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To optimize the systematic calibration of strapdown inertial navigation system (SINS), this 

paper derives a systematic calibration model according to the relationship between IMU’s 

errors and velocity errors output by navigation algorithm of IMU. Then, the advantages of 

horizontal three-axis turntable (3AT) where IMU errors are calibrated were utilized to 

decouple the mounting misalignments of the IMU, and an equal interval rotation test plan was 

designed to provide 16 rotation stimuli for the IMU. On the basis of it, the three sets of coupling 

relations of IMU’s mounting misalignments were decoupled, and the systematic calibration 

model was applied successfully in identifying 21 errors, including scale factor errors, biases 

and mounting misalignment. The simulation results show that, when the accelerometers and 

gyros in the IMU were at the accuracies of 10μg and 0.01/h, respectively, the uncertainty of 

the accelerometer biases was 3.6g and of the gyro’s biases was 0.004/h. Finally, a 24h pure 

inertial navigation simulation was conducted in static positions. The attitude errors of 

systematic calibration are 6 in the x- and y-directions, and 2.2 in the z-direction, respectively, 

the maximum velocity error of systematic calibration was smaller than 0.3m/s. These results 

fully demonstrate the effectiveness of the systematic calibration method for the IMU calibrated 

on horizontal 3AT. This method suppresses the effects of turntable errors, and enhances the 

calibration accuracies of IMU. 
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1. INTRODUCTION

The inertial navigation system (INS) is a completely self-

contained navigation system that requires no external 

information. Therefore, the system possesses good 

concealment, stays immune to interference and supports all-

weather operations [1-4]. The INS error mainly comes from 

the output errors of the inertial measurement unit (IMU). To 

minimize its impact on navigation accuracy, the output errors 

must be modelled and calibrated before use, and compensated 

during the utilization. The common calibration methods are 

classified into the separated and the systematic calibration 

method [5, 6]. 

The systematic calibration came into being in the 1980s, and 

has become the trend of calibration development. In 

systematic calibration, the output errors of the IMU, such as 

attitude error, velocity error and position error, are treated as 

observed quantities [7-10], and used to calibrate the 

parameters in the IMU error model [11-15], reducing the 

calibration dependence on the turntable’s accuracy. This 

method is a desirable way to carry out filed calibration, and a 

hotspot in relevant research [16]. 

Much research has conducted on the systematic calibration 

method. For instance, Lee and Sung [17] identified the scale 

factors and mounting misalignments of the accelerometers and 

the gyros, as well as the biases of gyros, using systematic 

calibration. In addition, Lee estimated the biases of gyro 

according to the additional control signals from closed-loop 

self-aligning system, and designed the corresponding 

calibration path. Considering three sets of rotational paths, 

Rogers [18] calibrated the IMU errors using the velocity error 

as observation in the navigation information. Savage [19] put 

forward two sets of rotation sequences, and compared the 

specific forces components before and after rotation, thereby 

calibrating the errors of accelerometer and gyro. Yang and 

Huang [20] established a systematic calibration model based 

on velocity error observation, and implemented progressive 

calibration of IMU errors: the scale factors and the biases of 

the gyros and the accelerometers were identified through 

systematic calibration, and then the mounting misalignments 

of the IMU were decoupled by separated calibration. Wu et al. 

[21] probed deeply into the reason for the coupling between

the mounting misalignments of the IMU, and proposed a

decoupling method to null gyro’s anti-symmetric matrix.

The traditional systematic calibration either relies on multi-

positions excitation and angular rate excitation. However, the 

multi-position excitation only provides the input specific 

forces for calibrating accelerometer errors, while the angular 

rate excitation calibration only provides the input angular rate 

excitation and uses it for calibrating the gyro’s errors. The 

horizontal three-axis turntable (3AT), in which the outer axis 

is horizontal, can greatly simulate the IMU errors, making it 

easier to calibrate the errors. During the velocity calibration of 

gyro, the horizontal 3AT provides alternating input of specific 

forces to the accelerometer in three directions. 

Considering the advantage of multi-position excitation 

using horizontal 3AT, this paper designs an equal interval 

rotation test plan to decouple the mounting misalignments of 

the IMU. Next, the author analyzed the relationship between 

the observables excited by the horizontal 3AT and the IMU 
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errors. One the basis of it, he coupling between IMU’s 

mounting misalignments was eliminated, and 21 IMU errors 

were identified successfully, including scale factor, biases and 

mounting misalignments. 

 

 

2. SYSTEM CALIBRATION MODEL 

 

The output errors of strapdown inertial navigation system 

(SINS) can be described as: 

 
b b

a a = +f M f B             (1) 
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and 

T

g gx gy gzB B B =  B are the 

biases of the accelerometers and the gyro’s, respectively. 

Taking the East-North-Up (ENU) as the navigation frame n, 

the velocity of the SINS can be expressed as: 

 

(2 )n n n n n n
en ie en en= − +  +V f ω ω V g

       (3) 

 

The calibration experiment of the IMU consists of three 

steps, namely, alignment, rotation and stationary measurement. 

Let l be the aligned body frame, b be the rotated body frame, 

T1 be the rotation time, and t be the stationary measurement 

time. 

From Eq. (3), the relationship between the IMU errors and 

velocity error can be obtained as [20]: 
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n

en t = +V Y Y                     (4) 

 

where, 
1 ( )n b b n

b nb n
= −Y C ω C g , with b

nbω  is angular velocity of 

the b-frame relative to the n-frame in the stationary 

measurement time and can be regarded as constant 

approximately. Let p be the anti-symmetric matrix of a 

random vector p. Y2 can be described as [20]: 
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(5) 

where, 
1

0
d

T b
nb t= σ ω ; 

2 2 2
x y za   = + + ; 

1g gT = +σ M σ B
. 

It can be seen from equation (4) that Y2 contains 21 IMU 

error parameters. The output velocity (equal to velocity error) 

of the SINS working on the static base can be fitted by the 

quadratic function versus the measurement time: 

 

2
1 2

1

2

n
en t t = + +V Y Y C

           (6) 

 

where, C is a constant vector. Eq. (6) shows that, after fitting 

the velocity error in the navigation information, Y2 can serve 

as the observables to calibrate the IMU errors. 

 

 

3. CALIBRATION METHOD FOR HORIZONTAL 3AT 

 

3.1 Comparison between horizontal and vertical 3AT 

 

The initial mounting positions of the IMU in vertical and 

horizontal 3AT are displayed in Figures 1 and 2, respectively. 

Let ,  and  be the angular positions of the outer, middle and 

inner axes of the 3AT, respectively. 
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Figure 1. The initial position of the IMU in vertical 3AT 

 

As shown in Figure 1, the outer, middle and inner axes of 

the vertical 3AT rotate about axes zn, xn and yn, respectively. 

The attitude matrix of the IMU can be established as: 

 

Rot( , )Rot( , )Rot( , )n
b z x y  =C

      (7) 

 

Thus, the input excitations of specific forces provided by 

the vertical 3AT to the accelerometers in the IMU can be 

described as: 
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According to Eq. (8), when only the middle axis rotates on 

the vertical 3AT and belongs to the velocity state ( ( )t t = ), 

the accelerometers can receive alternating input of specific 

forces: 
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Figure 2. The initial mounting position of the IMU in 

horizontal 3AT 

 

As shown in Figure 2, the outer, middle and inner axes of 

the horizontal 3AT rotate about axes xn, zn and yn, respectively. 

The attitude matrix of the IMU can be established as: 

 

Rot( , )Rot( , )Rot( , )n
b x z y  =C

    (10) 

 

Thus, the input excitations of specific forces provided by 

the horizontal 3AT to the accelerometers in the IMU can be 

described as: 
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According to equation (11), the accelerometers can receive 

alternating inputs of specific forces, when the middle axis or 

outer axis rotates in angular rate state. for example, ( )t t =  

we have: 
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The following can be derived through the comparison 

between equations (9) and (12). Both turntables can output 

alternating excitations of specific forces, when the 

corresponding axis excite the velocity state. However, the 

excitations of specific force f
b 

y  in y direction of the vertical 3AT 

in equation (9) remains as sinωt, its amplitude is constant ‘1g’, 

while that of the horizontal 3AT in equation (12) is cosαsinω, 

its amplitude is gcosα, changing with the angular positions. 

In this paper, the advantages of horizontal 3AT are fully 

utilized to stimulate the IMU errors. Systematic calibration 

was performed in calibrating these errors mounted on the 

horizontal 3AT, with the outer axis in the angular rate state and 

the middle and inner axes in the angular position state. 

 

3.2 Equal interval rotation plan  

 

Traditionally, the calibration design only aims to identify 

model coefficients and to draw up a simple and quick test plan. 

From the mathematical perspective, the modelling and 

identification of the IMU errors are essentially a regression 

analysis problem in statistics. Many rotation plans have been 

developed for the calibration of SINS, in the light of the data 

optimization methods for regression test plan design, 

including uniform rotation test plan and combined rotation test 

plan that are D-optimal or quasi-D-optimal. 

When the angular rate of the outer axis is ω, its vector 

representation in b-frame is ω[1 0 0]T. Based on quasi-D-

optimal criterion, the test points in the calibration plan were 

selected from the surface of the ω-radius, that is, the vertices 

of the inscribed regular polyhedron of the sphere. 

If the inscribed regular tetrahedron is a regular one, the four 

vertices of the tetrahedron can be selected as the test points for 

IMU error calibration. First, the center of the regular 

tetrahedron needs to be placed at the center of the b-frame of 

the IMU on the horizontal 3AT. From the knowledge of the 

solid geometry, the coordinates of the four vertices are 

3 3 3
( , , )

3 3 3
, 

3 3 3
( , , )

3 3 3
− − , 

3 3 3
( , , )

3 3 3
− −  and 

3 3 3
( , , )

3 3 3
− − , respectively.  

On each vertex, the outer axis should rotate four times at 

equal intervals of 90 (0→90, 90→180, 180→270 and 

270→360). In total, the outer axis needs to rotate 16 times 

throughout the calibration.  

When the angular positions of the middle and inner axes are 

at  and  positions, respectively, the unit vector [1 0 0]T of 

the gyro’s angular velocity in the b-frame can be expressed as: 
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Taking the vertex
3 3 3

( , , )
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− −  for example, the 

following can be derived from Eq. (13): 
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Thus, we have: 

 

315 135
  

35.2644 144.7356
or

 

 

=  =  
 

=  =    (15) 

 

Similarly, two solutions can be obtained for each of the 

other three vertices of the regular tetrahedron. The solution 

that corresponds to the more uniform inputs of specific force 

before the rotation of the outer axis should be preserved. The 

angular positions of the middle and inner axes of the horizontal 

3AT are listed in Table 1. 
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Table 1. The equal interval rotation plan 

 
 1 2 3 4 

 215.2644 144.7356 215.2644 144.7356 

 225 315 45 135 
Note: The angles are rounded off to the angular position resolution of the 
horizontal 3AT.  

 

When the middle and inner axes of the horizontal 3AT are 

at the i-th angular positions αi, βi (i=1, 2, 3, 4), the attitude 

matrix of the initially aligned IMU in the body frame l relative 

to the navigation frame n after the first rotation of the outer 

axis (0→90) can be expressed as: 

 

( ,1) Rot( , )Rot( , )n
l i ii z y =C

      (16) 

 

Meanwhile, the attitude matrix of b-frame versus n-frame 

can be presented as: 

 

( ,1) ( ,1)n n
b li i=C ΑC

             (17) 

 

where, 

1 0 0
π

Rot( , ) 0 0 1
2
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x

 
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= = −
 
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A . 

Similarly, when the middle and inner axes are at the i-th 

angular positions, the attitude matrices after the second 

rotation of the outer axis (90→180) can be expressed as: 

 

( ,2) ( ,1)n n
l li i=C AC

, 
( ,2) ( ,2)n n

b li i=C AC
         (18) 

 

When the middle and inner axes are at the i-th angular 

positions, the attitude matrices after the third rotation of the 

outer axis (180→270) can be expressed as: 

 
2( ,3) ( ,1)n n

l li i=C A C
, 

( ,3) ( ,3)n n
b li i=C AC

         (19) 

 

When the middle and inner axes are at the i-th angular 

positions, the attitude matrices after the fourth rotation of the 

outer axis (270→360) can be expressed as: 

 
3( ,4) ( ,1)n n

l li i=C A C
, 

( ,4) ( ,4)n n
b li i=C AC

         (20) 

 

From Eqns. (17)-(20), when the middle and inner axes are 

at the i-th angular positions, the attitude matrices after the j-th 

rotation of the outer axis can be expressed as: 
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In this way, the attitude matrices can be derived for each of 

the 16 rotations in the equal rotation test plan. 

 

 

4. RELATIONSHIP BETWEEN OBSERVED 

QUANTITIES AND ERRORS 

 

4.1 Analysis accelerometer’s errors 

 

According to Eq. (5), the observable Y2 is partially affected 

by accelerometer’s errors, and partially by gyro’s errors. The 

two parts are respectively denoted as Y2a and Y2g: 
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Substituting the attitude matrices in Eq. (21) into the above 

equation, the expression of Y2a can be rewritten as: 
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Based on the accelerometer’s errors and their vectors, Eq. 

(23) can be expanded as: 
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The vector 

11 21 11 31

21 31

2
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2

c c c c

c c g

c
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 

− 
 
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of the accelerometer error 

∆Kax is denoted as 
axKL . The other error vectors are denoted 

in a similar manner. 

The relationship between Y2a and the accelerometer’s errors 

to be calibrated can be observed clearly in Eq. (24). 
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4.2 Analysis on gyro’s errors  

 

According to Eq. (5), the observable Y2g of the gyro’s errors 

can be described as: 
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After the alignment of the IMU, the following can be 

derived through the equal interval rotation plan: 
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where, m=[c11, c12, c13]T. According to the nature of the 

direction cosine matrix, m is a unit vector satisfying mTm=1. 

Substituting Eqns. (26)~(28) into Eq. (25), Y2g is expressed 

as: 
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The following properties of vectors are introduced to further 

analyze the Y2g of the gyro [19]. 

Lemma 1 For any two 3D vectors a and b, we have: 

 
T T T2   + = + − a b b a ab ba a b I    (30) 

 

Lemma 2 For any 3D vector a, we have: 

 
2 T 2( ) = −a aa a I

             (31) 

 

Based on Lemmas 1 and 2, Eq. (29) is expanded into: 
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    (32) 

 

It is learned from Eq. (32) that the Y2g is partially affected 

by mounting misalignment δMg and partially by biases Bg, 

both are gyro’s errors. Then, the observable can be expanded 

according to the corresponding errors. 

Firstly, the relationship between Y2g and Bg can be derived 

from Eq. (32) as: 
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       (33) 

 

Substituting Eq. (21) into Eq. (33), the vector of Bg in Y2g 

can be described as: 
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The vectors of gyro biases Bgy and Bgz can be computed 

similarly. 

According to Eq. (32), the relationship between Y2g and δMg 

can be depicted as: 
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Substituting Eq. (21) into Eq. (35), the vector of the scale 

factor ∆Kgxin Y2g_δMg can be described as: 
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The vectors of the other parameters in the gyro’s mounting 

misalignment matrix (Mgxy, Mgxz, Mgyx, ∆Mgy, Mgyz, Mgzx, Mgzy 

and ∆Mgz) can be computed in a similar manner. 

Finally, the relationship between Y2g and gyro’s errors can 

be obtained with expanding the errors and their vectors with 

Eqns. (32) and (35): 
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where, ;  

;  

;  
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4.3 Errors calibration  

 

According to Eqns. (24) and (37), Y2 can be written as an 

algebraic combination of IMU errors and their vectors: 
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(38) 

 

Let Ls be the vector of an error, with s being the serial 

number of IMU error. By definition, Ls is an algebraic 

combination of the elements cij(i, j=1, 2, 3) in the attitude 

matrix. When it rotates to different attitudes, the horizontal 

3AT provides the IMU with different input excitations, leading 

to different vectors of each IMU error. 

After implementing the equal interval rotation plan, the 

observable Y2(i) (i=1,2,,16) under the simulation of the 16 

rotations can be obtained by fitting the IMU velocities. When 

the outer axis rotates for the j-th time with the middle and inner 

axes at the i-th angular positions, the vector of each IMU error 

can be derived from the corresponding attitude matrices in 

Eqns. (17)~(20), and denoted as Ls(i,j). 

Therefore, equation (38) can be expressed as the matrix 

below: 
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n=16; i, j=1, 2, 3, 4. 

 

The vectors K can be obtained by processing Eq. (39) with 

the least square method: 
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          (40) 

 

The above equation shows that the systematic calibration 

model can identify all IMU errors, after implementing the 

equal interval rotation plan. 

Let ΦTΦ=A be the information matrix. Then, the 

uncertainties of each IMU error can be expressed as: 
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The information matrix A for the calibration path can be 

derived from the attitude matrices at the 16 rotation positions 

of the equal interval rotation plan, revealing the uncertainty of 

each IMU error according to that plan. 

If the random errors of the accelerometers in IMU all are 

10μg (1σ), and the random errors of the gyros are all 0.01°/h 

(1σ), the standard deviations resulting in Y2’ as 10-4m/s2 

according to Eq. (5). From Eq. (41), the scale factors and the 

uncertainties of the biases for the accelerometers in the IMU 

can be obtained as: 
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Eqns. (41) and (42) show that the calibration accuracy of 

IMU errors is affected directly by the standard deviations of 

the 16 observed quantities Y2’ and the information matrix A, 

and indirectly by the design of the equal interval rotation plan 

through the information matrix A. The calibration accuracy of 

the IMU errors through the equal interval rotation plan is 

verified through the following simulation. 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

Our systematic calibration method and separated calibration 

method were both applied to identify the IMU errors. The 

calibration scheme is shown in Table 1. The preset errors and 

calibration errors (calibration error= preset error – calibration 
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result) are listed in Table 2.  

The simulation conditions include gravitational acceleration 

g=9.8m/s2; turn rate of the Earth ie=15.04107 /h; local 

latitude L=45; angular position error of horizontal 3AT 1; 

angular velocity of outer axis 1/s; the random errors of the 

accelerometers in IMU all are10μg; the random errors of the 

gyros all are 0.01/h. 

This systematic calibration method was simulated on 

Matlab in the following steps: 

Step 1. Alignment: The SINS was subjected to initial 

alignment. 

Step 2. Rotations: The SINS entered the navigation mode. 

The angular positions of the middle and inner axes of the 

horizontal 3AT were adjusted as per the calibration scheme, 

such that the IMU reached the four vertices of the regular 

tetrahedron in turns. Then, the outer axis rotated four times at 

equal intervals of 90 on each vertex (0→90, 90→180, 

180→270 and 270→360). 

Step 3. Stationary measurement: After each rotation, the 

errors were measured in stationary state and then the 

navigation mode was terminated. 

Step 4. Data collection: The IMU’s attitude, velocity and 

position were computed under the simulation of the 16 

rotations in the equal interval rotation plan. The velocity error 

δV
n 

en was fitted by quadratic function, and the coefficient of the 

second-order term Y1 was taken as the observable. 

Step 5. Error calibration: The IMU errors were calibrated by 

equation (4), and the calibration error for IMU’s each error 

was computed. 

The traditional separated calibration method only requires 

the initial alignment of the IMU. Then, the accelerometer 

errors were calibrated based on the static positions before the 

16 rotations in the test plan, and the gyro’s errors were 

calibrated based on the angular velocities of the 16 rotations. 

 

Table 2. Comparison of simulation results of the two calibration methods 

 

IMU 

parameters 

Simulation 

preset value 

Calibration 

error of 

Systematic 

Calibration 

error of 

Separation 

IMU 

parameters 

Simulation 

preset value 

Calibration 

error of 

Systematic 

Calibration 

error of 

Separation 

Kax (ppm) 200 -0.065 4.1787 Kgx(ppm) 600 0.6997 -2.7083 

Kay (ppm) 400 -0.0547 2.5267 Kgy(ppm) -300 0.5981 6.9736 

Kaz(ppm) -300 0.065 -5.8407 Kgz(ppm) 100 -0.5748 -3.2387 

Bax(μg) 600 -6.5207 -1.9437 Bgx(/h) -0.7 -0.0039 -0.0094 

Bay(μg) 200 -7.3282 -1.9412 Bgy(/h) 0.2 0.0019 0.023 

Baz(μg) -300 -1.8958 -0.6687 Bgz(/h) 0.5 0.0022 -0.0061 

Mayx () 2 0.0026 0.0143 Mgxy() 5 -0.0008 0.0171 

Mazx() 2 0 0.0039 Mgxz() 5 -0.0003 -0.0203 

Mazy() 2 0.0085 0.0038 Mgyx() 5 0.0041 -0.0072 

—— —— —— —— Mgyz() 5 -0.0121 0.0032 

—— —— —— —— Mgzx() 5 0.0003 -0.0173 

—— —— —— —— Mgzy() 5 -0.0053 0.0164 

Table 2 lists the calibration errors of the two calibration 

methods for the IMU errors. The systematic calibration 

obviously outperformed the separated calibration. The 

systematic calibration was almost one order of magnitude 

higher than the separated calibration in terms of the scale 

factors and mounting misalignments of the accelerometers and 

gyros, as well as the gyros biases. For systematic calibration, 

the calibration error of the gyros biases was 0.0039/h, better 

than the measurement noise (0.01/h); the calibration error of 

the gyro’s mounting misalignment was controlled within 1, 

comparable to that of precision 3AT; the calibration error of 

the accelerometers biases was within 7.3g, better than the 

measurement noise of the accelerometer, although not much 

better than that of separated calibration. To sum up, the 

separated calibration was less accurate than systematic 

calibration, because the observable Y2 in velocity error of this 

method was easily affected by the turntable error and ground 

velocity component.  

The 100 Monte-Carlo (M-C) simulation tests were 

conducted fully to determine the calibration errors of the 

systematic calibration method concerning IMU errors. Based 

on the calibration errors of the 100 tests, the mean square 

errors (MSEs) of the scale factors and biases of the IMU were 

obtained (Table 3). 

The systematic calibration results in Table 3 show that the 

calibration errors of the scale factors of the accelerometer and 

gyro were smaller than 0.53ppm and 4.4ppm, respectively, the 

calibration errors of the accelerometers biases smaller than 

3.65g, and that of the gyro was below 0.004/h. These data 

were mostly on the same order of magnitude with the 

uncertainties of these errors obtained by Eq. (41). The 

simulation result on the accelerometers scale factor differed 

from the theoretical result by one order of magnitude, but the 

two results overlapped each other by 0.3 %, indicating that the 

calibration is accurate. The simulation results in Table 3 

further validate the theoretical analysis on the identification 

accuracy of IMU errors. 

 

Table 3. Calibration errors of the 100 M-C simulation tests 

based with systematic calibration method 

 
IMU parameters uncertainty IMU parameters uncertainty 

Kax(ppm) 0.2127  Kgx(ppm) 2.6143  

Kay(ppm) 0.5294  Kgy(ppm) 2.6200  

Kaz(ppm) 0.2127  Kgz(ppm) 4.3669  

Bax(μg) 3.5042  Bgx (/h) 0.0039  

Bay(μg) 2.9160  Bgy(/h) 0.0033  

Baz(μg) 3.6443 Bgy(/h) 0.0032  

 

To clearly describe the calibration results, the IMU was 

subjected to a 24h pure inertial navigation simulation under 

static position based on the results of the systematic calibration 

method and the separated calibration method. The static 

position was set to the initial position of the turntable, that is, 

the middle, inner and outer axes are all in 0 positions. The 

navigation errors are displayed in Figures 3-6. 
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Figure 3. Velocity errors of systematic calibration 

 

 
Figure 4. Attitude errors of systematic calibration 

 

 
 

Figure 5. Velocity errors of separated calibration 

 
 

Figure 6. Attitude errors of separated calibration 

 

Comparing Figures 4 and 6, the attitude errors of systematic 

calibration peaked at 6 in the x- and y-directions, and 2.2 in 

the z-direction, while the attitude errors of separated 

calibration peaked at 23 in the x- and y-directions, and 8.2 in 

the z-direction. Comparing Figures 3 and 5, the maximum 

velocity error of systematic calibration was smaller than 

0.3m/s, while that of separated calibration was larger than 

1.5m/s. The above analysis demonstrates that the systematic 

calibration is more accurate than separated calibration, and 

that our method can effectively enhance navigation accuracy. 

 

 

6. CONCLUSIONS 

 

To effectively calibrate the IMU errors, this paper designed 

an equal interval rotation plan according to the relationship 

between IMU’s errors and velocity errors output by navigation 

algorithm of IMU,. and identified all IMU errors by the least 

square method. The simulation results show that, when the 

accuracies of accelerometer and gyro in the IMU are 10μg and 

0.01/h, respectively, the calibration uncertainty of the 

accelerometers biases was 3.65g and the gyro’s biases was 

0.004/h. Besides, this method was compared with separated 

calibration method through a 24h pure inertial navigation 

simulation under static position. The comparison shows that 

this method reduced the calibration error of velocity by 1/5 and 

that of attitude by nearly 1/4 from the level of separated 

calibration, indicating that this method can effectively enhance 

the calibration accuracies of IMU errors. 
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