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The localization of neural sources is a crucial issue in medical, scientific and technical 

applications. However, the dipole sources in the brain may vary in nature and change 

constantly with time, adding to the difficulty of source localization. In this paper, the 

dynamic neural sources in the brain are simulated by sequential Monte-Carlo (MC) method, 

based on electroencephalography (EEG) data. Firstly, the EEG data were considered as a 

state space model. Considering the nonlinearity of the EEG data, the sequential M-C method 

was introduced as a particle filter, and the Metropolis-Hastings (M-H) resampling was 

employed to alleviate the particle impoverishment of general particle filter. The accuracy of 

our method in source localization was verified through two experiments, using both synthetic 

and real data. The research results shed important new light on the research of brain 

neurology. 
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1. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is the non-

invasive method of electrical activity recording or monitoring 

in the brain. EEG is used for visualizing and evaluation of the 

brain activity that are involved in how brain functions i.e. 

learning, memory, and emotions, or in neurological disorders 

such as autism, epilepsy and Parkinson's disease [1-3]. 

Localization of the neural sources using EEG, which are 

recorded from the scalp is broadly used to make appraisals of 

the areas of origins of the electrical movement in the 

cerebrum. Such data can be extremely valuable for both 

research and clinical applications. For instance, in clinical 

applications, exact data about the area of an epileptic seizure 

in the cerebrum can be utilized to design medical procedure 

for its expulsion. Moreover, data about the areas of the 

cerebrum that produce different signals can give important 

research data about the working of the cerebrum [4]. 

The location and distribution of current sources 

responsible for electrical activity in the brain based on the 

potentials of the electrodes is an important problem in the 

EEG. It is called the brain source position or the inverse EEG 

problem, given that data (potentials) are provided and the 

model needs to be built on the data that is available. The key 

results of EEG are the positions of source and the curses of 

neuronal activity found in the EEG field distribution. 

Nevertheless, several sources collections can produce exactly 

the same EEG field distribution. Brain activity localization 

dependent on EEG data requires a strongly ill-posed inverse 

problem to be resolved [5]. There have been a number of 

strategies to solve the reverse EEG problem in order to 

classify and recreate the origins of brain activity [6, 7]. 

A traditional EEG source model is a collection of 

equivalent current dipoles (ECD) which assume that a focal 

neuronal movement can be represented by one or more 

dipoles. This approach includes the multiple signal 

classification [8] and multi dipole modelling [9]. The dipole 

model's capacity to accurately identify neuronal reactions is 

nonetheless limited, given that 1) extended sources with ECD 

difficult to model and 2) the number of dipole is difficult to 

predict accurately. The other type of source reconstruction 

methods is dSPM [10], MNE [11], sLORETA [12]. For these 

approaches the source region (brain volume or cortex) is 

divided into a grid comprising many (normally thousands of) 

dipoles. Another form of methodology focused on point 

estimates, aimed at integrating sufficient knowledge prior to 

providing robust, accurate solutions, has been enhanced 

instead of declining through state space models [13, 14] and 

Markov Chain Monte Carlo [15]. Practical use can be 

performed efficiently and conveniently from the source 

position in a number of fields such as preoperative 

assessment and epilepsy. 

Sequential Monte Carlo procedures are used to assess the 

present neural sources in the cerebrum that best suitable for 

the EEG measurement. Source localization can be 

implemented by discovering the scalp electric voltages that 

will come from the dipoles presented in the head. This part is 

called a forward problem, this can be calculated once relying 

upon the methodology utilized in the inverse problem. At that 

point, by thinking about the EEG information, it tends to be 

utilized to work back and estimate the neural sources which 

generate the EEG information is called the inverse problem 

[16]. 

Source localization of neural sources is a method that 

recreates the sources of electrical streams inside the cerebrum 

that offer to measured potentials on the head. In this paper, 

we will focus on locating neural sources from EEG data, 

which is an ill-posed issue. At a certain stage in time (i.e., the 

static case) [17], most attempts to take care of the inverse 

problem relied on scalp potentials. But in nature, the neural 

movement is dynamic. Subsequently, efforts were made in 

addressing the inverse problem to consider these components. 

This should be feasible by selecting appropriate strong 

models (which have distinctive arrangement requirements) 
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[18]. 

Specifically, such ill-posedness infers that the neural 

design clarifying the estimations isn't one of a kind (there is a 

boundless number of neural current distributions delivering 

the similar dataset) and this specialized trouble has enlivened 

the reception of a wide range of methodologies for the 

determination of the ideal neural source localization from the 

unbounded arrangement of possible solutions [19]. 

Recently, Bayesian techniques have turned out to be a 

possible solution to the inverse problems due to an increase 

in the accessible computational power. In this article, we 

present a Bayesian filtering approach for the estimation of 

EEG dynamic sources. We take no hypotheses into account 

in this approach. Specifically, Monte Carlo techniques have 

been used in the EEG inverse problem situation. These 

strategies are used for an unidentified number of current 

dipoles to approximate posterior distribution. The basic idea 

of the Monte Carlo strategies is to approximate an integral 

use of a weighted particle system based on the distribution of 

probability. In the Bayesian methodology to deal with inverse 

issues, the goal is to compute and advantageously outline the 

posterior distribution, i.e., the conditional distribution of the 

unidentified given the deliberate information. In this article, 

we examine particle filters for the location of EEG dipole 

source where the amount of the dipole is unknown and time 

variant. We used this approach on synthetic data and here we 

showed that the source structure naturally could be assessed, 

as the reconstruction of the source is an ill-posed inverse 

problem and the reconstructed sources are not unique. In 

addition, we have used real EEG data to locate the unknown 

number of sources. They take the EEG readings as random 

variables in the inverse problem and the solution to the 

localization issue is to determine the feature of the posterior 

probability density of the unknown variables acquired by the 

theory of Bayes. Bayesian approaches use the entire time 

series as measurement information on a regular basis and 

these Bayesian methods can be regarded as methods that 

address the dynamic source localization issue [20]. 

The sequential Monte Carlo particle filter uses the 

Sequential Importance Sampling to approximate the 

subsequent state distribution at each moment. The particle 

filter utilizes an arrangement of particles to sample the state-

space of the framework. These particles are then weighted 

using the measurement model to give a measure of the state 

posterior density. It can demonstrate that the estimation 

focalizes, in the mean-square error, to the true posterior 

density of the state. In any PF algorithm, there are three steps 

namely particle generation, weight calculation, and 

resampling. The first stage is the generation of particles and 

in the second stage assigns the weights. Lastly, resampling 

replaces the combination of both particles and weights with 

another set [21, 22]. 

The Bayesian methods basically track the probability 

distribution of the dipole parameters in time and the non-

linear dependency on the dipole parameters of the data and 

the need for an estimate of the dipole number are the main 

problems. The main benefits of the Bayesian approaches are 

1) the approach towards multiple dipole modeling is very 

general because it specifically allows the number of dipoles 

to vary in time and dynamically provides the resulting chance 

for the numbers of sources; (ii) it can be used in real time, 

because data is processed in sequentially and not in totality. 

The particle filter is used because of its dynamic nature to 

reconstruct different sources. 

Particle filter performs very efficiently in the assessment 

of nonlinear and non-Gaussian dynamic system parameters. 

However, in computational terms, the particle filter algorithm 

is iterative and complicated. We will evaluate bottlenecks 

from current particle filter algorithms in this article and 

suggest a new strategy integrating particle filter with 

Metropolis-Hastings resampling algorithm. The neural 

activity is modelled as a stochastic process and the neural 

sources are tracked using the particle filter. This article 

presents a localization technique for EEG sources that uses 

the resampling algorithm Metropolis-Hastings to solve an 

inverse problem with the particle filter. This article proposes 

a new approach to reduce the PF computational complexity 

and improve the root mean-squared error (RMSE) estimates 

of the multi dipole localization problem. Results make it 

more effective to detect dipole sources when the algorithm 

holds an acceptable measurement value and seeks useful 

applications for epileptic patient information that predict the 

onset of dipole, keeping sufficient computational costs. The 

main objective of this article is to extract the 3-D source 

positions of the brain from the given EEG information. This 

can be used for clinical experiments or research i.e. it can be 

useful for localizing the epilepsy seizure sources etc. 

The rest of the article is as follows, in section 2 we have 

described the inverse EEG problem. Section 3 introduces the 

particle filter and we describe the Metropolis-Hastings 

particle filter resampling algorithm and section 4 contains our 

results and a short discussion about main development work. 

Finally, Section 5 contains the final comments and 

bibliography. 

 

 

2. EEG INVERSE PROBLEM 
 

In electrophysiology, the main issue is to predict the place 

of source from the measured EEG information, the inverse 

issue [23, 24]. To find the solution to the inverse problem, a 

model will be given to map the sources in the brain to the 

recorded data. Subsequently, the inverse problem is used by 

source localization with minimal error to find genuine useful 

functional tomography. Regardless, the standard test facing 

such an issue is that the estimates do not contain sufficient 

information about the sources that make the issue, not first-

rate, and a perfect tomography cannot exist along these lines. 

The purpose of a test is to allow comparable external 

electromagnetic fields to be generated by differing internal 

source structures and to assess precisely these fields in a 

large and low number of areas [23]. 

In the cerebral cortex, which is the external surface of the 

brain, 10 billion neurons are included. Within this 1.5-4.5-

mm thick piece of the brain the most observed scalp activity 

is produced. A synchronous synaptic reconstitution of a wide 

range of neurons leads to the symmetrical source of a dipolar 

current from which cortical surface appears [25]. Conscious 

EEG in distinct anode positions is the ultimate cause of this 

current. 

After dealing with the inverse issue, one can use such a 

model to make an estimate of the EEG measurements from 

the decided dipoles. This is referred to as the forward issue. 

EEG inverse issue is about finding and limiting the source 

behind the deliberate electrical activity, which is ultimately 

fundamental and disease treatment. Precision in the 

construction and lighting of the model is essential for these 

cases. To discover the dipoles that best fit the observed data, 
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we apply the inverse model. This inverse model's plan gives 

the locations of each dipole source. 

Computation of the scalp potential requires a particular 

source demonstrate that must be understood numerically. In 

case the model relies upon probable head shapes, the 

computation might be a positive test. Scientific measures 

exist, at the same time, for efficient geometries, for example, 

while the head is expected to include an arrangement of 

nested concentric spheres relates to cerebrum, skull, and 

scalp. Those models are mechanically utilized as a part of 

most extreme clinical and studies bundles to EEG source 

localization.  

Consider that 𝑁  dipoles in cerebrum exhibits electrical 

activity. To evaluate such kind of activity the multi-channel 

EEG data can be used with 𝑧𝑡 ∈ ℜ  from 𝑛𝑠  number of 

sensors at a given time 𝑡, the forward EEG model is given by 

 

 𝑧𝑡 = 𝐿(𝑥𝑡)𝑠𝑡 + 𝑣𝑡        (1) 

 

The Eq. (1) refers to the moments of the dipole, the 

positions of the neural sources to the data recorded. S (t) is 

the vector of moments that contains moments of the dipole in 

three directions. Moments are equal to the number of time 

sample of the deliberate signals in the x, y and z directions of 

length that we are trying to model. The lead field matrix 

𝐿(𝑥𝑡) maps the dipole moments to the electrical potential of 

the scalp in a specified electrode position; and the dipole 

moments are measured by the volume of the matrix.𝑣𝑡 ,the 

noise measurement matrix. The model parameters are at 

every point in time based on the dipole quantity, the dipole 

time and the matrix for the lead field [26]. 

The Eq. (1) can be taken as a measurement equation, and 

for the state equation since it is unknown as to how the states 

evolve in the brain source localization problem,  

 

𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑡          (2) 

 

The above two Eqns. (1) and (2) can be considered as 

measurement or observation equation and state equation. 

From this, the EEG can be modeled as a state space model. 

To evaluate the dynamic parameters, i.e. location (x, y, and z-

direction) in the cerebrum we use particle filter by 

considering the measured signal 𝑧𝑡 at time 𝑡. 

 

 

3. PARTICLE FILTER 
 

This part gives a brief idea about the particle filters. The 

nonlinear non-Gaussian system's state-space model [14] is 

given by: 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝑢𝑡               (3) 

 

𝑧𝑡 = ℎ(𝑥𝑡) + 𝑣𝑡            (4) 

 

where, 𝑥𝑡 and 𝑧𝑡  are respectively the state and measurement 

vectors, 𝑓  and ℎ  are nonlinear functions of 𝑥𝑡−1  and 𝑧𝑡 , 𝑢𝑡 

and 𝑣𝑡 are the process noise and measurement noise while 𝑡 

is the time index. It is assumed that the process and 

measurement noise is white noise, with the known functions 

of probability density and mutually independent. At time 𝑡, 𝑧𝑡 

can be represented as the EEG observations, and ℎ(. ) can be 

treated as a lead field matrix. 

The main goal of particle filtering is to recurrently 

estimate the state 𝑥𝑡 from the measurement 𝑧𝑡. The estimate 

of the unknown state 𝑥𝑡 in Bayesian methods is based on the 

sequence of all 𝑧1:𝑡 = {𝑧1, … . . 𝑧𝑡} measurements up to time 𝑡. 

The density function of the posterior probability is defined 

as 𝑝(𝑥𝑡|𝑧1:𝑡). This subsequent distribution can be obtained 

recursively by using the density function prediction and 

update. 

 

𝑝(𝑥𝑡|𝑧1:𝑡−1) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1) 𝑝(𝑥𝑡−1|𝑧1:𝑡−1)𝑑𝑥𝑡−1     (5) 

 

The Eq. (5) can be used to estimate the prior pdf of the 

states at time 𝑡. If the measurement is available at the time 𝑡, 

then the prior pdf in the Eq. (5) can be updated using Bayes 

rule. 

 

𝑝(𝑥𝑡|𝑧1:𝑡) =
𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑧1:𝑡−1)

𝑝(𝑧𝑡|𝑧1:𝑡−1)
     (6) 

 

The particle filter is used to discover the distribution 

function of the posterior likelihood provided in Eqns. (5) and 

(6) by random sampling or by producing particles. The 

following steps can be summarized as the standard particle 

filter algorithm: Particle producing, weight updating and 

resampling particles. 

Generating a 𝑁 number of random particles 𝑥(𝑖)
𝑡 is drawn 

from the importance density function 𝑞(𝑥𝑡|𝑥(𝑖)
𝑡−1 , 𝑧1:𝑡) 

along with their weights 𝑤(𝑖)
𝑡 at time 𝑡, where 𝑖 = 1,2, … . 𝑁. 

The posterior density is given as 𝑝(𝑥𝑡|𝑧1:𝑡) ≈
∑ 𝑤(𝑖)

𝑡 𝛿(𝑥𝑡 − 𝑥(𝑖)
𝑡 

)𝑁
𝑖=1  where δ(·) is a Dirac delta function. 

The weights of the particles can be calculated as𝑤(𝑖)
𝑡 ∝

𝑤(𝑖)
𝑡−1 

𝑝(𝑧𝑡|𝑥(𝑖)
𝑡 ) 𝑝(𝑥(𝑖)

𝑡|𝑥(𝑖)
𝑡−1)

𝑞(𝑥(𝑖)
𝑡|𝑥(𝑖)

𝑡−1,𝑧1:𝑡)
. The sum of all weights 

should be equal to 1. 

The serious problem with this particle filter is that after a 

certain number of iterations there is a weight degeneration 

problem. Weight degeneration means that only a small 

number of particles weigh one while the remaining particles 

weigh insignificantly. The distribution function of the 

posterior likelihood is not correct in this case. The particle 

filter must be resampled to avoid this problem. 

The principal idea of the resampling is to re-sample the 

posterior probability density function of new particles. 

Resampling focuses mainly on large particles of weight and 

eliminates small particles of weight. In the resampling 

technique, small particles are dispensed, and enormous 

particles of weight are considered to influence the calculation 

of the appropriation of the priori [27]. The small weight 

particles have no responsibility at this stage to estimate the 

condition. It refers to the concept of particle deficiency. A 

variety of researchers have put forward strategies for 

preventing the impoverishment of particles [28]. The most 

popular method of systematic resampling is to sample one 

particle weight only from (0,
1

𝑁
) and to use the first particle 

to generate further particle weights. 

 

𝑤𝑡
(𝑖)

~𝑈 (0,
1

𝑁
), 

𝑤𝑡
(𝑖)

= 𝑤𝑡
(1)

+
𝑖−1

𝑁
,   𝑖 = 2,3, … . . 𝑁          (7) 

 

The systematic resampling is the bottleneck for the 

hardware implementation of particle filter [29, 30]. There are 

no information conditions for particle propagation and weight 

estimation, they can be effectively pipelined. Nonetheless, 
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rigorous research includes data on all uniform weights which 

makes it difficult to perform with different steps. We propose 

another filtration technique that uses the Metropolis-Hastings 

resampling. As shown, this procedure gives the particle filter 

a systematic resampling equivalent estimation output. 

We use the technique of Metropolis-Hastings (MH) to 

resample particle filters to overcome the problem caused by 

systematic resampling. MH Resampling begins when the 

principal weight of the particle is reachable [31]. The 

resampling of MH in specific does not involve each of the 

particles as a result of the creation of the chain of Markov in 

which the present state 𝑥(𝑖)
𝑡 depends exclusively on a 

previous state 𝑥(𝑖)
𝑡−1  [32]. The MH calculation is 

specifically able to extract particles from a probability 

function 𝑝(𝑥𝑡)  given a proposal importance probability 

density function𝑞(𝑥𝑡). The fresh sample will then be adopted 

or refused depending on the acceptability proportion in Eq. 

(8). 

 

𝑟(𝑥𝑛, 𝑥′) = 𝑚𝑖𝑛 {1,
𝑝(𝑥′)𝑞(𝑥𝑛|𝑥′)

𝑝(𝑥𝑛)𝑞(𝑥𝑛|𝑥′)
}          (8) 

 

where, 𝑥′~𝑞(. 𝑥𝑛⁄ )  and 𝑞(. )  is the desired importance 

density. Generate a uniform random variable 𝑢~𝑈(0,1). The 

particles 𝑥(𝑖)
𝑡  are resampled using MH; therefore high-

weight particles are replaced and low-weight particles are 

disposed of. The rest of the particles therefore speak more 

precisely to the posterior probability density function, leading 

to improved execution. 

 

 

4. RESULTS 

 

We use the proposed PF algorithm to track the unknown 

number of neural sources using both synthetic and real EEG 

data to demonstrate tracking performance. 
 

4.1 Synthetic data results 

 

Our study with synthetic data [33], sampled at 256 Hz, 

corresponds to four neural sources which are uniformly 

constructed over and at angles of hemispheric head area. The 

results of RMSE execution are first shown through the use of 

synthetic data for the different dipole neural activity tracking. 

The information was obtained by embedding current dipoles 

and figuring the subsequent electric field into the 

concentrated sphere head model. Figure 1 shows the true 

source positions and source amplitudes across the specified 

time interval, Table 1 provides the true (original) dipole 

source positions. We run the particle filter with 20,000 

sample points. 

Figures 2 and 3 speak to the source areas of the synthetic 

data by using the particle filter with systematic and MH 

resampling methods respectively.  The estimation execution 

as far as RMSE for both resampling cases is outlined in Table 

2. 50 Monte Carlo runs were performed to get the RMSE. 

Here, we additionally incorporate RMSE of the 

Beamforming calculation [34] for examination. We can see 

that although systematic and MH resampling strategies both 

give sensible appraisals of the dipole sources, the MH 

resampling gauges the dipoles essentially with improved 

RMSE. Besides, the RMSE of the particle filter is also 

smaller than the other algorithms as specified in Table 3. The 

distance RMSE between true source and estimated dipole for 

the proposed method is 3.82 mm. The simulations with 

synthetic data show the proficiency of the proposed strategy 

for confining and remaking exceptionally cerebrum sources 

from synthetic data. 
 

 
 

Figure 1. True source positions and source amplitudes of the 

synthetic data 

 

Table 1. True dipole positions in synthetic data 

 

Dipole source 
Position (3-dimension) in cm 

X-axis Y-axis Z -axis 

source 1 −1.37 −5.43 7.34 

source 2 3.74 4.54 5.66 

source 3 −2.04 3.73 9.56 

source 4 2.96 2.11 9.42 

 

 
 

Figure 2. Estimated source positions using systematic 

resampling for the synthetic data 

 

 
 

Figure 3. Estimated source positions using Metropolis-

Hastings resampling for the synthetic data 

 

Table 2. Average RMSE (in mm) of the 3-d position and 

computational time of resampling schemes 

 

Sources 
Resampling method 

Systematic MH 

1 5.76 5.45 

2 2.56 0.64 

3 3.68 6.73 

4 3.91 2.45 

Average RMSE 3.97 3.82 

Computational time 4.26s 3.84s 

 

Table 3. Comparison of RMSE (in mm) of the 3-d position 

with other methods 

 
Approach No. of dipole sources RMSE 

MPF [35] 2 6.1 

RBPF [36] 2 6.3 

PF [20] 4 5.4 

Proposed method 4 3.82 
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4.2 Real EEG data 

 

The main problem in evaluating the efficiency of EEG 

source localization algorithms in real settings is the unknown 

of actual EEG neural generators. In an experimental set of 

data taken from the Brainstorm EEG / Epilepsy [37] dataset, 

we apply the proposed particle filter. Data consist of 29-

electrode EEG recordings of an epileptic subject (FP1, FP2, 

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, 

Cz, Pz, T1, T2, FC1, FC2, FC5, FC6, CP1, CP2, CP5, CP6) 

in accordance with the 10/20 International Framework. Note 

that we don't have a definite position of the neural sources of 

real information, so we can't deliver the RMSE of the area of 

the dipoles. Consequently, we took computational time as a 

proportion of contrasting the resampling plans is given in 

Table 4. It is observed that computational time is more for 

MH resampling, this is because of large datasets but based on 

the RMSE of the synthetic data we can say that MH 

resampling provides a good estimation of the neural sources. 

Figures 4 and 5 represent the estimated source positions and 

their amplitude waveforms of the real data using the particle 

filter with systematic and MH resampling correspondingly. 

 

Table 4. Comparison of computational time in seconds 

between various resampling schemes 

 
Resampling method Systematic Metropolis 

Computational time (sec) 5020 7270 

 

 
 

Figure 4. Estimated source positions using Systematic 

resampling for the real EEG information 

 

 
 

Figure 5. Estimated source positions using Metropolis-

Hastings resampling for the real EEG information 

 

 
 

Figure 6. Estimated source positions with sLoreta for the real 

EEG information 

We compare the estimated sources of the particle filter 

with the findings of sLoreta. Figure 6 shows the results of the 

sLoreta process. The particle filtering and sLoreta are given 

with similar sources. The findings are consistent with the real 

EEG estimates from previous physiological studies. The data 

from the focal epileptic patient in our dataset means that the 

origins can be in the temporal lobe of the brain. The results 

show that most origins are in the brain's temporal lobe. 

 

4.3 Discussion 

 

This article described a neural particle filter system based 

on the probabilistic fusion of several models of the dipolar 

source. Every model is defined as a dynamic system with the 

number of sources (every source model has a dipole with its 

current location and moment). The particle filter clearly 

differentiates the operation of each origin while multi dipole 

models take the time cycles given during the analysis process. 

In essence, the particle filter is a multi-target tracking 

algorithm that simultaneously reconstructs active dipoles and 

outperforms other reconstruction methods. 

Importantly, this sLoreta method takes the input as a single 

point of time instead of a time series. In the same window, 

the source activations produced from a proposed particle 

filter are compared to those from the same signal pick. This 

approach is based on a distributed source model rather than a 

dipolar source model. sLoreta usually offers large maps with 

relatively strong sources and less disseminated maps with 

relatively low sources as the posterior likelihood of a strong 

source is high and vice versa. The estimates of sLoreta are 

shown in Figure 6. The colored region of the brain cortex is 

the scaled plot of sLoreta, and the colored bars to the right 

reflect the intensity of the inverse sLoreta solution. The 

methods of sLoreta and particle filtering differ greatly. The 

image produced by sLoreta represents the approximate 

intensity of the neural current, but the images created from 

the particle filter algorithm reflect a probability that a neural 

source exists at any given position. Nevertheless, sLoreta and 

particle filter methods appear to agree in a comfortable 

manner on the supposed cerebral position PF methods 

generate location estimates with time monitoring throughout 

the whole time window. 

 

 

5. CONCLUSIONS 

 

The EEG provides a good resolution for explaining 

neuronal activity as an imaging tool, but contributes to poor 

spatial resolution and which results in undesirable 

characteristics when the sources are located. Consequently 

various methods for solving the EEG Inverse problem are 

developed and explained by researchers. In addition, the 

effects of time correlations, position error and 

methodological mathematical relations are main parameters, 

as described above.  

Sequential Monte Carlo Particle filter implementations of 

Bayesian filters used to map the density of probability of a 

time varying evolutionary process by a weighted set of 

particles. The conceptual significance of the use of particle 

filters includes the spatial and temporal characteristics of the 

neural sources behind them. We have shown the neural 

dynamic source localization with the unknown number of 

dipoles using the particle filter. In this paper, a Metropolis-

Hastings procedure has been acquainted to alleviate the 
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particle impoverishment issue experienced in the general 

particle filter. MH procedure is utilized to dispose of the little 

weight particles and acknowledge the large weight ones 

dependent on the acceptance ratio. In the interim, particle 

diversity can be improved to a huge degree. The accuracy of 

the proposed approach to source localization is validated 

from synthetic and real data. The results of these two 

experiments show that the particle filter with MH resampling 

is more accurate than the general particle filter. The result 

which determines the positions of brain activity due to focal 

epileptic information, is consistent with current knowledge 

about neuropsychology. The computational costs depend on 

the number of particles used and the amount of time samples 

used in the particle filter. Probably the most common 

approach is the particle filter. In the particle filter, research is 

still needed for the estimation of the solution from particles 

because when the source dipoles increase, the conditional 

mean is less effective. 
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NOMENCLATURE 

 

𝑥𝑡  State vector 

𝑧𝑡  Measurement vector 

𝑢𝑡  

𝑣𝑡  

Process noise 

Measurement noise 

ℎ(. ) 

𝑝(𝑥𝑡|𝑧1:𝑡) 

𝑞(. ) 

𝑤 

Leadfield matrix 

Posterior probability of 𝑥𝑡 given 𝑧1:𝑡 

Importance density 

Weight of the particle 

 

417




