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 Considering the high accuracy needed for indoor positioning, this paper develops a novel 

indoor positioning algorithm for the wireless sensor network (WSN) in the following steps. 

First, the RSSIs of the network nodes were sampled and analyzed, and the excess errors were 

filtered to enhance positioning accuracy. Next, the initial position was iteratively obtained by 

the weighted centroid algorithm, and a correction matrix was developed to improve the Taylor 

series expansion (TSE), and the final position was determined through improved TSE iteration. 

The proposed positioning method was verified through simulation. 
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1. INTRODUCTION 

 

With the rapid development of mobile communication and 

terminals, the global positioning system (GPS), despite its 

excellent outdoor positioning effect, cannot fully support 

small-scale indoor location-aware services, owing to the 

complex channel environment and fast signal attenuation [1-

3]. 

One of the solutions to the above problem is to develop a 

wireless local area network (LAN) with low cost and small 

power based on the wireless sensor network (WSN) 

technology. The WSN is an emerging technique integrating 

sensing, communication and distributed processing. Through 

the cooperation between its nodes, the network can capture 

and process the real-time information of multiple objects in the 

monitoring area, and transmit the processed information to 

interested users. 

Node positioning technologies like the WSN takes 

positioning algorithm as the premise. The main positioning 

algorithms are based on field orientation, time different of 

arrival (TDoA), angle of Arrival (AoA), or received signal 

strength indicator (RSSI), or the coupling of these bases [4-6]. 

Thanks to its low hardware cost and simple implementation, 

the RSSI-based positioning algorithm becomes a research 

hotspot. In actual application, the proper position algorithm 

should be selected according to the specific environment and 

requirement. 

In this paper, a novel indoor positioning algorithm is 

developed for the WSN in the following steps. First, the RSSIs 

of the network nodes were sampled and analyzed, and the 

excess errors were filtered to enhance positioning accuracy. 

Next, the initial position was iteratively obtained by the 

weighted centroid algorithm, and the correction matrix was 

improved by Taylor series expansion (TSE), and the final 

position was determined through iteration. The proposed 

positioning method was verified through simulation. 

2. RSSI-BASED INDOOR POSITIONING MODEL 

 

In the indoor environment, electromagnetic wave signals 

are affected by the propagation path, which is different from 

the propagation in free space. The distance between two nodes 

in the WSN can be estimated by the signal strength of the 

sending node and the signal strength at the receiving node, i.e. 

the RSSI. The RSSIs in wireless transmission can be explained 

by the shadowing model [7, 8]: 
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where, 𝑝(𝑑) is the RSSI of the receiving node separated from 

the sending node by a distance of d; 𝑝(𝑑0) is the RSSI of the 

receiving node separated from the sending node by the 

reference distance 𝑑0; n is the path loss index; X is the cover 

factor. The path loss index depends on the external 

environment, and should be determined through actual 

measurement. The cover factor obeys the Gaussian random 

distribution and averages at zero. 

In practice, the shadowing model is often simplified. For 

convenience, the reference distance can be set to 1m. Then, the 
[𝑝(𝑑)]𝑑𝐵𝑚 = 𝐴 − 10𝑛 𝑙𝑔(𝑑)can be calculated by: 

 

( )10 lgRSSI A n d= −                                                           (2) 

 

The above equation can be rewritten as: 

 

10=10
A-RSSI

nd                                                                            (3) 

 

where, A is the attenuation factor of signal intensity when the 

sender-receiver distance is 1m. The value of A increases with 

its distance to the sending node. 
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Equation (2) is a popular model for RSSI positioning. With 

this equation, the sender-receiver distance can be calculated 

from the RSSI of the receiving node. This positioning method 

is suitable for the WSNs, which feature small-scale and low 

cost. 

 

2.1 Gaussian filtering 

 

In this paper, the measured RSSIs are processed by 

Gaussian filtering, to reduce probability error and improve the 

probability in the detection range. As a common filtering 

method for theoretical analysis, the Gaussian filter can 

eliminate excess errors and smooth measured RSSIs [9-12]. 

For the measured RSSIs obeying the distribution (𝜇, 𝜎2), 

the probability density function can be expressed as: 
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where, 𝜇 =
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; 

𝑅𝑆𝑆𝐼𝑘 is the RSSI measured in the k-th round; n is the number 

of measurement rounds. The greater the 𝜎 value, the smoother 

the Gaussian filter. Through repeated experiments, it is 

confirmed that the 𝜎 value should be greater than 0.6. Thus, 

the RSSI scope is 𝜇 + 0.15𝜎 < 𝑥 < 𝜇 + 3.09𝜎 . The 

measured RSSIs in the scope should be retained and taken 

average, and those outside the scope, i.e. excess errors, should 

be eliminated. 

Taking 100 receiving nodes of the same sending node as 

samples, the filtering effect can be judged by the standard 

deviation 𝜎𝑠 of the samples: 
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where, RSSI is the mean value of the samples; 𝑅𝑆𝑆𝐼𝑖  is the 

filtered value at each sampling point. The RSSIs processed by 

the Gaussian filter are presented in Figure 1. Obviously, the 

Gaussian filter eliminated the excess errors induced by 

environmental interference and short time interference. 

 

 
 

Figure 1. The filtered RSSIs of the Gaussian filter 

 

2.2 Kalman filtering 

 

Next, the measured RSSIs were further optimized by the 

Kalman filter, which can effectively remove mutation points 

and noises and realize accurate and smooth outputs. 

In Kalman filtering, the state prediction equations are:  
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The state update equations are: 
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where, 𝑋(𝑘|𝑘 − 1)  and 𝑋(𝑘 − 1|𝑘 − 1)  are the predicted 

values of the current and previous states, respectively; A and 

B are system parameters;𝑈(𝑘) is current state of the control 

volume (default value: 0); 𝑃(𝑘|𝑘 − 1)  and 𝑃(𝑘 − 1|𝑘 − 1) 

are the covariances of 𝑋(𝑘|𝑘 − 1)  and 𝑋(𝑘 − 1|𝑘 − 1) , 

respectively; Q is system noise. 𝑍(𝑘) is the measured moment 
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for k; H is the parameters of the measurement system; 𝐾𝑔(𝑘) 

is the Kalman filter gain; R is the measurement noise; 𝑃(𝑘|𝑘) 

is the update value of the current state; I is the unit matrix (the 

value is 1 for single model and measurement).  

The error distribution of the RSSIs after Kalman filtering is 

displayed in Figure 2 below. It can be seen that the Kalman 

filter smoothed the outputted sample values to some extent 

 

 
 

Figure 2. The error distribution of the RSSIs after Kalman filtering 

 

 

3. INITIAL POSITIONING BASED ON WEIGHTED 

CENTROID ALGORITHM 

 

The TSE is applicable to all kinds of channel environments. 

The method enjoys a low complexity and converges rapidly 

under proper initial values. Here, the initial positions are 

estimated by the weighted centroid algorithm as the initial 

values for the TSE. Focusing on node connectivity, the 

algorithm achieves a low complexity and a light computing 

load. In this algorithm, the unknown node receives 

information from all anchor nodes within its communication 

scope, and all these anchor nodes are considered as weighted 

geometric centroids. The formula of the weighted centroid 

algorithm can be expressed as: 

 

( ) ( ) ( ) ( )( )( ), 1 , 10 0 i i i i i ix y x R R y R R=         (7) 

 

The accuracy of centroid positioning relies heavily on the 

density and distribution of anchor nodes [13-15]. The 

positioning is very accurate when the nodes are dense and 

uniformly distributed. Otherwise, the accuracy will decrease 

rapidly. 

 

 

4. PROPOSED INDOOR POSITIONING ALGORITHM 

 

During transmission, electromagnetic wave signals may be 

subjected to multipath interference or obstruction. In this case, 

the signal strength received at the same position varies from 

time to time [16-18]. The reliability of the measured RSSIs 

should be enhanced before indoor positioning. In this paper, 

an indoor positioning algorithm is designed with the following 

steps. First, the RSSI threshold is determined according to the 

simulation of the test environment. Second, the measured 

values are compared against the threshold to remove the 

excess errors and retain the average of the proper values. Last, 

the TSE is introduced to obtain the distance by equation (3). 

The TSE [4], as an iterative recursive algorithm, requires 

accurate initial estimation of node positions to achieve fast 

convergence and good real-time performance. The initial 

positions were estimated as follows: 

To begin with, the RSSIs 𝑟𝑖 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2  of 

an unknown node to each anchor node were measured. Then, 

the unknown node-anchor node distances 𝑅𝑖 , 𝑖 = 1, 2, … , 𝑁 

were computed as 𝑅𝑖 = 𝑟𝑖 + 𝜀𝑖, where 𝜀𝑖 is error (mean value: 

0), i.e. a normal random variable of mean square error 𝛿2. In 

this way, the function 𝑓𝑖(𝑥, 𝑦) = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2  is 

close to the initial estimate position, laying a good basis 
(𝑥0, 𝑦0) for the TSE. After ignoring the second-order partial 

derivatives, the matrix representation can be obtained as: 

 

= +h G                                                                                (8) 

 

where, 

 

ℎ =

[
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A RSSI n= − , 𝛿 = [
𝛥𝑥
𝛥𝑦

];       ( ), 12 50.k kx y k， = , , , . 

 

Using the weighted least squares (WLS) algorithm, the least 

squares estimation solutions can be derived from equation (8) 

as 𝛿 = (𝐺𝑇𝐺)−1𝐺𝑇ℎ. Then, the iterative process was initiated 

to determine whether |𝛥𝑥| + |𝛥𝑦| is less than the threshold 

(0.01). The estimated position was corrected iteratively until it 

satisfies the threshold. The iterated frequency distribution is 

shown in Figure 3. It can be seen that the estimated positions 

were stable and convergent and eventually satisfied the 

threshold. The last updated position was taken as the final 

position and compared with the actual position to obtain the 

positioning accuracy. The flow of the TSE algorithm is 

explained in Figure 4.  

 

 
 

Figure 3. Iterated frequency distribution of the TSE 
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Figure 4. The flow of the TSE algorithm 

 

The above TSE algorithm can carry out TSE at the given 

initial values, and correct the estimated position of the 

unknown node by the mean distance between the unknown 

node and each anchor node. This design does not consider the 

impact of the measured distance between the unknown node 

and the anchor node on 𝛥𝑥  and 𝛥𝑦 . In this case, the 

positioning error will increase significantly with the growth in 

the measured distance, resulting in a sharp decline in the 

positioning accuracy. 

To solve the problem, the said measured distance was taken 

into account to locate the unknown node. As shown in 

equation (8), the weighted matrix h consists of measuring 

errors. According to the propagation law of radio signals, the 

positioning error is positively correlated with the measured 

distance of RSSI positioning. This correlation can be 

employed to reduce the impacts of excessively large or small 

measured distance on positioning accuracy. Specifically, the 

Taylor series can be improved as: 

 

Qh G=                                                                             (9) 

 

where, Q is a positive definite diagonal matrix, in which the 

non-zero element in each row correspond to the element in the 

weighted matrix h. The matrix offsets the position change 

effect with the various elements in h, and calculates the 

amount of position correction of 𝛥𝑥 and 𝛥𝑦according to the 

measured distances to the anchor nodes. Here, the Q is 

designed according to the calculated distances and RSSI 

positioning features: 
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where, 𝑇 = ∑ 𝑑𝑖
2𝑁

𝑖=1 ; N is the total number of anchor node; 𝑑𝑖 

106



 

is the measured distance from the unknown node to the i-th 

anchor node. Finally, the initial positions of the unknown node 

were substituted into the improved Taylor series for expansion. 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

The proposed method was verified through a simulation in 

a fixed area. The sending node was placed at a fixed position. 

Then, measuring points (i =1,2..., 100) were set up from the 

receiving node 20m away from the sending node to the fixed 

position at an interval of 0.2m. A total of 50 RSSIs were 

measured at these points, and averaged. Finally, a set of 

measured values were obtained from each measuring point. 

The measured RSSIs at each point correspond to the measured 

values at that distance. The 100 sets of data were plotted into 

a 2D coordinate system (Figure 5). Obviously, the RSSIs 

measured within 14m decreased gradually with the increase of 

the sender-receiver distance. Thus, 14m was taken as the 

detection range. 

 

 
 

Figure 5. The 2D coordinates of the 100 sets of data 

 

The radio signals propagate differently in different 

environments. Before simulation, the parameters A and n of 

the RSSI positioning model should be optimized to suit the 

specific environment. Using the first 70 sets of measured data 
(𝑅𝑆𝑆𝐼𝑖 , 𝑑𝑖), i=1, 2,..., 70,  the A and n were calculated by linear 

regression analysis, and substituted into the model for further 

use. The optimized curve of the model demonstrates the good 

fitting effect of the linear regression. The linear regression can 

be expressed as: 

 

𝜌𝑖 = −10 𝑙𝑔 𝑑𝑖 , 𝑖 = 1, 2, … , 70 

 

𝑛 = ∑(𝜌𝑖

70

𝑖=1

− 𝜌)𝑅𝑆𝑆𝐼𝑖/∑(𝜌𝑖

70

𝑖=1

− 𝜌)2, 𝐴 = 𝑅𝑆𝑆𝐼 − 𝑛𝜌 

 

where, 𝑅𝑆𝑆𝐼 =
1

70
∑ 𝑅𝑆𝑆𝐼𝑖

70
𝑖=1  and 𝜌 =

1

70
∑ 𝜌𝑖

70
𝑖=1 . 

To provide a reference for WSN positioning, several anchor 

nodes were randomly deployed in an area of 100*100 (m2). In 

other words, the positions of these nodes were randomly 

generated and known. The positioning accuracy was not 

evaluated by the deviation of the predicted position of an 

unknown node to the measured position. Instead, 50 unknown 

nodes were selected, and the positioning error of each of them 

was determined. Then, the mean positioning error was 

calculated on this basis. The actual position of each unknown 

node, estimated position of each unknown node and mean 

positioning error are respectively denoted as (𝑥𝑘 , 𝑦𝑘), 𝑘 =
1, 2, … , 50 , (�̄�𝑘 , �̄�𝑘), 𝑘 = 1, 2, … , 50  and 𝑅𝑀𝑆𝐸 =
1

50
∑ √(𝑥𝑘 − �̄�𝑘)

2 − (𝑦𝑘 − �̄�𝑘)
250

𝑘=1 . 

First, the RSSI positioning was carried out with different 

filters and the TSE in the simulation environment. The results 

are shown in Figure 6. It can be seen that the Gaussian filter 

eliminated the excess errors induced by the environmental 

interference and removed many of the interference resulted 

from short-time RSSI measurement in the volatile situation. 

Meanwhile, the Kalman filter smoothed the sampling value. 

The indoor positioning algorithm outperformed the original 

algorithm, after coupling Gaussian filtering, and achieved the 

best performance, after coupling the Kalman filtering. As 

shown in the figure, the proposed method achieved a no-

greater-than 0.5m positioning error, whichever the anchor 

node density.  

 

 
 

Figure 6. RMSEs of RSSI positioning with different filters 

and the TSE 

 

 
 

Figure 7. RMSEs of RSSI positioning with different filters 

and the improved TSE 

 

Second, the RSSI positioning was carried out with different 

filters and the improved TSE in the simulation environment. 

The results in Figure 7 show that the improved TSE helped 

improve the positioning accuracy to various degrees under 

different filters. 
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6. CONCLUSIONS

This paper mainly explores the filter optimization of RSSI 

positioning and proposes a correction matrix of the TSE 

algorithm. First, the RSSI measurement was improved by 

Gaussian filtering and Kalman filtering. Then, the initial 

position was iteratively obtained by the weighted centroid 

algorithm, whose weight was computed by the optimized RSSI 

measuring distance, and a correction matrix was developed to 

improve the Taylor series expansion (TSE). The simulation 

results show the two filtering methods, especially the Kalman 

filter, can effectively reduce the RSSI measurement errors and 

improve positioning accuracy of unknown nodes, and the 

correction matrix of the TSE algorithm can further improve 

the positioning accuracy. In addition, the positioning accuracy 

of our method increases with the density of anchor nodes. 
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