GBSA [13] calculates the binding free energies for molecules 

by combining molecular mechanics calculations and 

continuum (implicit) solvation models. The implicit solvent 

models are often used to estimate free energies of solute-

solvent interactions. Table 1 shows the sample dataset of small 

glucose binding molecules. 

 

Table 1. Sample dataset 

 

Affinity 

(KCal/mol) 

Coulomb …. Hbond 

-15.90 -13.57 …. -1.38 

-15.27 -10.47 …. -0.51 

-17.11 -7.29 …. -0.53 

-16.82 -14.10 …. -0.68 

-13.44 -10.55 …. -0.85 

 

4.2 Performance measures 

 

To demonstrate the performance of the proposed model, it 

is evaluated on four well-known performance measures such 

as root mean square error (RMSE) [40], correlation [41], 

coefficient of determination (R2) [42], and accuracy [43]. For 

the measurement of the robustness of the proposed predictive 

model, the K-fold cross-validation [15] method is used. To 

perform this validation, the original dataset is randomly 

portioned into k equal size subsets. A single subset is kept as 

the validation data for testing purposes, and remaining subsets 

are used for training. This validation process is repeated for k 

times(folds). By this random sub-sampling, all observations 

are used for both training and validation. 

 

4.3 Algorithms used for model development and their 

parameter setting 

 

The eleven machine learning algorithms are used for the 

prediction of binding affinity of small compounds towards 

glucose molecules. The methods are available in Python [44] 

open-source licensed under GNU GPL. Scikit-learn [45] 

package from python is used for building the prediction 

models. These are Random Forest (RF) [16], Decision Tree 

(DT) [17], Support Vector Machine (SVM) [17, 46], Linear 

Method(LM) [17], Neural Network(NN) [17], Elastic Net(EN) 

[17, 47], K-Nearest Neighbors (KNN) [17, 48], Lasso [49], 

Random Sample Consensus(RANSAC) [17], Ridge [17], 

Stochastic Gradient Descent(SGD) [17]. Table 2 shows the 

parameters used for model development. 

 

Table 2. Parameter setting of the involved computational 

techniques 

 
Model Method Package Parameters 

DT tree Sklearn.tree MaxDepth=30 

RF rf randomForest MaxDepth=30 

Randstate=7n 

SVM svr e1071 nu=10 

LM lm glm None 

NN mlp MLP hlayers=10 

MaxNWts=10000 

Enet ElasticNet Sklearn.linear Max iter=1000 

Random state=7 

KNN KNRegres

sor 

Sklearn.neigh

bors 

n-neighbors=10 

n-jobs=1000 

Lasso Lasso Sklearn.linear Max iter=1000 

RANS

AC 

RANSAC 

Regressor 

Sklearn.linear Max trails=100 

Ridge Ridge Sklearn.linear Normalize-True 

Max iter=1000 

SGD SGD 

Regressor 

Sklearn.linear None 

 

4.4 Performance analysis 

 

The eleven machine learning methods are used for the 

prediction of binding affinity. From the original dataset, 

seventy percentage data are used for training and the 

remaining thirty percentage is used for testing for all the 

methods mentioned above. Table 4. shows the performance 

comparison of these methods in the prediction of binding 

affinity based on RMSE [40], correlation [41], R2 [42], and 

accuracy [43]. The results reveal that the Random Forest [16] 

method performs better than the other machine learning 

methods. Here, 10-fold cross-validation [15] is used to 

measure the robustness of the predictive model. RMSE, 

correlation, R2, and accuracy for ten folds in the prediction of 

binding affinity energy values. Cross-validation provides that 

Random Forest and Decision Tree models are better results 

than the other prediction models. Figure 4 shows 10-fold 

cross-validation on testing dataset in the prediction of Binding 

affinity using Random Forest and Decision Tree models.  

The value of RMSE obtained from Random Forest, and 

Decision Tree is 0.04 and 0.09, respectively. The correlation 

predicted by the Random Forest model is 0.99, and the 

Decision Tree shows 0.99, respectively. The calculated R2 

values for the Random Forest method and Decision Tree are 

0.99 and 0.99, respectively. The computed accuracy of the 

Random Forest method with ±0.5 acceptance error is 99.03 % 

and the Decision Tree method is 97.14 % with ±0.5 acceptance 

error respectively. Figure 5 shows a scatter plot of regression 

graphs for Random Forest and Decision Tree models.
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(a) RMSE 

 
(b) Correlation 

 
(c) R2 

 
(d) Accuracy 

 

Figure 4. 10-fold cross-validation on the testing dataset in 

the prediction of Binding affinity using random forest and 

decision tree 

 

 
(a) Random forest prediction model 

 
(b) Decision Tree prediction model 

 

Figure 5. Scatter plot between actual vs. predictive values of 

binding affinity on the testing dataset 

 

Table 3. Comparison of computational methods in the 

prediction of MM-GBSA (binding affinity) with an 

acceptance error ±0.5 

 
Model RMSE Corr R2 Acc in % 

DT 0.09 0.99 0.99 97.14 

RF 0.04 0.99 0.99 99.03 

SVM 0.35 0.98 0.96 83.96 

LM 0.00 0.99 0.99 100 

NN 0.44 0.92 0.84 71.03 

ENet 1.01 0.97 0.95 31.87 

K-NN 1.08 0.93 0.87 31.60 

Lasso 1.22 0.97 0.95 33.24 

Ransac 331.29 0.02 0.00 20.92 

Ridge 0.68 0.98 0.96 47.33 

SGD 1153.38 -0.00 2.78e 0.74 
Note: 1. Corr = Correlation between actual and predicted values. 

2. Acc = Accuracy in % with ±0.5 acceptance error. 

 

4.5 Validation 

 

The proposed prediction framework is validated over Inter 

Bio (IB) Screen [50] dataset. The values of correlation 

obtained and R2 are 0.99 and 0.98, respectively. The RMSE 

and accuracy derived from the proposed framework are 0.08 

and 95 %, respectively. Table 4 shows the actual and predicted 

binding energies of compounds from IB Screen databases by 

the Random Forest prediction model. 

 

Table 4. Actual and predicted binding energies of validation 

compounds 

 
Actual value of 

binding affinity 

The predicted value 

of binding affinity 

-18.19 -18.18 

-13.61 -13.66 

-17.00 -17.02 

-16.46 -16.57 

-16.32 -16.33 

-5.43 -4.77 

-21.08 -21.02 

-9.56 -9.33 

-11.51 -11.65 

 

However, there is a significant increase in the field of supra-

chemistry in the recognition of simple glucose molecules [1]. 

There are failures during experimental evaluation by wastage 

of funds and chemicals. Glucose recognition in the aqueous 

condition is a challenging task because of abundant hydroxyl 

groups around glucose, that can be easily embedded in the 

solvent [11, 12]. We screened out thirteen thousand small 
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molecules from forty thousand from the ZINC database by 

using the SP method of GLIDE module. The screened 

molecules are subjected to energy calculations using the MM-

GBSA method present in the PRIME tool of Schrödinger suite. 

The prediction models showed promising results in 

diagnosing and drug discovery. Therefore, there is a high need 

for prediction approaches for the screening and selection of a 

suitable glucose binder. These prediction approaches are more 

advanced than the traditional computational programs that 

consume a lot of time and computational power. 

 

 

5. CONCLUSIONS 

 

In this paper, a novel computational prediction model is 

used to predict the binding affinity of a glucose molecule with 

its binder. Eleven different learning methods are utilized in 

developing this predictive model. It is found that Random 

Forest and Decision Tree provide better predictions than the 

other methods. The robustness of the best prediction model is 

cross-validated through the K-fold method. However, the 

Linear Regression model provides the lowest RMSE, high R2, 

and high correlation even with ±0.5 acceptance error. Linear 

Regression model is neglected due to over-fitting, which is not 

ideal for the prediction model. The proposed prediction model 

reduces the computational cost of running Molecular 

Mechanics (MM) and Molecular Dynamics (MD). The 

computational experiment results provided a prediction 

framework with RMSE from Random Forest, and Decision 

Tree is 0.04 and 0.09, respectively. The correlation Random 

Forest model is 0.99, and the Decision Tree shows 0.99, 

respectively. The R2 values for the Random Forest method and 

Decision Tree are 0.99 and 0.99, respectively. And the 

accuracy of the Random Forest method with ±0.5 acceptance 

error is 99.03 % and the Decision Tree method is 97.14 % with 

±0.5 acceptance error respectively. 
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