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 Mammography provides a useful tool for breast cancer detection. However, many doctors have 

difficulty in making the right decision based on mammograms. This paper aims to set up a 

deep learning (DL) architecture that can effectively differentiate between benign and 

malignant tumors. Specifically, a new triplet convolutional neural network (CNN) was 

established with three subnetworks, each of which contains a succession of layer blocks. Each 

block consists of two convolutional layers, a dropout layer and a max-pooling layer. During 

operation, the region of interest (ROI) extracted from the mammogram is imputed to the first 

subnetwork, and processed by the Canny filter. The filtered results become the input of the 

second subnetwork, while the third subnetwork takes the whole image as input. To verify the 

effectiveness of our architecture, a set of 500 images from 301 patients was extracted from the 

DDSM database and augmented to 4,000 images, and divided into a training set (80 %) and a 

testing set (20 %). The results show that our architecture achieved an accuracy of 93.13 %, a 

sensitivity of 96 % and a specificity of 90.25 %. This research provides a desirable way to 

identify breast cancer based on mammography. 
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1. INTRODUCTION 

 

With nearly 1.7 million new cases diagnosed in 2012, 

according to World Cancer Research Fund [1], Breast cancer 

is the most commonly occurring cancer in women and the 

second most common cancer overall. It is the fifth most 

common cause of death for women [2].  

Facing this challenge, millions of mammographic exams are 

carried out each year mainly through screening programs 

implemented to detect breast cancer at an early stage. The 

imaging such as mammography is an important part of the 

breast cancer screening assessment process [3]. 

Although, mammography is by far the most common 

modality and has consequently enjoyed the most attention, the 

vast amount of data generated in screening programs using 

mammography has to be inspected for signs of cancer by 

experts, which is a hard task in time and in budget. 

Therefore, there is a clear need for a system providing 

automatic diagnostic [4]. In order to assist radiologist’s 

interpretation Computer Aided Diagnosis (CAD) systems 

have been developed to improving clinician’s accuracy [5-6]. 

So, especially after the recent advances in deep neural 

networks (DNN), improvements in biomedical images 

analysis could be exploited to enhance the performance of 

CAD [7-8]. In following we will cite some recent studies: 

Li et al. [9], proposed an improved DenseNet neural 

network model by replacing the first convolutional layer with 

the Inception structure. They experiment their model on a set 

of images counting a 2042 case (i.e. 1011 malignant and 1031 

benign) provided by the First Hospital of Shanxi Medical 

University.  

Wang et al. developed context-sensitive deep neural 

networks (DNN) where a simplified version of AlexNet based 

on deep CNN with five convolutional layers and two FC layers 

is used in the classification of the segmented masses as benign 

or malignant [10].  

AL-antari et al. [11] developed a completely integrated 

CAD system involving detection, segmentation and 

classification of breast masses. Applied to INbreast database, 

their proposed deep convolutional neural network 

classification including masses segmentation. 

Al-masni et al. [12] proposed a CAD system with YOLO 

convolutional neuronal network model which offers the 

possibility to learn ROIs and their background at the same time. 

Thus, their system can achieve breast masses detection and 

classification in a single framework. They used an original 

database of 600 cases and an augmented dataset of 2400 

images.  

Gao et al. [13] proposed to use emerging technology in the 

field of contrast-enhanced digital mammography (CEDM), 

which includes a low energy (LE) image similar to full field 

digital mammography (FFDM), and a recombined image 

leveraging tumor neoangiogenesis similar to breast magnetic 

resonance imaging (MRI). Their contribution lies in 

addressing the limited accessibility of CEDM and developing 

SD-CNN to improve the breast cancer diagnosis using FFDM 

in general. They develop a 4-layer shallow CNN to discover 

the nonlinear association between LE and recombined images 

from CEDM. To evaluate the validity of their approach the 

authors used 89 FFDM cases from INbreast. 

The CheXNet model was acquired as pre-trained deep 

learning model [14]. CheXNet is a 121-layers DenseNet model, 
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which layers are grouped into 4 dense blocks [18]. As 

mammograms data in DDSM database consists of four images 

per case, the authors proposed a new model with four parallel 

input paths. Several configurations for the new model were 

tested. 

Al-antari et al., [15] proposed a CAD system utilizing one 

of the deep learning algorithms namely Deep Belief Network 

(DBN), to classify breast masses into normal, benign, or 

malignant. They train their proposed DBN-based CAD system 

using the DDSM database. 

Swiderski et al. [16], proposed CNN architecture with three 

convolution layers and two Fully Connected layers on the 

output. As input, they extracted ROIs from DDSM images 

created on the basis of the non-negative matrix factorization 

(NMF) and statistical self-similarity. The total number of ROI 

images used in experiments was 11218.  

Levy et al. [17], fine-tuned the AlexNet and GoogLeNet 

model to classify lesions in mammograms extracted from 

DDSM database. For both the AlexNet and GoogLeNet, they 

use the same base architecture but replace the last fully-

connected (FC) layer to output 2 classes. They also remove the 

two auxiliary classifiers from the GoogLeNet. 

Therefore, in this paper, we propose a new scratch-based 

CNN model with three inputs to distinguish between 

malignant or benign lesions in mammograms. The data 

augmentation methods are applied on a DDSM sample to 

avoid the overfitting of the model caused by small data set. 

The remainder of this paper is organized as follows: section 

2 describes our proposed CNN model with the explanation of 

the motivation that led to this proposal. Section 3 presents the 

experiments performed and the results obtained by evaluating 

the performance of the proposed CNN in identifying the 

lesions. Finally, the conclusion is given in section 4. 

 

 

2. METHODOLOGY 

 

2.1 Motivation 

 

Observation of mammographic images and comparing 

those representing abnormal cases to those that represent 

normal cases, has led us to conclude that the regions of interest 

detected in images of pathological cases are often more intense 

than the other selected regions in the images of normal cases. 

This finding is clearly visible in Figure 1 where the image (a) 

shows an example from the DDSM database that contains a 

pathological area marked in red by a domain expert while the 

image (b) shows another example from the same database 

representing a normal case with less intense regions. 

 

       
a)                                        b) 

 

Figure 1. Examples of a) a pathological region  

and b) a normal case 

 

To confirm this finding, we applied the canny filter to a 

region containing abnormalities (Figure 2.a) and on another 

region in the center of the normal cases of mammography 

(Figure 2.b). 

 

      
a)                     b) 

 

Figure 2. Application of canny filter on a) the pathological 

region and b) a center region of a normal case 

 

As illustrated in the Figure 2, since the area of the Figure 

2.a representing a pathological case has a higher intensity, so 

it has less of detected edges by canny filter. Inversely, as the 

area of the Figure 2.b representing a normal case, has less 

intensity so it has more contours detected by Canny. 

But exploiting only the filtered region of interest (ROI) 

yielded insufficient results. So, we have proposed to add the 

context rounding the ROI. Thus, we have associated the ROI 

and the whole mammographic image to the filtered ROI. 

 

2.2 Our proposed model 

 

In this study, we propose a classifier which differentiates 

between benign case and malignant case in mammograms. The 

model takes into account simultaneously three data sources as 

inputs (Figure 3). (1) An image window covering the region of 

interest. (2) The canny filter applied to the same image 

window used in first input and we pass it as input. (3) The 

whole image considered as context surrounding the region of 

interest. 

 
 

Figure 3. An area of image is extract from the region of 

interest and the same area is extract and filtered by canny 

 

Accordingly, the classifier that we propose is formed by 

three subnetworks, the first one for the ROI, the second one 

for the filtered ROI and the third one is consecrated to the 

whole image, as illustrated in Figure 4. 

The architecture of each subnetwork consists on a 

succession of layer blocks containing two conventional 

(Conv) layers, one dropout layer and one max-pooling 

(Pooling) layer. 

The first subnetwork in the CNN model is formed by only 

one block, the second subnetwork is formed by two blocks and 

the third one is formed by three blocks.  

Afterwards, the three subnetworks are concatenated and 

followed by two fully connected layers (FC). In the following, 

the description of these layers is detailed. 

Conventional layer extracts the features from the input and 

produces as output a features map of pixels. The number of 

these output pixels depends on the value (either ‘valid’ or 

‘same’) affected to the padding parameter of the layer. With 
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the value of ‘valid’ the input volume is not zero-padded and 

the spatial dimensions are reduced. In our case, we opted to 

preserve the spatial dimensions by choosing the value of 

‘same’. The impact of this option on the performance will be 

discussed later in the section 3.5. 

So, in the first subnetwork, the features are generated by 

convolving its input ROI with 32 conventional kernels. A 

feature map of 5×5 pixels is preserved and produced. In the 

same way, the second subnetwork convolves its input filtered 

ROI with 32 conventional kernels for producing a feature map 

of 5×5 pixels. For the third subnetwork, a feature map of 

100×100 pixels are produced by convolving its input whole 

image with 32 conventional kernels. 

The size of the convolutional kernel is decreased from 3×3 

to 1x1 in the case of the first and second subnetwork due to the 

small size of input (i.e. 5×5 pixels). However, all the 

convolutional kernels are set to be 3×3 in size in the third 

subnetwork. 

The dropout layer is used to prevent overfitting by randomly 

selecting nodes to be dropped-out with a probability of 50 % 

each weight update cycle.  

The max-pooling layer achieves a non-linear down-

sampling of the features maps by partitioning the input 

features into a set of non-overlapping rectangles and for each 

sub-region, (i.e. with stride 2) outputs the maximum value.  

With 10 neurons and a “Relu” activation function, the first 

fully connected takes as input all the features from the 

concatenated three subnetworks. 

 

 
 

Figure 4. The proposed triplet CNN architecture 

 

Finally, a second fully connected with two neurons and a 

sigmoid activation function gives the probability if an input is 

belonging to one of the two classes (i.e. malign or benign). 

 

 

3. EVALUATION 

 

3.1 Primary database 

 

In this study, we used a set of 500 images taken from 301 

cases (i.e. 151 malignant cases and 150 benign cases) that we 

selected randomly from Digital Database for Screening 

Mammography (DDSM) [19] to train and test our proposed 

CNN model. After being created by the University of South 

Florida, the DDSM database has been widely used in research 

work related to breast cancer diseases. It consists of 2620 cases 

of 4 mammograms taken in two views: mediolateral oblique 

(MLO) and craniocaudal (CC). In each mammogram, 

suspicious lesions are marked by domain experts and 

explained by information of ground truth. 

 

3.2 Normalization 

 

In order to prepare the mammographic images for 

exploitation by our CNN model, we resize the whole images 

to 100×100 pixels. Concerning the ROIs (i.e. ROIs and 

Filtered ROIs), we used the boundaries of the lesions marked 

by the domain experts to crop regions of 5×5 pixels from the 

resized images [19-20]. 

 

3.3 Augmented database 

 

To train deep learning models and avoid overfitting 

problems, the use of a biggest database is recommended. It has 

been proven in the literature [21] that mammographic mass 

classification can be tackled effectively by employing an 

extended augmentation scheme. That is why; we have opted to 

use the technique of data augmentation to increase the training 

data. 

Since we use the whole image as input to our CNN model 

and to avoid producing unrealistic images, we avoid rotating 

images in the data augmentation as used in the literature [9-12, 

17].  

Indeed, we have augmented our original database eight 

times by applying a zoom two times: 1.3, 1.5 and an elastic 

transformation to images. These transformed images were also 

flipped horizontally. So, we obtained an augmented database 

of 4000 images (i.e., the 500 original plus augmented data). 

 

3.4 Evaluation metrics 

 

In order to evaluate the proposed method, we need objective 
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evaluation metrics to determine the system’s capability. 

Effectively, in our study we need to be careful with our false 

negative, in other words we don’t want to classify a patient as 

no malignant when he is in fact cancer positive. The false 

positive is equally important in our study that we don’t want 

to mistakenly classify any patient as malignant and uselessly 

subject him to painful and expensive treatments. 

For that, we choses additionally to the accuracy metric to 

uses the sensitivity and specificity metrics which are defined 

as follows [11-12]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (1) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (3) 

 

TP (True Positive) is the number of images accurately 

identified as malignant. FP (False Positive) gives the number 

of images mistakenly classified as malignant. TN (True 

Negative) refers to the number of images accurately identified 

as benign. FN (False Negative) is the number of images 

mistakenly classified as benign. 

 

3.5 Results 

 

In Table 1, we summarize the validation results obtained by 

our proposed CNN classifier with various model structures. 

Each model represents the combination among of 

combinations blocks with which the subnetwork 1, 

subnetwork 2 and subnetwork 3 can be formed. 

 

Table 1. Results obtained by our proposed CNN classifier 

with various model structures  

 

Model structure Accuracy Sensitivity Specificity 

111 86.63 93.00 80.25 

112 89.25 92.25 86.25 

113 88.50 85.50 0.915 

121 86.38 89.50 83.25 

122 90.75 90.50 91.00 

123* 93.13 96.00 90.25 

131 86.63 95.75 77.50 

132 89.88 86.00 93.75 

133 90.13 88.50 91.75 

211 88.38 90.00 86.75 

212 89.75 86.25 93.25 

213 87.38 99.00 75.75 

221 86.25 92.00 80.50 

222 89.25 92.75 85.75 

223 89.5 95.75 83.25 

231 85.36 98.00 72.75 

232 89.75 88.00 91.50 

233 89.75 85.25 94.25 

311 82.75 84.75 80.75 

312 89.75 91.25 88.25 

313 85.63 98.75 72.50 

321 86.13 87.25 85.00 

322 86.63 99.00 74.25 

323 92.38 96.75 88.00 

331 87.25 93.50 81.00 

332 90.88 90.50 91.25 

333 89.88 96.25 83.50 

(*123: means 1 layer block for subnetwork1, 2 layer blocks for subnetwork2 

and 3 layer blocks for subnetwork3). 

 

 
 

Figure 5. Training loss and accuracy on dataset 

 

As we can see in Table 1, the best model structure was the 

one formed with one layer block for the subnetwork1, two 

layer blocks for subnetwork2 and three layer blocks for the 

subnetwork3 (i.e. model structure: 123), achieving an 

accuracy of 93.13 %. This raw accuracy is confirmed by the 

fact that a sensitivity of 96 % and a specificity of 90.25 % are 

reached. 

These results (Table 1) obtained by our proposed CNN 

model by using a convolution layers with padding parameter 

tuned at ‘same’ which mean that the spatial dimensions of data 

at the input of the layer are preserved at its output. Against that, 

a less good results (an accuracy of 91.37 %, a sensitivity of 

92.25 % and a specificity of 90.5 %) are obtained by the 

similar model but with using the padding parameter of the 

convolution layer tuned on ‘valid’ which mean that the spatial 

dimensions of the data at the input of the convolution layer are 

allowed to be reduced at its output.  

In addition, the Figure 5 shows the loss curves of both the 

deep learning training and testing in continuous decrease. This 

finding proves that our proposed CNN model does not overfit, 

which guarantees it to keep the same prediction performance 

with new data. 

We have also explored the state-of-art methods using Deep 

Learning in breast cancer diagnosis system and compared our 

method with four methods from the literature (Table 2) that 

used DDSM database as training and testing dataset. As we 

can see, our proposed model is ranged against the others 

models as the better one. 

 

Table 2. Comparison between the performances of our 

proposed CNN model against others in the latest studies 

using DDSM database 

 

Reference Base Architecture Accuracy (%) 

Pardameana et al. [14] CheXNet 90.38 

 

M.A. Al-antari et al. [15] DBN 90.48 

 

Swiderski et al. [16] Scratch based 84.75 

 

Levy et al. [17] 

 

AlexNet 

GoogLeNet 

 

 

90 

92.29 

 

Our proposed model Scratch based 93.13 
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4. CONCLUSION

In this paper, a system based on deep learning for 

classification of lesions in mammograms is presented by 

proposing a CNN model which achieves benign and malignant 

classification of mammograms. In summary, according to the 

good results obtained by our proposed CNN model, we can 

conclude that developing a system based deep learning from 

scratch can gives improvement as well as the systems which 

use the transfer learning technique.  

Our future work includes using others features as inputs and 

others images databases. 
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