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The fuel flow is a key indicator of the performance of aircraft engine. It helps to identify the 

performance degradation and failure of the engine. This calls for an aircraft engine model that 

can predict the fuel flow accurately throughout the flight, especially the climb phase. This 

paper performs stepwise linear regression of the data collected by a quick access recorder 

(QAR), and creates a model of the fuel flow of Boeing 737-700 in the climb phase. Firstly, the 

possible influencing factors of fuel flow were screened based on scatterplots and Pearson 

correlation coefficients (PCCs). Next, the selected factors were further modified and screened 

through similarity correction and power correction. On this basis, the fuel flow model for the 

climb phase was established through stepwise linear regression and corrected in the light of 

the tolerance and variance inflation factor (VIF) of each variable. The prediction results of the 

final model were basically in line with the actual QAR data.  
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1. INTRODUCTION

Aircraft engines are very important for flight safety [1]. 

Today’s complex and advanced technology systems require 

advanced and expensive maintenance strategies [2]. Because 

of the high cost of maintenance, gas turbine engines must be 

operated within specified physical limits [3]. Today’s aircraft 

engines are made safer by increasing the number of control 

parameters and sensors [4]. The engines have a complex 

mechanical system. Because aircraft engines operate at high 

temperatures, high pressures, and high speeds, there are lots of 

possibilities of various faults in the aircrafts [5]. 

Joly et al. searched the deterioration of the aircraft engines 

performance by using ANN [6]. Babbar et al. [7] used the 

prognostic methods for monitoring the aircraft engine 

performance. They estimated the performance of future flights 

by comparing the EGT values of two engines. Yukimoto and 

Syrmos [8] estimated the EGT value by using Support Vector 

Machine Expert Method and genetic algorithm methods. 

Anastassios [9] investigated the monitoring and diagnostic 

methods about gas turbine engines. Ackert [10] investigated 

about maintenance management in turbofan engines and 

relationship between engine deterioration and EGT margin 

value. 

The fuel flow directly affects the power of aircraft engine, 

serving as a key indicator of engine performance. Considering 

its bearing on aircraft safety and economy, many airlines have 

attached great importance to the fuel flow [11]. Sun [12] 

developed a fault diagnosis algorithm for fuel flow sensor of 

aircraft engine. Cao [13] conducted a comprehensive 

correlation analysis (CCA) on the influencing factors of 

aircraft fuel consumption. Chati and Balakrishnan, [14-15] 

explored fuel flow modelling of aircraft engine through 

Gaussian process regression, and established a statistical 

model of the fuel flow of aircraft engine.  

Airlines have taken various measures to improve fuel 

efficiency and reduce fuel cost. Fuel consumption is an 

important aspect of aircraft condition monitoring, for any 

abnormal change in fuel is directly related to aircraft failure. 

Focusing on CFM56-7B engine, Yılmaz [16] identified the 

relationship between exhaust gas temperature (EGT) and 

operating parameters. Mercer et al. [17] mentioned the 

monitoring and management of aircraft engine in the book 

Fundamental Technology Development for Gas-Turbine 

Engine Health Management. 

The climb phase faces the most complex situation in the 

entire flight, with great changes in the outside air. In this phase, 

the aircraft is highly likely to fail and cause aviation accidents. 

Therefore, it is necessary to create a model of the fuel flow in 

the climb phase and use the model to monitor the fuel flow, 

aiming to detect abnormal changes in fuel flow in a timely 

manner. In this way, the fuel consumption will be monitored 

more efficiently, laying the basis for flight safety. 

Drawing on theories on aircraft engine, fuel control and 

mathematical correlation, this paper carries out stepwise linear 

regression of the data collected by a quick access recorder 

(QAR), and creates a model of the fuel flow of Boeing 737-

700 in the climb phase. The established model was verified 

with multiple sets of QAR data. 

2. QAR DATA

The QAR is an important data source for the monitoring of 

flight quality and engine state of the aircraft. The QAR data 

reflect the relationship between parameters, and imply the 

control law [18].  

Due to their sheer volume and complex structure, the QAR 

data are difficult to be processed satisfactorily by traditional 

data analysis methods or modelling theories. For example, the 

Matlab-based numerical methods proposed by Mathews [19] 
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cannot output intuitive or specific results, because the Matlab 

requires the user to master programming language and 

relevant professional knowledge.  

To solve the problem, Carver [20] suggested doing data 

analysis using the Statistical Package for the Social Sciences 

(SPSS). The SPSS boasts numerous data interfaces and 

advanced methods for statistical analysis, offering a 

convenient way to process the QAR data and create relevant 

models. It is one of the most popular tools for statistical 

analysis. 

The QAR data contain extremely rich information, 

including numerical parameters and character-type parameters. 

These parameters carry the information on all aspects of the 

flight. Each of them covers a specific field and has a unique 

importance. 

For a flight, the first few parameters in the QAR data specify 

the number, time and origin/destination. The flight time is 

accurate to the second, and the origin/destination is marked 

according to the Annex of International Civil Aviation 

Organization (ICAO). After the initial parameters, there are a 

huge number of numerical parameters and character-type 

parameters representing the engine state. The numerical 

parameters may include: engine pressure ratio (EPR), low-

pressure rotor speed (N1), thrust rod angle (TRA), flight 

altitude (ALT), pitch attitude angle (PITCH ATITUDE), etc. 

 

 

3. MULTIPLE LINEAR REGRESSION 

 

According to the theories on engine fuel and control theory, 

the fuel consumption during the flight is affected by multiple 

factors. Hence, the fuel consumption modelling is essentially 

a multivariate statistical analysis. There are various methods 

for multivariate statistical analysis. The multiple linear 

regression stands out for its maturity and wide application. 

Therefore, this paper selects stepwise linear regression, a 

typical method of multiple linear regression, to analyze the 

statistics on the fuel flow of the aircraft in the climb phase. 

 

3.1 Multiple linear regression model 

 

In the multiple linear regression model, the population 

regression function (PRF) can be generally described as: 

 

0 1 1 2 2Y ... p pX X X    = + + + + +
             (1) 

 

where, 𝜀  is the random error; 𝛽1, 𝛽2, . . . , 𝛽𝑝  are population 

regression coefficient. 𝛽𝑗  is also known as the partial 

regression coefficient, because it measures the mean variation 

of the dependent variable Y caused by the change of each unit 

of the independent variable Xj.  

The above formula assumes that the regression relationship 

between the dependent variable Y and the independent 

variables X1, X2, X3,…, Xp is approximately a linear function. 

In the formula, the population regression coefficients are 

unknown and must be estimated based on the observed values 

of relevant samples. 

Suppose there are 𝑛 observed values, and 𝛽1, 𝛽2, . . . , 𝛽𝑝 are 

the estimates of population regression coefficients. Then, the 

sample regression function of the multiple linear regression 

model can be described as: 

 

𝑌
∧

= 𝛽0
∧

+ 𝛽1
∧

𝑋1 + 𝛽2
∧

𝑋2+. . . +𝛽𝑝
∧

𝑋𝑝 + 𝑒, (p=1,2,…,n)     (2) 

 

where, e is the deviation between Y and its estimate 𝑌
∧

, i.e. the 

residual. Like the unary linear regression, multiple linear 

regression also requires several hypotheses. 

 

3.2 Prerequisites and conditional tests for multiple linear 

regression 

 

Linear regression is only suitable for modelling linearly 

correlated variables. Thus, the correlation between variables 

should be analyzed before linear regression. Correlation 

analysis is an exploratory method for statistical analysis. The 

results and purpose of correlation analysis provide guidance 

for further analysis. 

Correlation analysis is mainly performed by graphical 

method and the calculation of correlation coefficient. The 

graphical method finds the pattern of the correlation between 

variables by drawing the relevant scatterplots. This 

exploratory approach should be combined with relevant 

correlation coefficients. As its name suggests, the calculation 

of correlation coefficient refers to computing the correlation 

coefficient by the method that suits the specific type of data.   

 

3.2.1 Scatterplot 

The scatterplot provides a visual representation of the 

relationship between two variables. To draw the scatterplot, a 

variable is taken as the horizontal axis and the other as the 

vertical axis. Then, the corresponding values of the two 

variables are marked one by one as the coordinate points in the 

Cartesian coordinate system. The shape, pattern and density of 

the point distribution reflect the correlation between the two 

variables. 

 

3.2.2 Pearson correlation coefficient (PCC) 

Unlike the traditional measure of covariance, the correlation 

coefficient is nondimensional. It measures whether two 

variables are linearly correlated. If so, the correlation 

coefficient can describe the direction and degree of the linear 

correlation between the two variables. The correlation 

coefficient was first proposed by Pearson, and thus called the 

Pearson correlation coefficient (PCC). The PCC is defined as 

follows: 

 

1

1 ( , )
( )( )

1
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where, 𝑥 and 𝑦 are the mean values of the two samples; 𝑠𝑥 and 

𝑠𝑦  are the standard deviations of the two samples; 𝐶𝑜𝑣(𝑌, 𝑋) 

is the covariance of the samples. These parameters can be 

respectively calculated by: 
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The PCC value falls between -1 and +1. If |𝜌| ≈ 0, then the 

two variables are not linearly correlated; if |𝜌| ≈ 1, then the 

two variables are completely linearly correlated. The direction 

of the linear correlation is specified by the sign of the PCC: 

“+” means positive correlation and “-” means negative 

correlation. 

 

3.3 Stepwise linear regression 

 

The stepwise linear regression is a multiple linear regression 

good at screening independent variables. By this method, the 

variables are both selected through forward propagation and 

deleted through backpropagation. During the bidirectional 

screening, any external variable can reenter the model, if it 

provides explicit explanations, and any internal variable will 

be removed, if it fails to pass the t-test. 

In actual research, the linear correlation between dependent 

variable and the independent variable should be verified based 

on the scatterplot and the PCC, according to ∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1 =

∑ (𝑦
∧

𝑖 − 𝑦)2𝑛
𝑖=1 + ∑ (𝑦𝑖 − 𝑦

∧
)2𝑛

𝑖=1 . Even if the linear correlation 

is confirmed, the multiple linear regression formula should be 

subjected to significance tests like F-test, t-test and R2-test, as 

well as the collinearity diagnosis. 

 

 

4. FUEL FLOW MODEL 

 

The QAR-based fuel flow model was established in the light 

of theories on aircraft engine, fuel control and multiple linear 

regression. The flight consists of many phases, namely, taxi, 

takeoff, climb, cruise, descend, final approach and landing. 

Compared with the other phases, the climb phase sees great 

changes in fuel oil consumption and carries the typical features 

of the flight. Therefore, this section aims to establish a fuel 

flow model for the aircraft in the climb phase, that is, to 

determine the relationship between the fuel flow in the left 

engine and its influencing factors. For this purpose, a single 

set of QAR data was processed and analyzed on the SPSS, and 

then the fuel flow of the aircraft was constructed. 

 

4.1 Parameter selection 

 

The QAR data contains many parameters that may affect the 

fuel consumption in the climb phase, including Mach number 

(Mach), flight altitude (ALT), temperature, atmospheric 

environment, as well as engine parameters like low-pressure 

rotor speed (N1), high-pressure rotor speed (N2) and the thrust 

rod angle (TRA). Referring to the Aircraft Performance 

Manual, twelve parameters were selected preliminarily as the 

influencing factors of fuel consumption in the climb phase: 

Flight altitude (ALT), Mach number (Mach), calibrated 

airspeed (CAS), engine pressure ratio (EPR), total temperature 

through the high-pressure compressor inlet (T2), low-pressure 

rotor speed (N1), high-pressure rotor speed (N2), thrust rod 

angle (TRA), total pressure at station 2 (P2), total air 

temperature (TAT), total pressure (TP), total temperature 

through the high-pressure compressor outlet (T3). 

 

4.2 Similarity correction and power correction 

 

Inspired by the theory of similarity for aircraft engines, the 

exhaust gas temperature (EGT), low-pressure rotor speed (N1), 

high-pressure rotor speed (N2) and fuel flow (FF) were 

corrected under the same atmospheric conditions, eliminating 

the influence of external conditions on engine performance 

parameters. The corrections also make the data of different 

flights comparable. The engine performance parameters can 

be corrected by: 

 

1 1 2 0/ /cor rawN N T T=
                    (9) 

 

2 2 2 0/ /cor rawN N T T=
                   (10) 

 

2 0/ ( / )cor rawEGT EGT T T=
               (11) 

 

2 0 2 0/ (( / ) ( / ))x

cor rawFF FF T T P P=
       (12) 

 

where, the suffix “raw” stands for raw data; the suffix “cor” 

stands for corrected data. 

Besides the different external conditions, the thrust during 

the flight also affects the parameters of engine performance. 

For Pratt & Whitney’s engines, the thrust value is usually 

characterized by the EPR.  

In the cruise state, the engine thrust differs from flight to 

flight. Therefore, the performance parameters of the same 

engine in different flights may not be comparable, even if they 

have undergone similarity corrections. To solve the problem, 

the data were subjected to power correction based on the 

engine baseline, and converted into parameters under the same 

EPR.  

In its Electronic Control Module (ECM) Repair Guide, Pratt 

& Whitney defined engine baseline as the relationships 

between performance parameters (N1, N2, EGT and FF) and 

EPR after similarity corrections. The relationships are 

approximately linear (Figure 1). 

 

 
 

Figure 1. Relationships between performance parameters and 

the EPR 
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According to the above relationships, the performance 

parameters can be corrected under the same preset thrust, 

knowing the slopes (kN1, kN2, kEGT and kFF) of the relationship 

curves in Figure 1. The power correction formula can be 

expressed as: 

 

( )cor raw raw stdDATA DATA k EPR EPR= − −
      (13) 

 

where, DATAraw are raw data; DATAcor are corrected data; 

EPRraw is actual thrust; EPRstd is the preset standard thrust; k 

is the slope of the relationship curve between each parameter 

and EPR. 

 

4.3 Fuel flow model for the climb phase 

 

4.3.1 Preliminary model 

Since there are many independent variables, the PCC was 

calculated to verify the linear correlation between each 

independent variable and the dependent variable (fuel flow), 

and judge the degree of influence of each independent variable 

that is linearly correlated with fuel flow. The PCC of each 

independent variable is listed in Table 1 below. 

 

Table 1. The PCC of each independent variable 

 
 ALT MACH CAS EPR T2 N1 N2 TRA P2 TAT TP T3 

PCC -0.996 -0.977 0.255 -0.935 -0.988 -0.920 0.929 0.730 0.991 0.989 0.991 0.937 

 
 

Figure 2. The scatterplot between Mach and FF 

 

However, the PCC alone cannot fully demonstrate the 

existence or degree of the linear correlations. Hence, the 

scatterplot between each independent variable and the 

dependent variable was drawn to further judge the nonlinear 

relationship. The scatterplot between Mach and FF is 

presented in Figure 2 as an example. 

As shown in Table 1, the PCCs of independent variables 

like ALT, Mach and N2 were close to one, indicating that these 

variables have great impacts on the fuel flow in the climb 

phase. By contrast, the CAS had the smallest absolute value of 

the PCC (0.255). This means the impacts of the CAS on the 

fuel flow is negligible. Thus, the CAS was excluded from our 

model. 

 

4.3.2 Analysis of the preliminary model 

The tolerance and variance inflation factor (VIF) of each 

variable in the preliminary linear regression model are shown 

in Table 2. The results show that the VIFs of all independent 

variables were greater than 10 (i.e. the tolerances were smaller 

than 0.1). Thus, the independent variables may have serious 

collinearity. Then, the eight variables in the preliminary model 

were rescreened and regressed again. 

 

Table 2. The tolerance and VIF of each variable 

 
 ALT MACH EPR N1 N2 TRA TP T3 

tolerance 0 0.002 0.005 0.002 0.003 0.033 0.001 0.032 

VIF 3515.165 406.992 186.942 452.504 323.353 30.684 898.789 30.994 

4.3.3 Correction of the preliminary model 

Through the above analysis, ALT, EPR, TP, T3 and N1 were 

removed from our model, leaving only three independent 

variables: TRA, Mach and N2. Next, the fuel flow in the climb 

phase was modelled again through stepwise linear regression: 

Y = -52734.966 + 760.761*N2L – 18025.937*MACH + 

153.903*TRAL 

 

4.3.4 General model 

The above model was established through stepwise linear 

regression of only one set of QAR data. In real world scenarios, 

analysis results tend to have strong contingency if there are 

only a few data. To eliminate the contingency, this paper 

acquires 10 sets of QAR data from 12 flights of the same 

aircraft, and creates models through stepwise linear 

regressions on these data, using the SPSS. Excluding engine 

failure and abnormal external factors, seven fuel flow models 

were obtained for the climb phase, provided that the engine is 

working normally. The regression coefficients of the seven 

models were averaged to obtained a general fuel flow 

regression model: 

 

245438.275 683.682* 19542.839* 145.254*L LY N MACH TRA−= − + +  

 

4.4 Verification and prediction of the general model 

 

The general model was tested by mean percentage error 

(MPE): 

 

(𝑀𝑃𝐸) = 1/𝑛∑ |𝑌𝑖
∧

− 𝑌𝑖|
𝑛
𝑖=1                     (14) 

 

Statistics show that the MPE of the general model was 

300.8347, revealling that the model accuracy falls in the 

acceptable range.  

Furthermore, the general model was applied to predict the 

fuel flow of the aircraft in one of the remaining two flights. 

The prediction results were compared with the actual QAR 

data (Figure 3). The comparison shows that the prediction 

results basically agree with the actual data.  
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Figure 3. Comparison between the prediction results and the 

actual QAR data 

 

 

5. CONCLUSIONS 

 

Through stepwise linear regression, this paper models the 

fuel flow of Boeing 737-700 in the climb phase, verifies the 

accuracy of the model, and applies the model to predict the 

fuel flow of the aircraft in an actual flight. The model accuracy 

and prediction error both fell in the acceptable range. 

Of course, the model accuracy could be further improved, 

especially the relative high contingency of the prediction 

results. The high contingency is attributable to the limited 

number of QAR data files. This problem will be solved in 

future research. 
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