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 Target tracking is the key function of intelligent production monitoring systems in 

manufacturing enterprises. In many monitoring systems, however, the fields of view (FOVs) 

of multiple cameras only partially overlap each other, leaving many blind zones that affect the 

target tracking effect. To solve the problem, this paper explores the spatial correlation 

probability of appearance features, and discusses about the brightness transfer function (BTF) 

between different FOVs. Next, the effects of appearance matching were improved, the target 

position was reconstructed in world coordinate system, and the spatial features of the target 

was extracted. On this basis, the author established a target tracking and matching appearance 

model with spatial information. Finally, the effectiveness of the model was fully verified 

through a simulation on the multi-camera production monitoring system of a factory. 
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1. INTRODUCTION 

 

Production monitoring systems have been widely adopted 

in today’s enterprises [1]. These systems should realize 

intelligent monitoring of the production line, and achieve 

comparable performance as manual monitoring. Modern 

production enterprises often operate several production lines 

at the same time. Therefore, multiple distributed cameras 

should be arranged in the intelligent production monitoring 

system to track the targets on each production line, analyze the 

target behavior, and detect abnormalities in time.  

The multi-camera monitoring system boasts a larger 

monitoring range and a wider view angle than single-camera 

monitoring system. As a result, the information of moving 

targets can be captured comprehensively, even in the presence 

of occlusions. However, the introduction of multiple cameras 

has brought a new problem: the fields of view (FOVs) of some 

cameras only partially overlap each other, leaving blind zones 

between them. If a target passes through or remains in a blind 

zone, the monitoring system will lose the target. When the 

target reenters the monitoring range, the system must associate 

it with the previously detected target to realize continuous 

tracking. For cameras with blind zones, the difficulty of 

continuous tracking is further increased by the fact that the 

same target appears differently in these cameras. The different 

appearances come from the varied FOVs and illuminations 

between the cameras. 

To solve the problem, this paper fully explores the target 

matching and tracking of multi-camera production monitoring 

systems with blind zones. Drawing on the existing 

technologies, the trajectory of the target moving across the 

FOVs of multiple cameras was reconstructed, and the motion 

features of the target were extracted. The reconstruction and 

feature extraction were carried out based on spatial 

information. In this way, the multiple cameras can realize 

smooth handover of the target, and associate the reappearing 

target with the previously detected target, that is, achieve 

continuous tracking of the target in the presence of blind zones. 

The research results shed theoretical lights on intelligent 

production monitoring systems. 

 

 

2. LITERATURE REVIEW 

 

The target tracking by multiple cameras [2] is an 

interdisciplinary issue, involving technologies like computer 

vision and pattern recognition. In the presence of blind zones, 

target appearance differs greatly from camera to camera, 

making the single-camera tacking algorithm inapplicable. To 

solve the target tracking problem of multiple cameras with 

blind zones, the traditional approaches mainly include 

appearance model [3], spatiotemporal correlation algorithm, 

and data fusion. 

The appearance model usually extracts correlation features 

like color and texture from the regions of interest (ROIs) of 

images or video frames on different targets, and then evaluates 

the similarity between these targets. Ordonez-Etxeberria et al. 

[4] calculated the main color spectrum of each target based on 

the distance of color space, and compared the distance 

between different targets. Nonetheless, the direct use of color 

and color-related features lacks spatial information, making 

the model matching less effective. Yilmaz et al. [5] divided the 

image into three parts by aspect ratio, and realized histogram 

matching in two layers: the first layer is the entire target, and 

the second is the three parts of the target. Nam et al. [6] meshed 

the target into multiple grids, and matched the features 

between the grids. Lo et al. [7] established a complex three-

dimensional (3D) model, sampled images with the model and 

camera calibration parameters, and reconstructed the 3D 

model of the target to complete the matching process. 

Considering the difference of multiple cameras in target 

appearance, it is very important to set up a robust model to 

convert the colors between different cameras. The color 

transfer model between cameras should be corrected to 
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improve the matching accuracy. Wang et al. [8] proposed a 

brightness transfer algorithm through sample training. Based 

on the multiple targets in the sample set, the algorithm learns 

the subspace of the brightness transfer function (BTF) through 

probabilistic principal component analysis (PCA), thus 

reducing the brightness difference between targets. Sun et al. 

[9] combined mean brightness transfer function (MBTF) with 

cumulative brightness transfer function (CBTF), and achieved 

good color conversion effects through BTF subspace learning. 

The spatiotemporal correlation algorithm estimates the 

probability of correlation between targets passing through the 

blind zones, using the information on position, time, speed and 

moving direction. The blind zones between multiple cameras 

are either long-distance ones or short-distance ones. The two 

types of blind zones should be processed with different 

algorithms. The correlation algorithm of short-distance blind 

zones [10] is essentially an extension of the single-camera 

tracking algorithm. Since the blind zones are very small, the 

target can be located by predicting the target motion with the 

classical particle filter and Kalman filter. The correlation 

algorithm of long-distance blind zones [11] is mainly based on 

statistical learning algorithm of camera correlation. During the 

training process, the algorithm estimates the transfer 

probability between cameras to determine the probability of 

matching. 

The appearance model or spatiotemporal correlation 

algorithm alone cannot fully solve the continuous tracking of 

target in the presence of blind zones. In many cases, multiple 

targets may have high similarity in some feature correlations. 

These features should be obtained from multiple models and 

fused together. Besides, it should be noted that a target can 

only be associated with another target, i.e. the relationship is 

unique. A common method for data fusion is the maximum 

probability distribution algorithm, which is the basis for 

probability model. Baltieri et al. [12] used the matching 

algorithm of appearance model to identify the similarity 

between targets, computed the correlation probability based on 

the spatiotemporal features of targets (i.e. position, time and 

speed), and determined the similarity by multiplying the 

similarity and the probability.  Wang et al. [13] developed a 

framework of target correlation based on fuzzy logic theory, 

computed the set of maximum probabilities of target 

correlations, and thus derived the global correlation between 

multiple targets. 

 

 

3. TRACKING AND MATCHING ALGORITHM 

BASED ON SPATIAL INFORMATION AND 

APPEARANCE MODEL 

 

Currently, target trajectory in space is usually reconstructed 

according to the information extracted from video sequence. 

On this basis, the direction of the trajectory can be obtained, 

and the correlation between camera FOVs can be matched. 

The trajectory contains spatiotemporal features of the 

correlation. In addition to these features, the appearance 

features like color, texture, contour and gait can also be used 

to track target in blind zones.  

In the intelligent production monitoring system, the target 

is an image sequence containing the monitoring information 

of camera FOVs, rather than a static image. This type of 

information cannot be fully utilized by traditional matching 

algorithms, such as the PCA based on spatial distribution 

entropy and the BTF subspace algorithm. 

To overcome the above defects, this paper firstly estimates 

the height of the target by multiplane projection. The height 

was selected because it is a relatively stable appearance feature. 

For the same target, the height will not change obviously 

through the movement, ensuring the matching accuracy 

between the reappearing and previous targets. Next, the BTF 

between cameras was trained to compensate for the color 

deviation of the target appearance in different FOVs. Based on 

the spatial information of the target (i.e. height, moving 

direction and position), the relationship between the color 

space and image position was established. After that, the 

position of the reconstructed color space was used to weight 

different color spaces, and to increase the spatial distribution 

information of color features. In this way, multiple images 

were fused to enhance the matching accuracy. 

 

3.1 Height estimation through multiplane projection 

 

Firstly, a world coordinate system was set up with the x- and 

y- axis on the horizontal plane (z=0) and the z-axis 

perpendicular to the horizontal plane. The target was originally 

placed on the plane 𝑃0. The plane with a distance ℎ above 𝑃0 

is denoted as plane 𝑃ℎ . Using the pinhole model and 

calibration parameters of cameras, the foreground pixels of the 

target were projected onto different planes, including 𝑃0 and a 

series of planes 𝑃ℎ. The mapping rule between different planes 

satisfies the geometric relationship.  

Let (𝑥𝑎, 𝑦𝑎) be the camera position on the horizontal plane 

and ℎ𝑎 be the height of the camera. For point O on plane 𝑃0, 

the coordinates of its projection point P on plane 𝑃ℎ and those 

of its projection point Q on the horizontal plane satisfy the 

following relationships: 

 
𝑥𝑝 = 𝑥𝑞 − (𝑥𝑞 − 𝑥𝑎)𝑧𝑝 ℎ𝑎⁄

𝑦𝑝 = 𝑦𝑞 − (𝑦𝑞 − 𝑦𝑎)𝑧𝑝 ℎ𝑎⁄
                     (1) 

 

The vertical axis 𝑤 of the target is perpendicular to 𝑃0. If 

looking down vertically to 𝑃0 , the target projection on the 

horizontal plane must extend away from the camera, and that 

on 𝑃ℎ must fall on the other side of 𝑤. Then, the plane at the 

target height 𝑃ℎ  ends at 𝑤 , the 𝑃0  begins at 𝑤 , and the two 

projections intersect at (𝑥𝑣 , 𝑦𝑣). 

Hence, the coordinates 𝑝(𝑥, 𝑦) of the target projection on 

the horizontal plane were obtained by the trajectory 

reconstruction algorithm based on multi-feature points. Then, 

the total distance between the projection and the target was 

acquired by multiplane projection, and the minimum height of 

the total distance was taken as the target height.  

Let φ be the set of foreground pixels of the target, and X𝑖
ℎ 

be position of foreground pixel 𝑖 in φ, with ℎ being the height 

that the pixel is projected to in the world coordinate system. 

Then, X𝑖
ℎ was projected to the horizontal plane to obtain the 

position 𝑥𝑖  of the common FOV. Let 𝐷(𝑥𝑖 , 𝑝)  be the 

Euclidean distance from 𝑥𝑖 to the target position 𝑝. Thus, the 

total projection distance 𝐿ℎ  of all foreground pixels can be 

expressed as: 

 

𝐿ℎ = ∑ (𝑥𝑖
ℎ, 𝑝)𝑖∈φ                              (2) 

 

In fact, there is no need to find the global optimal solution 

of 𝐿ℎ, due to the limited calibration accuracy and the possible 

errors induced by the extraction of foreground pixels and the 

reconstruction error of target position.  
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In actual computation, the minimum interval of projection 

plane is 0.1 cm and 𝐿ℎ is a convex function of ℎ. Thus, the 

minimum projection height ℎ was calculated every other 1cm. 

Twenty planes, h1-10~ h1+10, were projected by the interval of 

0.1cm to obtain the total projection distance of foreground 

pixels. Then, the projection height corresponding to the 

minimum total value was adopted as the target height. 

According to the law of target motion, the center of gravity 

of the moving target tends to rise and fall periodically. Being 

a correlation feature of the target, the height can be used to 

screen out targets with marked differences. But this strategy 

faces two major defects. For one thing, the target height may 

vary slightly during the motion, causing changes in the number 

of pixels on the image plane. The farther the target moves, the 

smaller its contour on the image, and the greater the estimation 

error. For another, the target height estimated in different 

FOVs may have systematic error, owing to calibration error 

and other reasons. The following strategy was adopted to solve 

the defects. 

First, the target height in each frame was estimated by 

multiplane projection. Next, the mean height 𝐻 was obtained 

by averaging the estimated results of multiple frames. 

Meanwhile, the height interval 𝑑𝐻 was determined based on 

the FOVs of different cameras. The estimated results that fall 

out of the 𝑑𝐻 were removed, leaving only those within this 

interval. After that, the systematic error in target height 

estimation was defined as a linear function: 

 

𝐻𝑗,𝑎 = 𝑓𝑖,𝑗
𝐻(𝐻𝑖,𝑎) = 𝛼𝐻𝑖,𝑎 + 𝜀                      (3) 

 

where, 𝐻𝑖,𝑎 and 𝐻𝑗,𝑎 are the heights of target a estimated in the 

FOVs of cameras 𝐶𝑖  and 𝐶𝑗 , respectively; 𝛼 and 𝜀 are height 

transfer parameters between cameras that can be estimated 

through linear fitting of sample data. The similarity between 

𝐻𝑖,𝑎 and 𝐻𝑗,𝑎 can be obtained as: 

 

𝑃𝐻(𝑂𝑖,𝑎, 𝑂𝑗,𝑏) = exp (−(𝑂𝑖,𝑎(𝐻) − 𝑓𝑖,𝑗
𝐻 ∗ 𝑂𝑗,𝑏(𝐻))2/𝜎𝐻

2   (4) 

 

3.2 HSV histogram matching based on spatial information 

 

For simplicity, the traditional appearance model algorithms 

usually extract color features from the target area for 

comparison. To match color features, the color space must be 

selected rationally, the color features quantized into vectors, 

and a similarity (distance) criterion defined to measure color 

similarity between images. Unlike other visual features, color 

features are not heavily dependent on the size, direction or 

perspective of the image, and highly invariant to rotations.  

Despite the high rotation-invariance, the color features are 

easy to lose spatial information, which is inconducive to 

feature matching. For example, it is impossible to distinguish 

between a black-and-white target and a white-and-black target 

by the color histogram features extracted from the color space. 

In view of this, spatial information is added to color features 

in most emerging matching algorithms of color-based 

appearance model. 

In the intelligent production monitoring system, the target 

is not an isolated image, but an image sequence. To achieve 

effective matching, the color-based appearance model must 

fuse multi-frame images from different angles. Traditionally, 

the multiple images are processed by the weighted average 

method. However, the weighted features will be close to the 

original ones, if the pixel features are different between the 

front and back planes of a target. In this case, the fused target 

will be matched with the wrong target. To solve the problem, 

this paper proposes the HSV histogram matching algorithm 

based on spatial information. The algorithm firstly trains the 

BTF between cameras, and uses the trained BTF to 

compensate for the color deviation of target appearances in 

different FOVs. After that, the targets in different FOVs were 

matched. 

In the multi-camera monitoring system with blind zones, 

each camera has a unique illumination conditions that affects 

the color features of target. The target is bright under strong 

illumination, and dark under weak illumination. The varied 

brightness makes it more difficult to predict the impacts of 

shadows and occlusion. The color difference of the same target 

is further amplified, because different cameras often use 

different photosensitive devices. There are two ways to 

eliminate this color difference: finding the features insensitive 

to illumination, and creating the BTF [14] between cameras. 

The latter strategy is adopted here. 

The reflection coefficient 𝑅𝑠(𝑜, 𝑡)  of target o under the 

FOV 𝑠 at time t can be expressed as: 

 

𝑅𝑠(𝑜, 𝑡) = 𝑀(𝑜)𝐺𝑠(𝑜, 𝑡)                          (5) 

 

where, 𝑀 (𝑜) is the reflection coefficient of the target material; 

𝐺𝑠(𝑜, 𝑡) is the influence of camera geometry and target time 

variation. It is assumed that all points on the target image 

satisfy 𝐺𝑠(𝑜, 𝑡) = 𝐺𝑠(𝑞, 𝑡) = 𝐺𝑠( 𝑡), i.e. the target has a flat 

surface. Then, the time-variation of camera’s internal 

parameters can be defined as: 

 

𝑌𝑠(𝑡) =
𝜋

4
(
𝑑𝑠( 𝑡)

ℎ𝑠( 𝑡)
)2 cos4 𝛼𝑠(𝑜, 𝑡) =

𝜋

4
(
𝑑𝑠( 𝑡)

ℎ𝑠( 𝑡)
)2𝑐           (6) 

 

where, ℎ𝑠( 𝑡) is focal length; 𝑑𝑠( 𝑡) is lens size; 𝛼𝑠(𝑜, 𝑡) is the 

angle between the optical axis and the line between optical 

center and 𝑝. 

Then, the brightness 𝐵𝑠(𝑜, 𝑡) of point o on the target image 

can be expressed as: 

 

𝐵𝑠(𝑜, 𝑡) = 𝑔𝑠(𝐸𝑠(𝑜, 𝑡)𝑋𝑠(𝑡)) = 𝑔𝑠(𝑀(𝑜)𝐺𝑠(𝑡)𝑌𝑠(𝑡)𝑋𝑠(𝑡)) (7) 

 

where, 𝑋𝑠( 𝑡)  is exposure time, and 𝑔𝑠()  is the radiation 

response function of the camera. 

For the same target, the material is the same under different 

cameras. Hence, 𝑀 (𝑜) can be derived from formula (7) as: 

 

𝑀(𝑜) =
𝑔𝑠

−1(𝐵𝑠(𝑜,𝑡𝑠))

𝐺𝑠(𝑡𝑠)𝑌𝑠(𝑡𝑠)𝑋𝑠(𝑡𝑠)
=

𝑔𝑢
−1(𝐵𝑢(𝑜, 𝑡𝑢))

𝐺𝑢(𝑡𝑢)𝑌𝑢(𝑡𝑢)𝑋𝑢(𝑡𝑢)
             (8) 

 

Then, we have: 

 

𝐵𝑢(𝑜, 𝑡𝑢) = 𝑔𝑢(
𝐺𝑢(𝑡𝑢)𝑌𝑢(𝑡𝑢)𝑋𝑢(𝑡𝑢)

𝐺𝑠(𝑡𝑠)𝑌𝑠(𝑡𝑠)𝑋𝑠(𝑡𝑠)
𝑔𝑠

−1(𝐵𝑠(𝑜, 𝑡𝑠))) =  

𝑔𝑢(𝑤(𝑡𝑠, 𝑡𝑢)𝑔𝑠
−1(𝐵𝑠(𝑜, 𝑡𝑠))                      (9) 

 

Formula (9) shows, for any point on the target image, the 

BTF between different frames are obviously different. The 

parameters 𝑝, 𝑡𝑠 and 𝑡𝑢 are negligible. Let 𝑓𝑠𝑢 be the BTF of 

camera 𝐶𝑠 to camera 𝐶𝑢. Then, we have: 

 

𝐵𝑢 = 𝑔𝑢(𝑤𝑔𝑠
−1(𝐵𝑠) = 𝑓𝑠𝑢(𝐵𝑠)                 (10) 

 

In BFT research, the normalized cumulative histograms, i.e., 

the integration of the normalized histograms on the grayscale, 
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are often adopted. Let 𝐻𝑠  and 𝐻𝑢  be the normalized 

cumulative histograms of targets 𝑂𝑠  and 𝑂𝑢 , respectively. 

Then, 𝐻𝑠(𝐵𝑠) = 𝐻𝑢(𝐵𝑢) = 𝐻𝑢(𝑓𝑠𝑢(𝐵𝑢)). Then, the following 

equation can be derived: 

 

𝑓𝑠𝑢(𝐵𝑠) = 𝐻𝑢
−1(𝐻𝑠(𝐵𝑠))                       (11) 

 

To set up the color histogram, the color space was divided 

into several intervals according to the resolution or length of 

the histogram. Each interval corresponds to a bin of the 

histogram. Then, the target image area was traversed, and the 

pixels falling into the corresponding color space were counted 

to obtain the color distribution. Let 𝐻(𝑘) be the vector of the 

color histogram. Then, the color histogram conversion can be 

defined as: 

 

𝐻𝑘 =
𝑛𝑘

𝑁
(𝑘 = 0,1, … , 𝐿 − 1)                      (12) 

 

where, 𝑘 is a dimension of the vector; 𝐿 is the number of bins 

in the color histogram; 𝑛𝑘 is the number of pixels in the color 

space corresponding to 𝑘  in the target image area; 𝑁  is the 

total number of pixels in the image. 

 

3.3 Appearance model based on spatial information 

 

In this section, the target height is estimated by multiplane 

projection. Then, the color-based model with spatial 

information was established for each target based on the target 

heights. Moreover, the relationship between color space and 

target position was reconstructed, and used to determine the 

spatial information of the color space. 

To begin with, the author set up a cylinder with the origin 

as the center, the height of ℎ0=1 and the radius of ratio ∗ ℎ0. 

Then, the cylinder surface was divided into 𝑀 layers, and each 

layer was further meshed into 𝑁 grids. From the intersection 

of the cylinder and the x-axis, the grids were numbered from 

1 to 𝑁 in counterclockwise order. 

Next, the direction vector of the first block 𝑓0⃗⃗  ⃗ = (1,0,0) 

was taken as the direction of the model, and the central point 

of the target was viewed as the position of each block. Let 

𝑛𝑖⃗⃗  ⃗(𝑖 = 1,2, . . . , 𝑀 ∗ 𝑁)  be the direction vector perpendicular 

to the cylinder. Then, the grids 𝑝𝑠(𝑥, 𝑦, 𝑧)(𝑖 = 1,2, . . . , 𝑀 ∗ 𝑁) 

of the 𝑀 ∗ 𝑁 points of the model and their direction vectors 𝑛𝑖⃗⃗  ⃗, 

and the positive direction vector 𝑓0⃗⃗  ⃗ of the model were obtained. 

Let 𝑝 (𝑥, 𝑦, 𝑧), height and orientA be the position, height and 

direction of target A in world coordinate system, respectively. 

If z=0, then the target is on the horizontal plane. The position 

of each grid was updated by increasing the height. Then, the 

position of each point (𝑠 =  1,2, . . . , 𝑀 ∗ 𝑁) can be updated by: 

 

𝑝𝑠(𝑥, 𝑦, 𝑧) = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑝𝑠(𝑥, 𝑦, 𝑧)                   (13) 

 

On the other hand, it is assumed that 𝑓0⃗⃗  ⃗ rotates to orient𝐴 

by a counterclockwise angle of 𝜃 (both vectors are parallel to 

the horizontal plane). Then, all the grids 𝑝𝑠(𝑥, 𝑦, 𝑧) and the 

corresponding normal vectors were rotated by 𝜃 around the z-

axis, making the target direction the positive direction of the 

model. 

Finally, all updated and rotated points 𝑝𝑠(𝑥, 𝑦, 𝑧)  were 

translated to 𝑝(𝑥, 𝑦, 𝑧) , such that the center points moved 
(0,0,0)  to the final positions 𝑝(𝑥, 𝑦, 𝑧) . These grids were 

projected back to the image plane, creating new gird  

𝑐𝑠(𝑥, 𝑦)(𝑠 = 1,2, . . . , 𝑀 ∗ 𝑁) . In this way, the author 

determined the correspondence between color space and target 

position. The cylindrical model and projected grids are shown 

in Figure 1. 

 

 
(a) Cylinder meshing 

 

 
(b) Projected grids 

 

Figure 1. The cylindrical model 

 

In the cylindrical model, the grids on the back were covered 

by those facing the camera. The occlusion was not reflected 

after the grids were projected back to the image plane. To 

represent the occlusion, the normal vectors 𝑝  of the image 

plane were calculated based on camera’s calibration 

parameters, and subjected to dot multiplication with the 

direction vectors of the dot matrix: 𝜃 = �⃗� ∙ 𝑝 . The 𝜃 value was 

negative for the grids on the back and positive for those on the 

front. The greater the 𝜃  value, the more visible the 

corresponding grid. 

For a target entering the FOV, an instance Γ was established 

for it by zooming, rotating and translating the original 

model:  Γ = {position, height, orient, {𝑉𝑀∗𝑁} , where 

position, height  and orient  are the height, position and 

direction of the target, respectively; {𝑉𝑀∗𝑁} is the feature set 

of 𝑀 ∗ 𝑁  grid centers. Each V is a combination of three 

parameters: 

(1) 𝑛𝑖⃗⃗  ⃗: This parameter is the normalized cylindrical normal 

vector of grid center. 

(2) 𝐻𝑖: This parameter is the HSV histogram of grid 𝑖 on the 

image plane. Let 𝑐𝑠(𝑥, 𝑦) be the projection of the center of grid 

𝑖 on the image plane. Then, the 𝐻𝑖  of the foreground pixels in 

the image area (size: 𝑝𝑎𝑡𝑐ℎ𝑁 ∗ 𝑝𝑎𝑡𝑐ℎ_𝑁 ) centering on 

𝑐𝑠(𝑥, 𝑦) was calculated. After that, 𝐻  was quantified into 8 

units, while 𝑆 and 𝑉 were quantified into 4 units. Then, the 

three histograms were merged into a large histogram, which 
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was then normalized into histogram 𝐻𝑖 . Note that 𝑝𝑎𝑡𝑐ℎ_𝑁 

was selected according to the height of 𝑖𝑚𝑎𝑔_𝐻 of the target 

foreground pixel and the number of layers of the selected 

points. The 𝑝𝑎𝑡𝑐ℎ_𝑁 value should not be excessively large or 

small. Here, it is set to 𝑁 = 𝑎𝑙𝑓 ∗ 𝑖𝑚𝑎𝑔_𝐻/𝑀.  

(3) 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒𝑖: This parameter measures the reliability of the 

grid area. It was obtained through dot multiplication of the 

normal vector of grid center 𝑛𝑖⃗⃗  ⃗ and that of the image plane 𝑝 .  
If the image area (size: 𝑝𝑎𝑡𝑐ℎ𝑁 ∗ 𝑝𝑎𝑡𝑐ℎ_𝑁 ) is partially 

invisible, then the invisible part is not covered in the 𝐻𝑖  

calculation. If the entire area is invisible, then the image area 

is invalid and its 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒𝑖 is set to -2. 

 

3.4 Target tracking and matching by the appearance 

model with spatial information 

 

This subsection explains how to apply the established 

appearance model in target tracking and matching of multi-

camera monitoring system with blind zones. 

The first step is to initialize the system configuration, 

including calibration, installation, time sync, and alignment of 

cameras. Then, the FOV boundary of each camera was marked 

with points, and mapped to a horizontal plane. In addition, the 

BTF 𝑓𝑠𝑢 between cameras 𝐶𝑠 and 𝐶𝑢 was trained. 

Taking camera 𝐶𝑖 as an example, each target 𝑂𝑖,𝑎 entering 

the camera’s FOV was tracked continuously by the single-

camera tracking algorithm. The foreground pixels of the target 

were extracted. After a period (time window) 𝑇𝑤𝑖𝑛, the target 

trajectory 𝑂𝑖,𝑎(𝑡𝑟𝑎)  was reconstructed in the horizontal plane 

by the trajectory reconstruction algorithm, and the trajectory 

features were extracted. If the target is completely visible (i.e. 

the target is in the lens and the reconstructed position falls in 

the FOV), the target height 𝐻𝑖,𝑎
𝑡  can be obtained by multi-

plane projection. 

It is assumed that camera 𝐶𝑗  has a set of 𝑁  sets 

𝑂𝑗{𝑂𝑗,1, 𝑂𝑗,2, … , 𝑂𝑗,𝑁}  and camera 𝐶𝑖  has a set of 𝑀  targets 

𝑂𝑖{𝑂𝑖,1, 𝑂𝑖,2, … , 𝑂𝑖,𝑁}  before time 𝑡 . The targets have been 

detected (i.e. the targets that have entered and left the FOV) 

and those being detected under a single camera were allocated 

to the observation set. To track each target, all the targets must 

be matched to reveal the relationship between targets and time 

sequence. 

Let 𝑃𝑠𝑡(𝑂𝑖,𝑎 , 𝑂𝑗,𝑏)  be the correlation probability between 

𝑂𝑖,𝑎  and 𝑂𝑗,𝑏 , 𝑃𝐻(𝑂𝑖,𝑎 , 𝑂𝑗,𝑏) be the height similarity between 

the two targets, and 𝑃𝐻𝑆𝑉(𝑂𝑖,𝑎, 𝑂𝑗,𝑏) be the similarity of HSV 

histogram based on spatial information. Then, the final 

similarity between the two targets can be determined as: 

 

𝑃𝑎𝑝𝑝(𝑂𝑖,𝑎, 𝑂𝑗,𝑏) = 𝑃𝐻(𝑂𝑖,𝑎 , 𝑂𝑗,𝑏) ∗ 𝑃𝐻𝑆𝑉(𝑂𝑖,𝑎, 𝑂𝑗,𝑏)      (14) 

 

Ultimately, the correlation probability between 𝑂𝑖,𝑎  and 

𝑂𝑗,𝑏  is the weighted sum of the spatiotemporal correlation 

probability and the external model correlation probability. 

 

𝑃(𝑂𝑖,𝑎 , 𝑂𝑗,𝑏) =  

𝑃𝐻(𝑂𝑖,𝑎, 𝑂𝑗,𝑏) ∗ 𝑃𝐻𝑆𝑉(𝑂𝑖,𝑎, 𝑂𝑗,𝑏) ∗ 𝑃𝑠𝑡(𝑂𝑖,𝑎, 𝑂𝑗,𝑏)        (15) 

 

Next, it is assumed that Σ is the solution space of the multi-

camera tracking problem, and 𝐾 = {𝐾𝑖,𝑎
𝑗,𝑏

, 𝐾𝑝,𝑐
𝑟,𝑒 …} is one of the 

associated subsets of the problem. For any 𝐾𝑖,𝑎
𝑗,𝑏

∈ 𝐾 , there 

exists 𝜙
𝐾𝑖,𝑎

𝑗,𝑏 = 1. Since each target can only be associated with 

one previous or subsequent target, the subset K  can be 

described as 𝜙𝐾 = 𝑡𝑟𝑢𝑒  for any {𝐾𝑖,𝑎
𝑗,𝑏

, 𝐾𝑝,𝑐
𝑟,𝑒} ∈ 𝐾, (𝑖, 𝑎) ≠

(𝑝, 𝑐) ∧ (𝑗, 𝑏) ≠ (𝑟, 𝑒) , which is a feasible solution in the 

solution space. Therefore, the tracking problem is to find the 

maximum likelihood probability in all feasible solutions in the 

solution space Σ: 

 

𝐾′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐾∈Σ ∏𝑃(𝑂|𝜙𝐾 = 𝑡𝑟𝑢𝑒)              (16) 

 

If the correlation probability between any two targets is 

independent to that of any other two targets, then the above 

formula can be rewritten as:  

 

𝐾′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐾∈Σ ∏ 𝑃(𝑂𝑖,𝑎, 𝑂𝑗,𝑏|𝜙𝐾𝑖,𝑎
𝑗,𝑏 = 𝑡𝑟𝑢𝑒)

𝐾
𝑖,𝑎
𝑗,𝑏

∈𝐾
   (17) 

 

Taking logarithms on both sides of formula (17), and the 

problem is transformed into solving the maximum of the 

summation equation below: 

 

𝐾 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐾∈Σ ∑ 𝑙𝑜𝑔𝑃(𝑂𝑖,𝑎 , 𝑂𝑗,𝑏|𝜙𝐾𝑖,𝑎
𝑗,𝑏 = 𝑡𝑟𝑢𝑒)

𝐾
𝑖,𝑎
𝑗,𝑏

∈𝐾
 (18) 

 

The above algorithm assumes that all observation sets are 

known and available. To make it suitable for real time series, 

a fixed interval sliding time window should be added to the 

algorithm to calculate the correlations between all targets in 

the window. If the time window is too long, the matching will 

have a long delay; if the time window is too short, the 

matching results will contain a high error. Hence, the window 

size should be defined to cover the matching time of all the 

cameras. 

 

 

4. EXPERIMENTAL VERIFICATION AND RESULTS 

ANALYSIS 

 

To verify the effectiveness of our model and algorithm, a 

test sequence was collected from a production monitoring 

system with four cameras (frame rate: 20fps) in a factory. The 

four cameras have no overlap between the FOVs. Each camera 

has been calibrated by Tsai’s method and aligned to a unified 

world coordinate system.  

Based on the camera’s calibration parameters, the FOVs of 

the four cameras were projected onto the horizontal plane 

(z=0). As shown in Figure 2, there were only a few very small 

overlaps between the four FOV projections. 

 

 
 

Figure 2. Projection of the FOVs in the horizontal plane 

(z=0) 
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Figure 3 shows the reconstructed trajectory of a target on 

the horizontal plane. Only the upper half of the target appeared 

in the FOV of Camera 3. The trajectories of the target were 

reconstructed by the trajectory reconstruction algorithm in the 

blind zones, and linked up with that in each of the other three 

FOVs. The trajectories were closed to each other at the joints, 

rather than identical, due to the calibration error (the feature 

points extracted from different cameras were not the same 

physical point). As shown in Figure 3, the reconstructed 

trajectory in the FOV of Camera 3 was different from the other 

trajectories. The mean distance of the overlap point of the 

camera was 0.12 m. For the parts produced in the workshop, 

the space occupies about 0.6*0.8 m. This distance can be used 

to correlate the targets of different cameras. 

 

 
 

Figure 3. The reconstructed trajectory of a target on the 

horizontal plane (z=0) 

 

Next, the FOVs of Cameras 1 and 4, which are not 

overlapped, were used to correlate the target trajectories. The 

projections of the two FOVs are shown in Figure 4. 

 

 
 

Figure 4. Projections of two nonoverlapped FOVs 

 

The correlation probability between the trajectories in the 

two FOVs was computed in the above two scenes, with the 

time window of 30s. There were 5 trajectories in the FOVs of 

Camera 4 and 9 in that of Camera 1. The results are listed in 

Table 1. 

From which we can get that our model successfully 

reconstructed the position of the moving target on the 

horizontal plane based on partially visible image sequences, 

and achieved the tracking of the target moving in the 

production line of a factory. 

Table 1. The correlation probability for Cameras 1 and 4 

 

 
Trajectories 

of Camera 1 
1 2 3 4 5 

Trajectories 

of Camera 4 
      

1  - - 15.5% - 5.5% 

2  - - - - - 

3  - 92.5% 3.2% - 0.2% 

4  - - - - - 

5  - - 70.8% - 1.8% 

6  - - - - - 

7  - - - - 26.6% 

8  - - - - 62.5% 

9  - - - - - 

 

 

5. CONCLUSIONS 

 

In the intelligent production monitoring system, there are 

often nonoverlapping areas between the FOVs of different 

cameras. These blind zones make it difficult to track targets 

passing across multiple cameras. To solve the problem, this 

paper probes deep into the BTF between different FOVs, and 

relied on the BTF to improve the effects of appearance 

matching. Next, the target position was reconstructed in world 

coordinate system and the spatial features of the target was 

extracted. Finally, a target tracking and matching appearance 

model was established based on the 3D spatial information, 

and proved capable of accurate matching between targets in 

the image sequences captured by multiple cameras with blind 

zones. 

 

 

ACKNOWLEDGMENT 

 

The authors acknowledge funding from the key project of 

Chongqing Municipal Education Commission Humanities and 

Social Sciences Base Project (18SKJD036), Science and 

Technology Project of Chongqing Education Commission 

(KJQN201800904), Ministry of education of Humanities and 

Social Science Project of China (18YJC630087), Sichuan 

International Studies University Scientific Research Project 

(sisu201407) and Sichuan International Studies University 

Non-Common Language Research Team Project, as well as 

the contributions from all partners of the mentioned projects. 

Besides, Xu Xinpeng is the corresponding author and can be 

contacted at: xinpengxu@cqu.edu.cn. 

 

 

REFERENCES 

 

[1] Liu, D.C., Zheng, Y., Dai, L., Cheng, L.H., Zheng, L. 

(2005). Research on the monitor effective information 

based remote video processing technology. Computer 

Integrated Manufacturing System, 11(3): 411-415. 

http://dx.doi.org/10.3969/j.issn.1006-5911.2005.03.020 

[2] Qin, Y., Ma, H., Cheng, L., Li, Y., Zhou, X.Q. (2016). 

Cardinality balanced multitarget multi-Bernoulli filter 

for multipath multitarget tracking in over-the-horizon 

radar. Iet Radar Sonar & Navigation, 10(3): 535-545. 

http://dx.doi.org/10.1049/iet-rsn.2015.0284 

[3] Kang, S.B., Jones, M. (2002). Appearance-based 

structure from motion using linear classes of 3-d models. 

International Journal of Computer Vision, 49(1): 5-22. 

374



http://dx.doi.org/10.1023/a:1019849812326 

[4] Ordonez-Etxeberria, I., Hueso, R., Sánchez-Lavega, A.,

Pérez-Hoyos, S. (2016). Spatial distribution of jovian

clouds, hazes and colors from Cassini ISS multi-spectral

images. Icarus, 267: 34-50.

http://dx.doi.org/10.1016/j.icarus.2015.12.008

[5] Yilmaz, A., Li, X., Shah, M. (2004). Contour-based

object tracking with occlusion handling in video acquired

using mobile cameras. IEEE Transactions on Pattern

Analysis & Machine Intelligence, 26(11): 1531-1536.

http://dx.doi.org/10.1109/TPAMI.2004.96

[6] Nam, Y., Rho, S., Park, J.H. (2013). Inference topology

of distributed camera networks with multiple cameras.

Multimedia Tools & Applications, 67(1): 289-309.

http://dx.doi.org/10.1007/s11042-012-0997-0

[7] Lo, K.H., Chuang, J.H. (2013). Vanishing point-based

line sampling for real-time people localization. IEEE

Transactions on Circuits and Systems for Video

Technology, 23(7): 1209-1223.

http://dx.doi.org/10.1109/TCSVT.2013.2242592

[8] Wang, S.D., Zhou, D.C., Wang, J. (2012). A moving

object detection algorithm based on learning vector

quantization. Opto-Electronic Engineering, 39(9): 42-48.

http://dx.doi.org/10.3969/j.issn.1003-501X.2012.09.008

[9] Sun, G.X., Bin, S. (2017). Router-level internet topology

evolution model based on multi-subnet composited

complex network model. Journal of Internet Technology,

18(6): 1275-1283.

http://dx.doi.org/10.6138/JIT.2017.18.6.20140617

[10] Qiao, B., Li, Z.C., Hu, P. (2011). Object tracking

algorithm based on camshift with dual ROI and velocity

information fusion. Information & Control, 40(3): 283-

288. http://dx.doi.org/10.1090/S0002-9939-2011-

10775-5

[11] Chen, H.T., Tsai, W.J., Lee, S.Y., Yu, J.Y. (2012). Ball

tracking and 3D trajectory approximation with

applications to tactics analysis from single-camera

volleyball sequences. Multimedia Tools & Applications,

60(3): 641-667. http://dx.doi.org/10.1007/s11042-011-

0833-y

[12] Baltieri, D., Vezzani, R., Cucchiara, R. (2015). Mapping

appearance descriptors on 3D body models for people re-

identification. International Journal of Computer Vision,

111(3): 345-364. http://dx.doi.org/10.1007/s11263-014-

0747-z

[13] Wang, H.Y., Wang, X., Zheng, J., Deller, J.R., Peng,

H.Y., Zhu, L.P., Chen, W.J., Li, X.L., Liu, R.J., Bao, H.J.

(2014). Video object matching across multiple non-

overlapping camera views based on multi-feature fusion

and incremental learning. Pattern Recognition, 47(12):

3841-3851.

http://dx.doi.org/10.1016/j.patcog.2014.06.019

[14] Bhandari, A.K., Kumar, A., Singh, G.K., Soni, V. (2016).

Dark satellite image enhancement using knee transfer

function and gamma correction based on DWT–SVD.

Multidimensional Systems and Signal Processing, 27(2):

453-476. http://dx.doi.org/10.1007/s11045-014-0310-7

375

https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!
https://www.sciencedirect.com/science/article/abs/pii/S0031320314002416#!



