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In the digital age, many countries have digitalized their judgement documents and uploaded 

them online. The automated classification of these documents could save lots of manpower 

and time. In this paper, an automatic classification method is developed for online judgement 

documents from Washington University School of Law Supreme Court Database (SCDB). 

Our approach was designed under a hybrid framework of deep learning, which couples 

convolution neural network (CNN) and with a recurrent neural network called bidirectional 

long short-term memory (BiLSTM). Firstly, the CNN architecture was optimized by genetic 

algorithm to generate the optimal word vector. Then, the vector was used to train the bi-

LSTM for Softmax classification. The experimental results show that our model far exceeded 

the existing models in classification accuracy, indicating the effectiveness of integrating the 

genetically-modified CNN with the bi-LSTM.  
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1. INTRODUCTION

Document classification is a supervised machine learning 

algorithm task used in different business problems. The goal 

of document classification is to categorize the given 

document into one or more predefined categories. When the 

documents to be classified are large and have many 

categories, the classification models could be improved by 

incorporating more information about the documents’ overall 

structure and adding domain specific knowledge to the model. 

Lately, several deep learning algorithms have attempted to 

preserve even more local structure by learning high-

dimensional representations using recursive neural network 

architectures. 

A Legal judgment is a decision by a court or other tribunal 

that resolves a controversy and adjudicates the rights and 

liabilities of the parties. The employment of various 

automatic analysis techniques in the legal domain has been a 

focus of researchers for several decades now. In early works, 

researchers used mathematical and statistical analysis for 

performing the legal document analysis [1-3]. With the 

advent of machine learning and data mining, researchers 

focused on employing these algorithms to the task of legal 

document analysis. One of the major steps in the application 

of such techniques is the extraction and selection of 

important features from the text content [4-6] and some 

focused on identifying the overall structure of the document 

for performing the analysis [7-9]. However, these methods 

were able to identify only the shallow features and some 

manually designed factors, and involved massive human 

efforts. The features remain biased to the problem at hand 

and thus, cannot be generalized to other tasks. With the 

successful implementation of neural networks in Kim [10] 

and Baharudin et al. [11] works on various NLP tasks, 

researchers started exploring the same in handling the legal 

document analysis. Recently, as per the survey done by 

Bansal et al. [12], deep learning is being used in handling 

various complex legal tasks. The major benefit of employing 

deep learning models is to reduce the large human effort in 

pre-processing of documents which is required to extract the 

features from the text. 

We implement a novel approach based on a hybrid model 

of convolutional neural networks and bi-LSTM network, a 

variant of recurrent neural network to automatically classify 

judgment documents. We employ genetic algorithm to tune 

the hyperparameters values for the CNN network architecture. 

Different from traditional machine learning methods, the 

work of feature detection is done by the model in case of 

deep learning models. We summarize the main contributions 

of the proposed approach as follows: i) a CNN model which 

is used to capture the word vectors; ii) application of genetic 

algorithm to obtain hyperparameters values for the CNN 

network; iii) Application of bi-LSTM model for classification 

at the final step; and iv) generic approach, applicable to 

different languages and domains. We evaluate the approach 

on the datasets of judgment documents from Washington 

University School of Law Supreme Court Database (SCDB) 

[13]. We propose that the hybrid model will achieve a high 

accuracy when compared to other state-of-the-art works as it 

provides a genetically evolving CNN which will generate an 

improved feature vector. We also propose that the efficiency 

will be high as the optimized feature set will result in 

dimensionality reduction for the learning model. The rest of 

paper is organized as: Section 2 give brief discussion on 

related works with respect to document classification using 

RNN and CNN models. Section 3 describes the proposed 

methodology in detail. Section 4 presents the dataset and 

experimental results, while section 5 gives the conclusion and 

future work.  

2. RELATED WORK

This section discusses the application of convolution 
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neural network and recurrent neural network in natural 

language field. The motivation for using CNN and RNN (bi-

LSTM) architecture is two-fold: (i) The model can learn 

hidden semantics by extracting n-gram features from 

sentence though convolutional filters, and (ii) Using bi-

LSTM the context of the sentence  can be preserved in both 

the directions as bi-LSTM has the ability to remember. We 

also review some most recent works that have implemented 

genetic algorithms to optimize parameters for deep neural 

networks. 

 

2.1 Convolutional neural network in NLP 

 

Convolutional neural networks are special neural networks 

in which hidden layers of neurons are replaced by one or 

more convolutional and polling layers, followed by fully-

connected layers. Convolution neural network were initially 

introduced for solving the complex tasks in computer vision. 

However in the recent past, CNNs have been successfully 

applied to text classification task. Kim et al. [10] proposed a 

basic CNN network for sentiment analysis task using 

word2vec embeddings. Author concluded that a simple CNN 

network with just one convolutional layer and little 

hyperparameter tuning outperformed many state-of-the-art 

classifiers. Kotzias et al. [14] proposed a CNN based 

framework for polarity prediction of three review datasets. 

Authors concluded that the accuracy obtained was 

comparable and the approach was scalable. A very deep 

CNN model for text classification by having a depth up to 29 

convolutional layers was given by Conneau et al. [15]. 

Authors conducted experiment on eight large text datasets 

available freely, which included sentiment classification, 

topic categorization, and news categorization tasks. Dahou et 

al. [16] used CNN with differential evolution algorithm to 

perform Arabic sentiment classification. Experimental results 

were evaluated on five different Arabic sentiment datasets 

and the accuracy was found to be better than other state-of-

the-art algorithms. Character level convolution neural 

network was used by Zhang et al. [17] for text classification. 

Long length document classification using local convolution 

feature aggregation was proposed by Liu et al. [18]. Authors 

developed three models and conducted experiments on four-

class arXiv paper dataset and concluded that good accuracy 

was achieved. Besides classification, CNN have been adapted 

for solving other text analytics tasks such as question 

answering [19-21] and language modelling [22, 23]. CNNs 

are giving state-of-the art results in solving various problems. 

 

2.2 Recurrent neural network in NLP 

 

The number of pages for the manuscript must be no more 

than ten, including all the sections. Please make sure that the 

whole text ends on an even page. Please do not insert page 

numbers. Please do not use the Headers or the Footers 

because they are reserved for the technical editing by editors. 

 

2.3 Neuroevolution in improving deep learning models 

 

Neuroevolution (NE) is the process of improving neural 

network parameters and architecture using evolutionary 

algorithms. A large number of researchers are working on the 

task of evolving deep neural networks using Neuroevolution. 

Genetic algorithms are metaheuristic and imbibe the natural 

selection process. The core idea of genetic algorithms is to 

evolve individuals by applying standard operators such as 

selection, mutation and crossover. A multimode evolutionary 

neural network was proposed by Young et al. [29] to learn 

optimised CNN parameters via a genetic algorithm. 

Suganuma et al. [30] used cartesian approach based genetic 

programming to build optimized CNN architecture for image 

classification task. Hutter and Loshchilov [31] applied 

Covariance Matrix Evolution Scheme for tuning parameters 

of convolution and fully-connected layers. Dahou et al. [32] 

implemented a Differential Evolution algorithm to evolve the 

features for sentiment classification for Arabic language 

using the CNN model. Xie and Yullie [33] also worked on 

evolving CNN architecture by representing GA individuals 

using a binary encoded scheme. 

 

 

3. PROPOSED METHODOLOGY 
 

The proposed framework is used to develop a 

classification architecture that is configured automatically 

using genetic algorithm. Also, instead of using LSTM, we 

propose to make use of a bidirectional LSTM network which 

helps in capturing the sequential context from both left and 

right. The proposed framework will consist of three stages: 

pre-processing using embeddings, optimizing CNN hyper-

parameters using genetic algorithm, and bi-LSTM network 

layer at the end. The proposed classification architecture is 

shown in Figure 1.  

 

 
 

Figure 1. Proposed classification architecture 
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3.1 Pre-processing 

 

The first layer performs pre-processing on the input. Input 

document is converted in the form of a vector representation 

corresponding to each word or sentence. The use of word 

embeddings for representing text in the form of a vector has 

become a standard approach. This can be done by building an 

embedding from the text corpus or by using a pre-trained 

embedding. 

GloVe [34] and word2vec [35] are two successful pre-

trained word embeddings that are being used extensively as 

they have proven to attain high accuracy results. Both the 

embeddings represent text as continuous word vectors in a 

low dimensional space and are very useful in various text 

processing tasks. Glove embeddings are used in this work. 

We also constructed one embedding from the corpus and 

tested results using the same. A maximum length was set for 

sentence to make it uniform throughout the set. 

 

3.2 Evolving CNN network using genetic algorithm 

  

CNNs were first introduced in the paper of Yann Lecun et 

al. [36]. Earlier being used for computer vision tasks, over 

the time they have been evolved to solve challenging text 

data. The text input to the CNN has two dimensions, among 

which one dimension denotes the d-dimensional vector of 

each word, while the other captures the number of words. So, 

if we assume a total of 30 words wherein each word is 

represented with a 100 dimensional vector, then the input 

size to CNN will be 1* 30*100. The process flow for genetic 

algorithm in designing CNN network is shown in Algorithm 

1. The two prerequisites for genetic algorithm are, a genetic 

representation of the solution domain and second, a fitness 

function to evaluate each individual. The algorithm works by 

going through the standard bio-inspired operations and 

discovers the best hyperparameters for the CNN network. 

The evolving genetic framework consists of three stages: 

initialization, evaluation and update.  Each stage of the 

proposed framework is discussed in detail in the following 

sections. 

 

3.2.1 Initialization stage 

In the initialization stage, the process starts by providing 

the algorithm with the input document dataset, the population 

size and the generation number of the genetic algorithm and 

specifying a predefined set of building blocks for CNN 

network. The population XNNpar, consists of N solutions 

andNpar, which gives the number of parameters to be 

optimized.   

The hyperparameters used to control the CNN network 

configuration in proposed model are number of filters, kernel 

size, Initialization mode and drop-out rate. The set of values 

for each parameter is generated and genetic parameters 

crossover and mutation are set. A random integer population 

of size N is generated using the following equation: 

 

𝑥𝑖𝑗 =  𝑙𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑗 − 𝑙𝑗), 𝑤ℎ𝑒𝑟𝑒 

 

j varies from 1 to Npar and i varies from 1 to N, and lj and uj 

represents the lower and upper values for the jth parameter. 

The sample values for one solution xi are shown in Table 1. 

The values show a configuration to build a CNN model. 

These values are now provided to the evaluation stage. 

 

Table 1. Sample values for solution 

 
Parameters Example Value 

Number of filters 5 

Filtersize [3, 4] 

Initialization mode Uniform 

Dropout rate 0.6 

 
Algorithm 1: Genetic Algorithm to optimize 

hyperparameters for CNN Network 

1: Input: The Judgment dataset D, Initial population X, 

Termination Criteria (max accuracy with min features), 

crossover and mutation probabilities. 

2: Initialization: Splitting the dataset into training and testing 

using 80:20 for building and evaluating CNN network using 

initial population XNNpar, where N is the number of solutions 

and Nparis the number of parameters to be used for configuring 

CNN. 

3: for i = 1,2,…,I do 

Evaluation: 

4: CNN_net building CNN architecture using training dataset 

and initial population for xi in X; 

5: fit_val(CNN_net) compute fitness of each CNN_net using 

the defined fitness function; 

Updation: 

6: (CNN_net)xb select CNN_net with best solution xb 

7: Crossover: for any two solutions, a random split position is 

chosen. Two new solutions are created by swapping the 

information at the split point. 

8: Mutation: for each non-crossover solution, mutation operation 

is applied 

9: Selection: producing a new population 

10: end for 

11: Output: a set of individuals in the final population with 

maximum accuracy and minimum number of features. 

 

3.2.2 Evaluation stage 

In this stage the CNN network is build using the 

parameters finalized in the initialization stage. The 80:20 

split method is used to divide the dataset randomly into 

training and testing sets. The training dataset is used to build 

the network and testing set is used to evaluate the model on 

unseen data by using the fitness function.  

 

3.2.3 Update stage 

The best solution xb with the highest value for the fitness 

function is chosen. After this, each solution in the current 

population is updated using the three operators of the genetic 

algorithms: mutation, crossover and selection.  The 

evaluation and update stage are repeated until the termination 

criterion is reached. 

 

3.3 Bi-directional LSTM layer for classification  

 

Bidirectional LSTM is a variant of LSTM recurrent neural 

networks. Recurrent Neural Networks have proven to be very 

effective in the tasks of text processing. An RNN is capable 

of utilizing word order information and use this to construct a 

more precise semantic expression for each word. However, a 

regular LSTM is not able to capture the future contextual 

information while processing sequences, whereas a bi-LSTM 

is able to use both past and future contexts by processing the 

text from both directions. Based on the work of [13], this 

work further optimizes the model to change the 

unidirectional LSTM layer to a bidirectional LSTM layer. 

A bi-LSTM network involves duplicating the first 

recurrent layer in the network so that there are now two 
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layers side-by-side, which provide the input sequence as-is as 

input to the first layer and provide a reversed copy of the 

input sequence to the second. Thus, the word vector for the 

input has an expression obtained by LSTM in two directions. 

A bidirectional LSTM network is shown in Figure 2. At the 

end, a dense layer is used is used with size equal to number 

of classes and SoftMax function to convert number into 

probability. 

 

 
 

Figure 2. Bi-directional LSTM network 

 

 

4. DATASET AND EXPERIMENTAL ANALYSIS 
 

4.1 Dataset 

 

The work uses manually categorized Supreme Court 

Database (SCDB) corpus, from Washington University 

School of Law [20]. The dataset consists of 8419 SCOTUS 

legal opinions, classified into 15 legal categories, which are 

further arranged into 279 sub-categories. Categories are 

shown on the x-axis and number of documents in the y-axis 

(Figure 3(a)). The dataset is available in python textacy 

package. The dataset in textacy package has 11 attributes. 

Category and sub-category are identified with the name 

‘issue_area’ and ‘issue’ respectively (Figure 3(b)) in the 

attributes. For our experiment, the dataset is randomly split 

into training and testing for building and evaluating the 

model. A random 80:20 split was chosen for the dataset. 

 

 
(a) 

 
 

(b) 

 

Figure 3. a) Legal dataset – categories; b) Legal dataset – 

sub-categories 

 

4.2 Experimental setup and parameter optimization 

 

Python 3.6 is used to carry out deep learning 

implementation. The text dataset is vectorized using both 

supervised as well as unsupervised approach. Embeddings 

are build using the corpus as well as using publicly available 

standard model glove. Glove is pre-trained word vectors 

trained on part of Google news dataset of about 100 billion 

words. The embeddings are given as input to an evolving 

parallel CNN architecture. CNN architecture is configured 

using the optimized hyperparameters obtained through 

genetic algorithm. At each evaluation, best individual is 

chosen as per the results of fitness function and is used to 

update the population. The fitness function consisted of two 

objectives: accuracy (maximize) and number of features 

(minimum). The process stops when the termination criterion 

is met. 

 

4.3 Experimental results 

 

In order to compare the performance of our proposed 

approach, the following baseline models were defined: 

Base (RFC): A random forest classifier model was built 

using all the features in the form of word vector obtained 

using count vectorizer from keras pre-processing library. We 

used random forest as a baseline classifier as it is one of the 

best classifiers in the traditional machine learning models. A 

low accuracy score of 0.56 was obtained with RFC. 

Base (CNN): A simple CNN model was built using both 

glove embedding as well as embeddings created from corpus. 

The hyperparameters values used for building the CNN 

network are: a convolutional layer with 128 filters with a 

filter size of 5 and ‘relu’ activation function, a global max 

pooling layer and a dense layer with ‘softmax’ activation 

function at the end with size equal to the number of labels in 

the dataset. 

Base (LSTM): A unidirectional LSTM model was built 

using glove embedding as well as embeddings from corpus. 

LSTM model is built using 64 units, and a dropout of 0.5 

issued to avoid overfitting. A dense layer with size equal to 

that of labels is placed at the end. 

For a comparative study a number of different hybrid 

architectures composed of CNN and LSTM are also 

evaluated: 

CNN + LSTM: In this model, a hybrid of CNN and LSTM 

is worked upon. The embedding vector was given to the 

CNN network which learned feature vector. This feature 
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vector is then passed to the LSTM layer with 64 units. A 

dense layer with ‘softmax’ activation function is used at the 

end. 

CNN + Bi-LSTM: A hybrid network consisting of CNN 

trained with embedding vector and ‘relu’ activation function 

and a bi-directional LSTM recurrent neural network followed 

by a dense layer at the end is also evaluated. A bi-directional 

LSTM network captures the word context from both left and 

right side.  

(E-CNN) + Bi-LSTM: This represents our proposed model. 

A CNN architecture whose parameters are optimized using 

genetic algorithm is hybrid with a bi-LSTM network at the 

end. The model achieves best accuracy for testing dataset. 

We present the training and testing dataset evaluation results 

in Table 2. 

In this work a GA optimized CNN is used to get the best 

feature vector, which is further provided to bi-LSTM network 

for the classification of legal documents. The performance of 

a neural network is greatly determined by the settings of its 

hyperparameters such as the number of convolutional layers, 

filter sizes, number of neurons, dropout rate and learning rate. 

In our problem, we have developed a genetically optimized 

CNN network for having an optimized feature set which 

provided maximum classification accuracy. As the number of 

configurations for the CNN hyperparameters is very large, 

trying to have a configuration manually for the CNN is a 

cumbersome task. The manually selected settings for our 

example dataset resulted in an overall accuracy of 78 %. The 

GA optimised CNN with bi-LSTM outperformed the 

manually parameterized CNN and gave an accuracy close to 

82 %.  

It is also clear that in base models, SVM, a simple machine 

leaning model achieves very low accuracy of 56 %. However, 

CNN a simple convolutional network achieves an accuracy 

of around 72 %. LSTM, recurrent neural network achieves 

very low accuracy of around 23 % for the chosen dataset. 

 

 

5. CONCLUSION AND FUTURE WORK 
 

In this paper, we have proposed a novel approach for 

document classification using a hybrid deep learning model. 

Specifically, we tried to learn a genetically evolving CNN 

architecture and the effect of using a bi-LSTM network. The 

proposed model is evaluated by automatically classifying 

judgment documents from Washington University School of 

Law Supreme Court Database (SCDB). The dataset is 

labelled and has 15 categories and 279 finer-grained 

categories.  

As the tuning of hyper-parameters for a CNN is a tedious 

task, we employed GA method, to search for the best CNN 

structure. The GA process starts by building an initial 

population of potential CNN networks and evaluates each 

network by using the fitness function.   

 

Table 2. Classification accuracy for training and testing dataset for 15 categories 

 
Model 15 Categories 

Training Testing 

Base Models 

RFC 0.99 0.56 

CNN + gloveembedding 0.87 0.67 

CNN + embeddings from text corpus 0.99 0.76 

LSTM + gloveembedding 0.34 0.37 

LSTM + embeddings from text corpus 0.23 0.23 

Hybrid Models 

CNN + LSTM + gloveembedding 0.89 0.72 

CNN + LSTM + embeddings from the text corpus 0.88 0.74 

CNN + Bi-LSTM + gloveembeddings 0.88 0.77 

CNN + Bi-LSTM + embeddings from the text corpus 0.86 0.78 

E-CNN + Bi-LSTM + gloveembedding 0.89 0.82 

E-CNN + Bi-LSTM + embeddings from the text corpus 0.86 0.82 

 

The multiple GA iterations resulted in finding the best 

model that resulted in maximum accuracy and minimum 

features. The feature vector obtained from E-CNN was used 

as input for the Bi-LSTM network and classification is done 

using the softmax activation function at the end. Our work 

will allow other researchers in this area to design such 

hybrid networks for different fields like medicine, biology 

geology etc. for their particular classification problem. 
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