
An Evolving Hybrid Deep Learning Framework for Legal Document Classification

Neha Bansal*, Arun Sharma, R.K. Singh

Indira Gandhi Delhi Technical University for Women, Delhi, India

Corresponding Author Email: nehabansal33@gmail.com

https://doi.org/10.18280/isi.240410 ABSTRACT

Received: 10 April 2019

Accepted: 18 July 2019

In the digital age, many countries have digitalized their judgement documents and uploaded

them online. The automated classification of these documents could save lots of manpower

and time. In this paper, an automatic classification method is developed for online judgement

documents from Washington University School of Law Supreme Court Database (SCDB).

Our approach was designed under a hybrid framework of deep learning, which couples

convolution neural network (CNN) and with a recurrent neural network called bidirectional

long short-term memory (BiLSTM). Firstly, the CNN architecture was optimized by genetic

algorithm to generate the optimal word vector. Then, the vector was used to train the bi-

LSTM for Softmax classification. The experimental results show that our model far exceeded

the existing models in classification accuracy, indicating the effectiveness of integrating the

genetically-modified CNN with the bi-LSTM.

Keywords:

convolution neural network (CNN),

bidirectional long short-term memory

(BiLSTM), neuroevolution, hyper-

parameters, optimization

1. INTRODUCTION

Document classification is a supervised machine learning

algorithm task used in different business problems. The goal

of document classification is to categorize the given

document into one or more predefined categories. When the

documents to be classified are large and have many

categories, the classification models could be improved by

incorporating more information about the documents’ overall

structure and adding domain specific knowledge to the model.

Lately, several deep learning algorithms have attempted to

preserve even more local structure by learning high-

dimensional representations using recursive neural network

architectures.

A Legal judgment is a decision by a court or other tribunal

that resolves a controversy and adjudicates the rights and

liabilities of the parties. The employment of various

automatic analysis techniques in the legal domain has been a

focus of researchers for several decades now. In early works,

researchers used mathematical and statistical analysis for

performing the legal document analysis [1-3]. With the

advent of machine learning and data mining, researchers

focused on employing these algorithms to the task of legal

document analysis. One of the major steps in the application

of such techniques is the extraction and selection of

important features from the text content [4-6] and some

focused on identifying the overall structure of the document

for performing the analysis [7-9]. However, these methods

were able to identify only the shallow features and some

manually designed factors, and involved massive human

efforts. The features remain biased to the problem at hand

and thus, cannot be generalized to other tasks. With the

successful implementation of neural networks in Kim [10]

and Baharudin et al. [11] works on various NLP tasks,

researchers started exploring the same in handling the legal

document analysis. Recently, as per the survey done by

Bansal et al. [12], deep learning is being used in handling

various complex legal tasks. The major benefit of employing

deep learning models is to reduce the large human effort in

pre-processing of documents which is required to extract the

features from the text.

We implement a novel approach based on a hybrid model

of convolutional neural networks and bi-LSTM network, a

variant of recurrent neural network to automatically classify

judgment documents. We employ genetic algorithm to tune

the hyperparameters values for the CNN network architecture.

Different from traditional machine learning methods, the

work of feature detection is done by the model in case of

deep learning models. We summarize the main contributions

of the proposed approach as follows: i) a CNN model which

is used to capture the word vectors; ii) application of genetic

algorithm to obtain hyperparameters values for the CNN

network; iii) Application of bi-LSTM model for classification

at the final step; and iv) generic approach, applicable to

different languages and domains. We evaluate the approach

on the datasets of judgment documents from Washington

University School of Law Supreme Court Database (SCDB)

[13]. We propose that the hybrid model will achieve a high

accuracy when compared to other state-of-the-art works as it

provides a genetically evolving CNN which will generate an

improved feature vector. We also propose that the efficiency

will be high as the optimized feature set will result in

dimensionality reduction for the learning model. The rest of

paper is organized as: Section 2 give brief discussion on

related works with respect to document classification using

RNN and CNN models. Section 3 describes the proposed

methodology in detail. Section 4 presents the dataset and

experimental results, while section 5 gives the conclusion and

future work.

2. RELATED WORK

This section discusses the application of convolution

Ingénierie des Systèmes d’Information
Vol. 24, No. 4, August, 2019, pp. 425-431

Journal homepage: http://iieta.org/journals/isi

425

neural network and recurrent neural network in natural

language field. The motivation for using CNN and RNN (bi-

LSTM) architecture is two-fold: (i) The model can learn

hidden semantics by extracting n-gram features from

sentence though convolutional filters, and (ii) Using bi-

LSTM the context of the sentence can be preserved in both

the directions as bi-LSTM has the ability to remember. We

also review some most recent works that have implemented

genetic algorithms to optimize parameters for deep neural

networks.

2.1 Convolutional neural network in NLP

Convolutional neural networks are special neural networks

in which hidden layers of neurons are replaced by one or

more convolutional and polling layers, followed by fully-

connected layers. Convolution neural network were initially

introduced for solving the complex tasks in computer vision.

However in the recent past, CNNs have been successfully

applied to text classification task. Kim et al. [10] proposed a

basic CNN network for sentiment analysis task using

word2vec embeddings. Author concluded that a simple CNN

network with just one convolutional layer and little

hyperparameter tuning outperformed many state-of-the-art

classifiers. Kotzias et al. [14] proposed a CNN based

framework for polarity prediction of three review datasets.

Authors concluded that the accuracy obtained was

comparable and the approach was scalable. A very deep

CNN model for text classification by having a depth up to 29

convolutional layers was given by Conneau et al. [15].

Authors conducted experiment on eight large text datasets

available freely, which included sentiment classification,

topic categorization, and news categorization tasks. Dahou et

al. [16] used CNN with differential evolution algorithm to

perform Arabic sentiment classification. Experimental results

were evaluated on five different Arabic sentiment datasets

and the accuracy was found to be better than other state-of-

the-art algorithms. Character level convolution neural

network was used by Zhang et al. [17] for text classification.

Long length document classification using local convolution

feature aggregation was proposed by Liu et al. [18]. Authors

developed three models and conducted experiments on four-

class arXiv paper dataset and concluded that good accuracy

was achieved. Besides classification, CNN have been adapted

for solving other text analytics tasks such as question

answering [19-21] and language modelling [22, 23]. CNNs

are giving state-of-the art results in solving various problems.

2.2 Recurrent neural network in NLP

The number of pages for the manuscript must be no more

than ten, including all the sections. Please make sure that the

whole text ends on an even page. Please do not insert page

numbers. Please do not use the Headers or the Footers

because they are reserved for the technical editing by editors.

2.3 Neuroevolution in improving deep learning models

Neuroevolution (NE) is the process of improving neural

network parameters and architecture using evolutionary

algorithms. A large number of researchers are working on the

task of evolving deep neural networks using Neuroevolution.

Genetic algorithms are metaheuristic and imbibe the natural

selection process. The core idea of genetic algorithms is to

evolve individuals by applying standard operators such as

selection, mutation and crossover. A multimode evolutionary

neural network was proposed by Young et al. [29] to learn

optimised CNN parameters via a genetic algorithm.

Suganuma et al. [30] used cartesian approach based genetic

programming to build optimized CNN architecture for image

classification task. Hutter and Loshchilov [31] applied

Covariance Matrix Evolution Scheme for tuning parameters

of convolution and fully-connected layers. Dahou et al. [32]

implemented a Differential Evolution algorithm to evolve the

features for sentiment classification for Arabic language

using the CNN model. Xie and Yullie [33] also worked on

evolving CNN architecture by representing GA individuals

using a binary encoded scheme.

3. PROPOSED METHODOLOGY

The proposed framework is used to develop a

classification architecture that is configured automatically

using genetic algorithm. Also, instead of using LSTM, we

propose to make use of a bidirectional LSTM network which

helps in capturing the sequential context from both left and

right. The proposed framework will consist of three stages:

pre-processing using embeddings, optimizing CNN hyper-

parameters using genetic algorithm, and bi-LSTM network

layer at the end. The proposed classification architecture is

shown in Figure 1.

Figure 1. Proposed classification architecture

426

3.1 Pre-processing

The first layer performs pre-processing on the input. Input

document is converted in the form of a vector representation

corresponding to each word or sentence. The use of word

embeddings for representing text in the form of a vector has

become a standard approach. This can be done by building an

embedding from the text corpus or by using a pre-trained

embedding.

GloVe [34] and word2vec [35] are two successful pre-

trained word embeddings that are being used extensively as

they have proven to attain high accuracy results. Both the

embeddings represent text as continuous word vectors in a

low dimensional space and are very useful in various text

processing tasks. Glove embeddings are used in this work.

We also constructed one embedding from the corpus and

tested results using the same. A maximum length was set for

sentence to make it uniform throughout the set.

3.2 Evolving CNN network using genetic algorithm

CNNs were first introduced in the paper of Yann Lecun et

al. [36]. Earlier being used for computer vision tasks, over

the time they have been evolved to solve challenging text

data. The text input to the CNN has two dimensions, among

which one dimension denotes the d-dimensional vector of

each word, while the other captures the number of words. So,

if we assume a total of 30 words wherein each word is

represented with a 100 dimensional vector, then the input

size to CNN will be 1* 30*100. The process flow for genetic

algorithm in designing CNN network is shown in Algorithm

1. The two prerequisites for genetic algorithm are, a genetic

representation of the solution domain and second, a fitness

function to evaluate each individual. The algorithm works by

going through the standard bio-inspired operations and

discovers the best hyperparameters for the CNN network.

The evolving genetic framework consists of three stages:

initialization, evaluation and update. Each stage of the

proposed framework is discussed in detail in the following

sections.

3.2.1 Initialization stage

In the initialization stage, the process starts by providing

the algorithm with the input document dataset, the population

size and the generation number of the genetic algorithm and

specifying a predefined set of building blocks for CNN

network. The population XNNpar, consists of N solutions

andNpar, which gives the number of parameters to be

optimized.

The hyperparameters used to control the CNN network

configuration in proposed model are number of filters, kernel

size, Initialization mode and drop-out rate. The set of values

for each parameter is generated and genetic parameters

crossover and mutation are set. A random integer population

of size N is generated using the following equation:

𝑥𝑖𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑗 − 𝑙𝑗), 𝑤ℎ𝑒𝑟𝑒

j varies from 1 to Npar and i varies from 1 to N, and lj and uj

represents the lower and upper values for the jth parameter.

The sample values for one solution xi are shown in Table 1.

The values show a configuration to build a CNN model.

These values are now provided to the evaluation stage.

Table 1. Sample values for solution

Parameters Example Value

Number of filters 5

Filtersize [3, 4]

Initialization mode Uniform

Dropout rate 0.6

Algorithm 1: Genetic Algorithm to optimize

hyperparameters for CNN Network

1: Input: The Judgment dataset D, Initial population X,

Termination Criteria (max accuracy with min features),

crossover and mutation probabilities.

2: Initialization: Splitting the dataset into training and testing

using 80:20 for building and evaluating CNN network using

initial population XNNpar, where N is the number of solutions

and Nparis the number of parameters to be used for configuring

CNN.

3: for i = 1,2,…,I do

Evaluation:

4: CNN_net building CNN architecture using training dataset

and initial population for xi in X;

5: fit_val(CNN_net) compute fitness of each CNN_net using

the defined fitness function;

Updation:

6: (CNN_net)xb select CNN_net with best solution xb

7: Crossover: for any two solutions, a random split position is

chosen. Two new solutions are created by swapping the

information at the split point.

8: Mutation: for each non-crossover solution, mutation operation

is applied

9: Selection: producing a new population

10: end for

11: Output: a set of individuals in the final population with

maximum accuracy and minimum number of features.

3.2.2 Evaluation stage

In this stage the CNN network is build using the

parameters finalized in the initialization stage. The 80:20

split method is used to divide the dataset randomly into

training and testing sets. The training dataset is used to build

the network and testing set is used to evaluate the model on

unseen data by using the fitness function.

3.2.3 Update stage

The best solution xb with the highest value for the fitness

function is chosen. After this, each solution in the current

population is updated using the three operators of the genetic

algorithms: mutation, crossover and selection. The

evaluation and update stage are repeated until the termination

criterion is reached.

3.3 Bi-directional LSTM layer for classification

Bidirectional LSTM is a variant of LSTM recurrent neural

networks. Recurrent Neural Networks have proven to be very

effective in the tasks of text processing. An RNN is capable

of utilizing word order information and use this to construct a

more precise semantic expression for each word. However, a

regular LSTM is not able to capture the future contextual

information while processing sequences, whereas a bi-LSTM

is able to use both past and future contexts by processing the

text from both directions. Based on the work of [13], this

work further optimizes the model to change the

unidirectional LSTM layer to a bidirectional LSTM layer.

A bi-LSTM network involves duplicating the first

recurrent layer in the network so that there are now two

427

layers side-by-side, which provide the input sequence as-is as

input to the first layer and provide a reversed copy of the

input sequence to the second. Thus, the word vector for the

input has an expression obtained by LSTM in two directions.

A bidirectional LSTM network is shown in Figure 2. At the

end, a dense layer is used is used with size equal to number

of classes and SoftMax function to convert number into

probability.

Figure 2. Bi-directional LSTM network

4. DATASET AND EXPERIMENTAL ANALYSIS

4.1 Dataset

The work uses manually categorized Supreme Court

Database (SCDB) corpus, from Washington University

School of Law [20]. The dataset consists of 8419 SCOTUS

legal opinions, classified into 15 legal categories, which are

further arranged into 279 sub-categories. Categories are

shown on the x-axis and number of documents in the y-axis

(Figure 3(a)). The dataset is available in python textacy

package. The dataset in textacy package has 11 attributes.

Category and sub-category are identified with the name

‘issue_area’ and ‘issue’ respectively (Figure 3(b)) in the

attributes. For our experiment, the dataset is randomly split

into training and testing for building and evaluating the

model. A random 80:20 split was chosen for the dataset.

(a)

(b)

Figure 3. a) Legal dataset – categories; b) Legal dataset –

sub-categories

4.2 Experimental setup and parameter optimization

Python 3.6 is used to carry out deep learning

implementation. The text dataset is vectorized using both

supervised as well as unsupervised approach. Embeddings

are build using the corpus as well as using publicly available

standard model glove. Glove is pre-trained word vectors

trained on part of Google news dataset of about 100 billion

words. The embeddings are given as input to an evolving

parallel CNN architecture. CNN architecture is configured

using the optimized hyperparameters obtained through

genetic algorithm. At each evaluation, best individual is

chosen as per the results of fitness function and is used to

update the population. The fitness function consisted of two

objectives: accuracy (maximize) and number of features

(minimum). The process stops when the termination criterion

is met.

4.3 Experimental results

In order to compare the performance of our proposed

approach, the following baseline models were defined:

Base (RFC): A random forest classifier model was built

using all the features in the form of word vector obtained

using count vectorizer from keras pre-processing library. We

used random forest as a baseline classifier as it is one of the

best classifiers in the traditional machine learning models. A

low accuracy score of 0.56 was obtained with RFC.

Base (CNN): A simple CNN model was built using both

glove embedding as well as embeddings created from corpus.

The hyperparameters values used for building the CNN

network are: a convolutional layer with 128 filters with a

filter size of 5 and ‘relu’ activation function, a global max

pooling layer and a dense layer with ‘softmax’ activation

function at the end with size equal to the number of labels in

the dataset.

Base (LSTM): A unidirectional LSTM model was built

using glove embedding as well as embeddings from corpus.

LSTM model is built using 64 units, and a dropout of 0.5

issued to avoid overfitting. A dense layer with size equal to

that of labels is placed at the end.

For a comparative study a number of different hybrid

architectures composed of CNN and LSTM are also

evaluated:

CNN + LSTM: In this model, a hybrid of CNN and LSTM

is worked upon. The embedding vector was given to the

CNN network which learned feature vector. This feature

428

vector is then passed to the LSTM layer with 64 units. A

dense layer with ‘softmax’ activation function is used at the

end.

CNN + Bi-LSTM: A hybrid network consisting of CNN

trained with embedding vector and ‘relu’ activation function

and a bi-directional LSTM recurrent neural network followed

by a dense layer at the end is also evaluated. A bi-directional

LSTM network captures the word context from both left and

right side.

(E-CNN) + Bi-LSTM: This represents our proposed model.

A CNN architecture whose parameters are optimized using

genetic algorithm is hybrid with a bi-LSTM network at the

end. The model achieves best accuracy for testing dataset.

We present the training and testing dataset evaluation results

in Table 2.

In this work a GA optimized CNN is used to get the best

feature vector, which is further provided to bi-LSTM network

for the classification of legal documents. The performance of

a neural network is greatly determined by the settings of its

hyperparameters such as the number of convolutional layers,

filter sizes, number of neurons, dropout rate and learning rate.

In our problem, we have developed a genetically optimized

CNN network for having an optimized feature set which

provided maximum classification accuracy. As the number of

configurations for the CNN hyperparameters is very large,

trying to have a configuration manually for the CNN is a

cumbersome task. The manually selected settings for our

example dataset resulted in an overall accuracy of 78 %. The

GA optimised CNN with bi-LSTM outperformed the

manually parameterized CNN and gave an accuracy close to

82 %.

It is also clear that in base models, SVM, a simple machine

leaning model achieves very low accuracy of 56 %. However,

CNN a simple convolutional network achieves an accuracy

of around 72 %. LSTM, recurrent neural network achieves

very low accuracy of around 23 % for the chosen dataset.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for

document classification using a hybrid deep learning model.

Specifically, we tried to learn a genetically evolving CNN

architecture and the effect of using a bi-LSTM network. The

proposed model is evaluated by automatically classifying

judgment documents from Washington University School of

Law Supreme Court Database (SCDB). The dataset is

labelled and has 15 categories and 279 finer-grained

categories.

As the tuning of hyper-parameters for a CNN is a tedious

task, we employed GA method, to search for the best CNN

structure. The GA process starts by building an initial

population of potential CNN networks and evaluates each

network by using the fitness function.

Table 2. Classification accuracy for training and testing dataset for 15 categories

Model 15 Categories

Training Testing

Base Models

RFC 0.99 0.56

CNN + gloveembedding 0.87 0.67

CNN + embeddings from text corpus 0.99 0.76

LSTM + gloveembedding 0.34 0.37

LSTM + embeddings from text corpus 0.23 0.23

Hybrid Models

CNN + LSTM + gloveembedding 0.89 0.72

CNN + LSTM + embeddings from the text corpus 0.88 0.74

CNN + Bi-LSTM + gloveembeddings 0.88 0.77

CNN + Bi-LSTM + embeddings from the text corpus 0.86 0.78

E-CNN + Bi-LSTM + gloveembedding 0.89 0.82

E-CNN + Bi-LSTM + embeddings from the text corpus 0.86 0.82

The multiple GA iterations resulted in finding the best

model that resulted in maximum accuracy and minimum

features. The feature vector obtained from E-CNN was used

as input for the Bi-LSTM network and classification is done

using the softmax activation function at the end. Our work

will allow other researchers in this area to design such

hybrid networks for different fields like medicine, biology

geology etc. for their particular classification problem.

REFERENCES

[1] Keown, R. (1980). Mathematical models for legal

prediction, 2 computer LJ 829. The John Marshall

Journal of Information Technology & Privacy Law,

2(1): 29.

[2] Segal, J.A. (1984). Predicting supreme court cases

probabilistically: The search and seizure cases, 1962-

1981. American Political Science Review, 78(4): 891-

900.

[3] Lauderdale, B.E., Clark, T.S. (2012). The supreme

court’s many median justices. American Political

Science Review, 106(4): 847-866.

[4] Lin, W.C., Kuo, T.T., Chang, T.J., Yen, C.A., Chen,

C.J., Lin, S.D. (2012). Exploiting machine learning

models for Chinese legal documents labeling, case

classification, and sentencing prediction. Proceedings

of ROCLING, 140.

[5] Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D.,

Lampos, V. (2016). Predicting judicial decisions of the

European court of human rights: A natural language

processing perspective. Peer J. Computer Science, 2:

e93. http://dx.doi.org/10.7717/peerj-cs.93

[6] Sulea, O.M., Zampieri, M., Malmasi, S., Vela, M.,

Dinu, L.P., van Genabith, J. (2017). Exploring the use

of text classification in the legal domain. arXiv

preprint arXiv:1710.09306.

[7] Saravanan, M., Ravindran, B. (2010). Identification of

429

rhetorical roles for segmentation and summarization of

a legal judgment. Artificial Intelligence and Law,

18(1): 45-76. https://doi.org/10.1007/s10506-010-

9087-7

[8] Mezghanni, I.B., Gargouri, F. (2016). Detecting

hidden structures from Arabic electronic documents:

Application to the legal field. In: 14th International

Conference on Software Engineering Research,

Management and Applications (SERA), IEEE,

Towson USA, pp. 75-81.

http://dx.doi.org/10.1109/SERA.2016.7516131

[9] Farzindar, A., Guy, L. (2004). Letsum, an automatic

legal text summarizing system. Legal knowledge and

Information Systems, JURIX, 11-18.

[10] Kim, Y. (2014). Convolutional neural networks for

sentence classification. In Proceedings of EMNLP.

http://dx.doi.org/10.3115/v1/D14-1181

[11] Khan, A., Baharudin, B., Lee, L.H., Khan, K. (2010).

A review of machine learning algorithms for text-

documents classification. Journal of Advances in

Information Technology, 1(1): 4-20.

http://dx.doi.org/10.4304/jait.1.1.4-20

[12] Bansal, N., Sharma, A., Singh, R.K. (2019, May). A

Review on the application of deep learning in legal

domain. In IFIP International Conference on Artificial

Intelligence Applications and Innovations, Springer,

Cham, pp. 374-381. http://dx.doi.org/10.1007/978-3-

030-19823-7_31

[13] Spaeth, H.J., Epstein, L., Martin, A.D., Segal, J.A.,

Ruger, T.J., Benesh, S.C. (2017). 2017 supreme court

database, version 2017 release 01. 2017.

[14] Kotzias, D., Denil, M., Freitas, N., Smyth, P. (2015).

From group to individual labels using deep features.

Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, pp. 597-606.

http://dx.doi.org/10.1145/2783258.2783380

[15] Conneau, A., Holger, S., Barrault, L., Lecun, Y.

(2017). Very deep convolutional networks for text

classification. Proceedings of the 15th Conference of

the European Chapter of the Association for

Computational Linguistics, 1: 1107-1116.

http://dx.doi.org/10.18653/v1/E17-1104

[16] Dahou, A., Elaziz, M.A., Zhou, J., Xiong, S. (2019).

Arabic sentiment classification using convolutional

neural network and differential evolution algorithm.

Computational Intelligence and Neuroscience, 2019:

16 pages. http://dx.doi.org/10.1155/2019/2537689

[17] Zhang, X., Zhao, J., LeCun, Y. (2015). Character-level

convolutional networks for text classification. In

Advances in Neural Information Processing Systems,

pp. 649-657.

[18] Liu, L., Liu, K., Cong, Z., Zhao, J., Ji, Y., He, J.

(2018). Long length document classification by local

convolutional feature aggregation. Algorithms, 11(8):

109. http://dx.doi.org/10.3390/a11080109

[19] Kalchbrenner, N., Grefenstette, E., Phil, B. (2014). A

convolutional neural network for modelling sentences.

Proceedings of the Conference 52nd Annual Meeting

of the Association for Computational Linguistics, ACL,

1: 655-665. http://dx.doi.org/10.3115/v1/P14-1062

[20] Dauphin, Y.N., Fan, A., Auli, M., Grangier, D. (2017).

Language modeling with gated convolutional networks.

Proceedings of the International Conference on

Machine Learning (ICML), pp. 933-941.

[21] Qiu, X., Huang, X. (2015). Convolutional neural

tensor network architecture for community-based

question answering. In Proceedings of the 24th

International Conference on Artificial Intelligence,

AAAI Press: Buenos Aires, Argentina, pp. 1305-1311.

[22] Dong, L., Wei, F., Zhou, M., Xu, K. (2015). Question

answering over freebase with multi-column

convolutional neural networks. Proceedings of the

53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing,

2015, pp. 260- 269. http://dx.doi.org/10.3115/v1/P15-

1026

[23] Yin, W., Yu, M., Xiang, B., Zhou, B., Schutze, H.

(2016). Simple question answering by attentive

convolutional neural network. Proceedings of

COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers 2016, pp.

1746-1756.

[24] Weng, W.H., Wagholikar, K.B., McCray, A.T.,

Szolovits, P., Chueh, H.C. (2017). Medical subdomain

classification of clinical notes using a machine

learning-based natural language processing approach.

BMC Medical Informatics and Decision Making,

17(1): 155. http://dx.doi.org/10.1186/s12911-017-

0556-8

[25] Tai, K.S., Socher, R., Manning, C.D. (2015).

Improved semantic representations from tree-

structured long short-term memory networks. In

Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language

Processing. http://dx.doi.org/10.3115/v1/P15-1150

[26] Wang, J.H., Liu, T.W., Luo, X., Wang, L. (2018). An

LSTM approach to short text sentiment classification

with word embeddings. In Proceedings of the 30th

Conference on Computational Linguistics and Speech

Processing (ROCLING 2018), pp. 214-223.

[27] Lai, S., Xu, L., Liu, K., Zhao, J. (2015). Recurrent

convolutional neural networks for text classification.

In Twenty-ninth AAAI Conference on Artificial

Intelligence.

[28] Liu, P., Qiu, X., Huang, X. (2016). Recurrent neural

network for text classification with multi-task learning.

arXivpreprint arXiv:1605.05101.

[29] Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H.,

Patton, R.M. (2015). Optimizing deep learning hyper-

parameters through an evolutionary algorithm. in

Workshop on Machine Learning in High-Performance

Computing Environments. ACM, 2015, pp. 4:1-4:5.

http://dx.doi.org/10.1145/2834892.2834896

[30] Suganuma, M., Shirakawa, S., Nagao, T. (2017). A

genetic programming approach to designing

convolutional neural network architectures. In

Proceedings of the 2017 Genetic and Evolutionary

Computation Conference. Berlin, Germany: ACM,

2017, pp. 497-504.

http://dx.doi.org/10.1145/3071178.3071229

[31] Loshchilov, I., Hutter, F. (2016). CMA-ES for

hyperparamete roptimization of deep neural networks.

arXivpreprint arXiv:1604.07269.

[32] Dahou, A., Elaziz, M.A., Zhou, J., Xiong, S. (2019).

Arabic sentiment classification using convolutional

430

http://dx.doi.org/10.3115/v1/P15-1150

neural network and differential evolution algorithm.

Computational Intelligence and Neuroscience, 2019.

http://dx.doi.org/10.1155/2019/2537689

[33] Xie, L.X., Yuille, A. (2017). Genetic CNN. In

Proceedings of the IEEE International Conference on

Computer Vision, Venice, Italy, pp. 1379-1388.

http://dx.doi.org/10.1109/ICCV.2017.154

[34] Socher, P.R., Manning, C.D. (2014). Glove: Global

vectors for word representation. In EMNLP, 2014.

http://dx.doi.org/10.3115/v1/D14-1162

[35] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.,

Dean, J. (2013). Distributed representations of words

and phrases and their compositionality. CoRR, vol.

abs/1310.4546, 2013. [Online]. Available:

http://arxiv.org/abs/1310. 4546

[36] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep

learning. Nature, 521(7553): 436.

http://dx.doi.org/10.1038/nature14539

431

