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 In the peer-to-peer network (P2P), the private information of individual users faces the risks 

of being tracked, identified or leaked. This paper attempts to develop a security technique that 

fully protects the privacy of P2P users. Firstly, the node data were collected and analyzed from 

the P2P. Then, a privacy-preserving algorithm was proposed for the P2P based on the 

differential privacy model. The proposed algorithm adds noise to the degree distribution of the 

nodes, and solves the high sensitivity under the Laplace mechanism, which arises from the 

unique structure of the P2P. Finally, the proposed algorithm was verified through experiments. 

The results show that our algorithm protected the privacy of individual data in the storage and 

dissemination process, controlled the sensitivity to a low level through noise addition, and 

allocated the privacy budget rationally. Thus, the proposed algorithm is available and reliable 

for P2P operations like credit verification, transmission and storage, and enjoys excellent 

effectiveness and robustness. 
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1. INTRODUCTION 

 

In the 40th China Statistical Report on Internet 

Development, it’s reported that China's Internet penetration 

rate has reached nearly 60%, wherein the P2P file sharing, 

transmission and video traffic account for up to 70% [1, 2]. 

The P2P is a distributed trust mechanism adopted by the 

decentralized networks, the nodes in the network are random 

and free joining or exiting the network is allowed, and 

meanwhile the nodes follow the power-law distribution which 

has the characteristics of small-world property, scale-free, and 

high clustering [3-5]. Although users want to realize individual 

anonymity in P2P, in actual applications, the texts, pictures 

and videos shared by the users contain a large amount of 

individual private information, as long as P2P is used, the 

information might be leaked. Another major security threat of 

P2P comes from the exchange, transmission and storage of a 

large amount of information between nodes. Even if the large 

amount of user information has been encrypted, with certain 

background knowledge, one can still attack it and obtain the 

privacy of individual users [6]. Therefore, how to prevent the 

leakage of user individual privacy information in P2P 

applications has become one of the hot topics for many 

researchers. 

At present, the main privacy-preserving scheme of P2P is 

anonymous processing of nodes and sensitive edges. It mainly 

includes the 𝓀-1 algorithm proposed by Han et al. [7], the 

anonymous node algorithm proposed by Yuan et al. [8] and 

the anonymization privacy-preserving algorithm based on 

clustering proposed by Zhang et al. [9]. But all these 

algorithms assume the attacker has not fully mastered the 

sufficient background knowledge. Targeting on the various 

P2P applications, the attacker can infer the sensitive attributes 

of the nodes according to the edge weight of the nodes, so that 

the private information of the nodes is tracked and identified. 

Based on differential privacy model, this paper proposes a P2P 

privacy-preserving algorithm which adds noise to the 

distribution of nodes and solves the high-sensitivity problem 

caused by P2P itself under the Laplace mechanism. The 

algorithm guarantees the privacy of the user personal data 

during the storage and distribution process in P2P, and after 

the addition of the noise, the sensitivity of the algorithm is 

controllable and lower, and it is available and reliable when 

performing P2P credit verification, transmission and storage; 

moreover, the algorithm guarantees reasonable allocation of 

privacy budget, while enjoying effectiveness and robustness.  

This paper proposed a method utilized differential privacy-

preserving model to ensure PNN node privacy, which 

essentially performs privacy preserving based on the 

disturbance of node degree distribution. The related work of 

this paper mainly includes: 

(1) According the special structure of P2P, this paper 

presents a clear definition of differential privacy; 

(2) Based on the differential privacy-preserving mechanism, 

this paper presents mathematical formulas for the differential 

privacy of P2P; 

(3) This paper designs a noise-adding algorithm based on 

node degree distribution. The key problem of the algorithm is 

to find a suitable probability distribution to add the noise to 

control the abnormal query results caused by too-high 

sensitivity of the mechanism; and this paper proposes the noise 

distribution and verifies it by experiment. 

 

 

2. DIFFERENTIAL PRIVACY 

 

Differential privacy realizes data addition or deletion to the 

dataset by adding random noise to the aggregate query results 

without affecting the output of the query. Even in worst-case 

scenario, the attacker knows all sensitive data but one of the 

records, it could still guarantee that the sensitive information 

of this record will not be leaked. 

Definition 1.1: ϵ -Differential Privacy: 𝒟  is a data set, 

privacy mechanism ℳ  satisfies differential privacy, if and 
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only if for any pair of data sets 𝒟1, 𝒟2 ∈ 𝒟 , there’s one 

different record at most between datasets 𝒟1, 𝒟2 . For any 

output, there is 𝑂 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ): 

 

Pr⁡[ℳ(𝒟1) ∈ 𝑂] ≤ exp⁡(𝜖) × Pr⁡[ℳ(𝒟2) ∈ 𝑂]           (1) 

 

Namely: 

 

∀𝑂 ⊆ ⁡𝑅𝑎𝑛𝑔𝑒(ℳ): Pr⁡[ℳ(𝒟1) ∈ 𝑂] ≤ ℯ𝜖Pr⁡[ℳ(𝒟2) ∈ 𝑂] (2) 

 

Which is equal to: 

 

∀𝑜 ⊆ ⁡𝑅𝑎𝑛𝑔𝑒(ℳ): Pr⁡[ℳ(𝒟1) = 𝑜] ≤ ℯ𝜖Pr⁡[ℳ(𝒟2) = 𝑜] (3) 

 

In Formula 1, Pr represents the privacy risk, namely the 

probability that the privacy is leaked; 𝜖 is the privacy budget 

real number, namely the differential privacy protection 

strength parameter, and the smaller the value, the greater the 

privacy protection strength. It can be seen that the 𝜖 value of 

the differential privacy controls the similarity of the 

probability distribution. The smaller the 𝜖 value, the closer ℯ𝜖 

is to 1 [10, 11]. 

Definition 1.2: Global Sensitivity: For query f: 𝒟 → ℝ, then 

Δ𝑓𝐺𝑆 = max
𝒟,𝒟′

‖𝑓(𝒟) − 𝑓(𝒟′)‖1 , ΔfGS represents the largest 

difference between the query results of two adjacent data sets. 

Definition 1.3: Local Sensitivity: For query f: 𝒟 → ℝ, then 

ΔfLS = max
𝒟′

‖f(𝒟) − f(𝒟′)‖1,⁡the query result set of different 

records can be corrected by using ΔfLS. 

Definition 1.4: Smooth Bound: if for β>0, function B: 𝒟 →
ℝ is the smooth bound of query f, then Formulas 4 and 5 must 

be met: 

 

∀𝒟 ∈ 𝑋: 𝐵(𝒟) ≥ 𝑓𝐿𝑆(𝒟)                                                (4) 

 

∀𝒟,𝒟′ ∈ 𝑋: 𝐵(𝒟) ≥ ℯ𝛽𝑆(𝒟)                                         (5) 

 

 

3. DIFFERENTIAL PRIVACY OF P2P 
 

3.1 Definition and concept 
 

To represent the node individuals in P2P or its networks 

more conveniently, the P2P in this paper is represented by 

G(V,E), which denotes an undirected graph. The node set in a 

P2P is represented by V={v1,v2,...,vn}, the relationship between 

the nodes, namely the edges, are represented by E =
{(u, v)|u, v ∈ V}, then the degree of a node is the number of 

nodes adjacent to it, namely the neighbor is N(v) =
{u|(u, v) ∈ E, u ≠ v}, and the degree is D(v)=|N(v)|. When a 

query function f acquires information from a social network 

graph G, and the obtained result is f(G). To ensure the privacy 

of P2P, noise of certain distribution features should be added 

to the result f(G), so that it guarantees the privacy and satisfies 

the output results without affecting normal requirement. 

Definition 2.1: Differential privacy of P2P. In graph G, by 

deleting an arbitrary node vi and all the edges connecting to 

this node, we can get graph G', which is called a neighbor of 

G. For the query function f of the node, the query results of f(G) 

and f(G') are almost the same, then it’s considered that node vi 

satisfies the differential privacy. 

If in P2P, f1 is a method for querying the number of users, 

then Δf1 is 1, and the noise of f1 satisfies the Laplace 

distribution lap (
1

ϵ
); if in P2P f2 is a method for querying the 

number of associated nodes, then Δf2 is 5, namely the 

maximum value of the degree of the node; Δf1 and Δf2 are quite 

different, as shown in Figure 1: 
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Figure 1. Differential privacy of P2P 
 

Definition 2.2: G is an undirected graph, θ is a given 

threshold and θ<Degreemax, then Gθ is a cut-out set with a 

degree G of θ. 

As shown in Figure 2, graph G3 is a cut-out graph of G, 

wherein a node with a degree of 5 is cut out so as to ensure the 

degrees of all nodes are not greater than 3. In this way, the 

sensitivity Δf2 of the query of edges will decrease from 5 to 3. 
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Figure 2. Truncation of graph 
 

3.2 Noise-adding algorithm based on node degree 

distribution 
 

Hay and Kasiviswanathan et al. first proposed the concept 

of node difference privacy, and pointed out that deleting a 

node or an edge affects not only the independent node and the 

edge, but would result in larger noise and affect the query 

results [10]. The key problem for P2P to satisfy differential 

privacy is that when calculating the sensitivity of the original 

graph and neighbor graph, theoretically the highest sensitivity 

is n-1, but the actual noise is much larger than expected, so it 

results in abnormal query results [12, 13]. Therefore, this 

paper proposes a solution for the reduction of Δf2. 

As shown in the above figure, there is a given query f on the 

cut-out graph Gθ. For a node whose degree changes due to 

truncation, the local sensitivity depends entirely on the node 

degree distribution of graph G, for the local sensitivity of each 

node, selecting properly distributed noise would make it 

approach to the global sensitivity, which would greatly reduce 

the local sensitivity. Algorithm 1 is shown as follows. 

The algorithm is mainly divided into three steps. First, 

determine the truncation threshold θ, because the maximum 

value of the degree of graph G cannot be obtained, and the 

maximum degree may be very large, θ usually starts with a 

random value �̂�, therefore, truncation is carried out randomly, 

and an initial boundary is obtained on this basis. For a given 

target parameter θ, the algorithm selects a random parameter 

within the range of bounded constant multiples of θ. And then, 

the cut-out graph is created by node with a discard degree 

greater than θ. At last, a certain kind of distributed noise is 

added to the node degree of the cut-out graph. The truncation 
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of G and conversion of Gθ are relatively difficult, it’s because 

when deleting all nodes whose node degrees are larger than θ, 

the nodes and edges that are finally deleted are more than 

expected. Therefore, choosing an appropriate threshold θ for 

the calculation of degree distribution cut-out graph 𝐺�̂�  and 

smooth bound S(Gθ) is the key of the algorithm. According to 

formula 5 of definition 1.4, the modified Algorithm 2 is as 

follows. 

 

Algorithm 1: Noise-adding algorithm based on degree distribution 

If there is graph G, privacy budget ϵ, distribution query function f, then: 

1. Determine the random truncation threshold θ; 

2. Select a distribution to calculate the cut-out graph 𝐺�̂� and the smooth bound S(Go); 

3. Output 𝑓 = 𝑓(𝐺�̂�)+degree distributions. 

 

Algorithm 2: Noise-adding algorithm based on degree distribution 

If there is graph G, privacy budget ϵ, distribution query function f, then: 

1. Determine the random truncation threshold θ, Select⁡�̂� ∈ {𝐷 +
log𝑛

𝛽
+ 1,… ,2𝐷 +

log𝑛

𝛽
}; 

2. Use⁡𝛽 =
𝜖

√2(�̂�+1)

 to calculate the cut-out graph 𝐺�̂�  and the smooth bound S(Gθ). 

3. Output⁡𝑓 = 𝑓(𝐺�̂�) + 𝐶𝑎𝑢𝑐ℎ𝑦 (
2√2

𝜖
�̂�𝑆(𝐺𝜃))

�̂�+1

. 

3.3 Selection of random truncation threshold θ 
 

Because the P2P does not take isolated nodes or rings into 

consideration, most network interactions come from the 

community structures formed by super-nodes, and the scale of 

P2P could expand and contract dynamically according to the 

real-time joining and exiting of nodes, therefore, its degree 

distribution is significantly dynamic, and most nodes tend to 

short-term or one-time resource sharing. The interaction 

between nodes is closely related to the node properties and the 

network distance between the nodes, thereby a potential field 

is determined across the whole network. 

The topology potential of node vi in graph G is: 

 

Φ(𝑣𝑖) = ∑ (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑗 × 𝑒−
(
𝑑(𝑖,𝑗)

𝜏
)
2

)𝑛
𝑗=1                        (6) 

 

d(i,j) represents the shortest path value of nodes vi and vj, 

Resourcej represents the health intensity or activity of the node 

itself, and τ represents the influence of the node. It can be seen 

that when the distance is greater than 
3𝜏

√2
, the function decays 

rapidly to 0.  

If Bj is the trust vector of vi to vj, then the super-node 

distribution of the P2P based on topology potential can be 

expressed as: 

 

Pr(Vi) = arg⁡max (∑ (Bj × e−
(
d(i,j)

τ
)
2

)n
j=1 )                   (7) 

 

According to formula 6 and formula 7, the modified 

Algorithm 3 is as follows: 

 

Algorithm 3: Noise-adding algorithm based on degree distribution 

If there is graph G, privacy budget ϵ, distribution query function f, and trust degree vector B(V), then: 

1. Calculate formula 2.4: 

2. Determine the random truncation threshold 𝜃 ∈ Pr(𝑉𝑖)， select �̂� ∈ {𝐷 +
log𝑛

𝛽
+ 1,… ,2𝐷 +

log𝑛

𝛽
}; 

3. Use 𝛽 =
𝜖

√2(�̂�+1)

to calculate cut-out graph⁡𝐺�̂� and smooth bound S(Gθ) 

4. Output: 𝑓 = 𝑓(𝐺�̂�) + 𝐶𝑎𝑢𝑐ℎ𝑦 (
2√2

𝜖
�̂�𝑆(𝐺𝜃))

�̂�+1

. 

 

 

4. EXPERIMENT AND ANALYSIS 

 

The experimental computing environment of this paper is a 

Pentium Xeon E5-2690 V4 CPU with 64GB memory and a 

NVidia GTX 1080 TI GPU. The experimental data 

preprocessing was implemented in Python, and the specific 

algorithm was implemented using C++, mainly ran on a single 

machine. The data in this paper adopted the P2P dataset in the 

Stanford Large Network Dataset Collection [14], which 

contains 4039 nodes and 88234 edges. Figure 3 shows the 

degree distribution of a data set with a maximum degree of 

1045. 
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Figure 3. Degree distribution of the graph 
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Figure 4. Accuracy rate 
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Figure 5. Experimental results of privacy budget 

 

First, for each threshold value 𝜃, the interaction correct rates 

of P2P were compared, as shown in Figure 4, the selection of 

θ has a great influence on the accuracy of the algorithm. Then 

choose τ=0.01, 0.1, 1, 10 to calculate the corresponding 

privacy budget 𝜖 to evaluate the validity and robustness of the 

privacy preserving of the algorithm, as shown in Figure 5. The 

experimental results show that the key of the algorithm is to 

find the optimal threshold θ so that the local sensitivity on the 

cut-out graph Gθ is closer to the upper smooth bound, and the 

consumption of privacy budget ϵ of the P2P structure complied 

with the power-law distribution is minimal. 

 

 

5. CONCLUSIONS 

 

In various P2P applications, the users’ privacy information 

has been tracked, identified and leaked, to tackle this security 

problem, this paper analyzed the node data storage and 

interaction process in P2P, and proposed a P2P privacy-

preserving algorithm based on differential privacy model. The 

algorithm adds noise to the user privacy information and 

solves the problem that the P2P structure itself has high 

sensitivity under the Laplace mechanism. The paper used 

experiment to prove that the algorithm satisfies the differential 

privacy in the user personal data storage and distribution 

process in P2P, after the addition of the noise, the data 

sensitivity becomes lower and the algorithm is available and 

reliable for the calculation of credit verification, transmission 

and storage in P2P, and at the same time, the experiment has 

proved the effectiveness and robustness of the algorithm itself. 

As the number of interactive applications in P2P is increasing, 

this paper proposes that the node differential privacy algorithm 

cannot be applied to interactive and data-related P2P, and our 

research group will continue to study the differential privacy 

algorithm for the interactive query in P2P, in the hopes of 

preventing leakage of privacy data to a greater extent. 
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