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Dental radiographs are essential for diagnosing tooth-related diseases, yet their
interpretation is often time-consuming and varies among clinicians. Although deep learning
has advanced dental image analysis, most existing studies remain limited to binary
classification or specific imaging modalities. This study aims to develop and evaluate a deep
learning framework capable of multi-class single-tooth disease classification from
radiographic images. A dataset of 4,439 single-tooth images was prepared from annotated
dental radiographs, representing four clinically relevant categories: caries, deep caries,
impacted teeth, and periapical lesions. The network integrates efficient convolutional and
attention-based feature extraction with anti-aliased down-sampling and multi-scale feature
aggregation to enhance representation and calibration reliability. Training employed a two-
phase augmentation strategy (heavy to light) and weighted cross-entropy loss under
stratified five-fold cross-validation, with final predictions obtained through soft-voting
ensemble averaging. The framework achieved an accuracy of 0.980 and an F1-score of
0.974, surpassing the performance reported in recent single-tooth classification studies,
which typically achieve accuracies in the range of 0.92-0.95 and F1-scores of approximately
0.83-0.94. These findings indicate that deep learning can provide accurate, consistent, and
interpretable multi-class diagnosis at the tooth level, potentially reducing the diagnostic

workload of dental professionals and allowing greater focus on complex clinical cases.

1. INTRODUCTION

Oral disorders are among the most common health problems
worldwide, affecting an estimated 3.5 billion people and
contributing substantially to disease burden across all age
groups [1]. Despite this burden, oral health often receives
limited attention in health policy, and access to care remains a
challenge, particularly in lower-income settings [2-4].

Radiographic imaging is central to dental diagnosis.
Intraoral radiographs, cone-beam computed tomography
(CBCT), and panoramic radiography (OPG) are the main
modalities, with OPG being the most widely used because it is
quick, accessible, and provides a full view of the dentition.
However, OPG images are often affected by overlapping
structures, low contrast, and distortion, making subtle
abnormalities difficult to detect [5]. These strengths and
limitations make OPG both essential in daily practice and a
key focus for computer-based diagnostic support.

Artificial intelligence (Al) has rapidly advanced radiology,
improving accuracy and efficiency while raising challenges of
bias, transparency, and accountability [6, 7]. Dentistry has also
adopted Al with promising results in implant planning and
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anatomical analysis [8]. However, applications targeting
dental abnormalities and diseases—including caries,
periapical lesions, and other tooth disorders—remain limited.
Most studies emphasize prosthetics and implants, leaving a
critical gap in single-tooth disease classification that this study
addresses.

Recent reviews indicate that Al is being progressively
utilized in dentistry, yielding positive outcomes for caries
detection and management. Outcomes, however, differ among
studies, and the absence of standardization and dependable
validation constrains clinical application [9, 10]. These gaps
show that dental imaging needs to be more consistent and
focused on diseases.

While Al has advanced in dental imaging, little work has
addressed single-tooth disease classification, especially when
multiple conditions must be distinguished. This study
therefore, aims to develop a deep learning model for
classifying dental disorders at the individual tooth level and to
address the challenges of multi-class classification to improve
diagnostic reliability.


https://orcid.org/0009-0005-9920-5755
https://orcid.org/0000-0002-0998-876X
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301213&domain=pdf

2. RELATED WORK

Recent studies have demonstrated the potential of deep
learning for single-tooth classification of dental diseases,
although most are restricted by imaging modality or the
number of disease categories.

Chen et al. [11] applied convolutional neural networks to
single-tooth periapical radiographs, classifying each tooth into
normal, caries, periodontitis, or both. Their work showed that
deep learning could handle multi-label classification at the
single-tooth level, achieving high accuracy across multiple
conditions.

ForouzeshFar et al. [12] focused on bitewing radiographs,
cropping them into 6,032 single-tooth images. They compared
multiple convolutional neural networks (CNNs) for binary
classification (sound vs. decayed), with VGG19 achieving

93.9% accuracy.

Liu et al. [13] developed a pipeline for periapical
radiographs where teeth were first segmented and then
classified with InceptionV3 as caries or non-caries. This
approach confirmed the effectiveness of single-tooth binary
classification in periapical images.

Li et al. [14] proposed a deep learning system for detecting
both caries and periapical periodontitis from single-tooth
regions cropped from periapical radiographs. Their dataset of
over 4,000 periapical radiographs provided one of the first
large-scale demonstrations of multi-disease classification at
the tooth level.

A comparison of these related studies with the present work
is summarized in Table 1, highlighting the imaging modalities,
tasks, and dataset sizes used across different single-tooth
classification approaches.

Table 1. Comparison of related studies on single-tooth disease classification using deep learning

Ref.  Imaging Modality Input Task Classes Dataset Size
. . . . Normal, Caries, 2850 images + augmented
[11] Periapical Single-tooth  Classification Periodontitis, Both images = 8150
[12] Bitewing Single-tooth ~ Classification Sound vs Decayed 713_b1tew1ngs — 6,032
single-tooth crops
[13] Periapical Single-tooth  Classification Caries vs non-caries 2136 images
Caries, Periapical 4,129 periapical
[14] Periapical Single-tooth  Classification ’ P radiographs (7,924 tooth

periodontitis, Both, Normal .
regions)

3. MATERIALS AND METHODS
3.1 Dataset

The images were sourced from the Dentex Dental
Radiography Challenge and obtained via Roboflow, which
provided COCO-format annotations (JSON) including
polygonal segmentation masks and bounding boxes. During
export, Roboflow applied a minor augmentation (horizontal
flips) to slightly increase the sample count. The exported set
comprised 873 panoramic orthopantomogram (OPG)
radiographs.

From these OPGs, we extracted single-tooth crops using the
provided masks within our preprocessing pipeline (Section
3.2). This yielded a final dataset of 4439 single-tooth images
with the following class distribution: Caries (n = 2822), Deep
Caries (n = 689), Impacted (n = 748), and Periapical Lesion (n
= 180), reflecting a pronounced class imbalance (see Figure
1). Because Dentex is a public research dataset, no additional
ethical approval was required.

Dataset per-class counts

2822

2500
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Figure 1. Sample count per disease class in the dataset

3.2 Preprocess and augmentations

Each panoramic OPG can contain multiple annotations,
each corresponding to a single tooth. Using the COCO
segmentation polygon and its bounding box, we decoded a
binary mask and extracted the tooth region. A fixed 320 x 320
square was centered on the bounding-box center (clamped at
borders), and the aligned mask was obtained within this crop.
Enhancement was applied only inside the mask to avoid
altering the non-tooth context.

Inside the mask we apply CLAHE to amplify local dental
contrast, a mild gamma tweak to stabilize mid-tones, and small
brightness/contrast adjustments (£0.05) to accommodate
exposure variation [15, 16]. To avoid hard edges, the mask is
Gaussian-blurred and used as an alha matte to feather-blend
the enhanced tooth onto a uniform gray background. The result
is saved at 320 x 320. Figure 2 summarizes the steps.

Figure 2. Step-by-step illustration of the tooth preprocessing
workflow

Train-time augmentation. We apply augmentations only to

the 320 x 320 single-tooth images produced by preprocessing.
validation/test use normalization only. The following were
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applied:
1. HEAVY (early training)
*  Horizontal flip
*  Affine transforms
»  Photometric jitter (brightness/contrast, gamma)
*  Occasional light blur or sensor-style noise
*  Gentle unsharp masking
*  Normalization
2. LIGHT (mid — late training)
*  Horizontal flip
*  Very mild photometric jitter (gamma)
*  Normalization
3. CLEAN (validation/test)
*  Normalization
Correctly chosen augmentations increase data variety,
reduce overfitting, and improve robustness to small changes in
position/orientation,  exposure/illumination, and mild
blur/noise—while keeping tooth details intact. Misaligned
augmentations can hurt performance, so we keep them
conservative.

3.3 Model architecture

Our proposed method is a convolutional neural network
designed specifically for single-tooth radiographs. The overall
architecture is illustrated in Figure 3, which shows the
convolutional stem, MBConv-ECA backbone with anti-
aliased down-sampling, the multi-scale aggregation head, and
the calibration layers. This design combines efficient
convolutional blocks, lightweight attention, anti-aliasing,
multi-scale aggregation, and probability calibration to achieve
both high accuracy and reliable predictions.
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Figure 3. Structural diagram of the proposed model
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The proposed network is organized as a unified pipeline for
multi-class single-tooth classification. The MBConv backbone
extracts compact representations, ECA  emphasizes
diagnostically informative channel responses, and anti-aliased
filtering is applied at stride-2 transitions to reduce aliasing and
preserve fine lesion-related structures. The classifier then
aggregates features from multiple backbone stages and applies
pyramid pooling on the deepest stage to combine local cues
with broader contextual information. Finally, confidence
calibration is incorporated through LogitNorm and post-hoc
temperature scaling to improve the reliability of predicted
probabilities under multi-class and imbalanced conditions.

3.3.1 Stem

The network begins with a convolutional stem (3 x 3, stride
2) followed by normalization and activation. Convolutions
with normalization layers are the foundation of medical image
CNNs, including dental radiographs [17]. We adopt Group
Normalization (GN), which provides stable training under the
small-batch settings typical of medical imaging [18, 19]. For
activation, we employ the SiLU (Swish) function, a smooth
non-linear activation that supports effective gradient flow and
convergence stability [20]. Recent studies further confirm that
SiLU and its variants improve diagnostic performance in
classification tasks [21].

3.3.2 Backbone blocks
The core of the network is built from MBConv blocks, an

inverted Dbottleneck design with depthwise separable
convolutions that improves parameter efficiency and
representational ~ power.  Originally  introduced in

MobileNetV2 and scaled in EfficientNet [22], MBConv has
since been adapted to biomedical imaging for efficient feature
extraction [23-25]. These blocks allow the model to balance
compactness with accuracy, making them suitable for clinical
imaging where computational efficiency is critical.

3.3.3 Efficient channel attention

To enhance feature representation without significant
overhead, we integrate Efficient Channel Attention (ECA) into
each MBConv block. ECA computes channel attention via a
fast 1-D convolution, avoiding the heavy fully connected
layers used in earlier methods [26]. Reviews of attention
mechanisms emphasize ECA as a lightweight yet effective
choice [27], and recent work confirms its continued relevance
in CNN design [28] as well as in medical image segmentation
pipelines [29].

3.3.4 Anti-aliased down-sampling

In stride-2 operations, aliasing can distort fine structural
details such as lesion boundaries. To mitigate this, we
introduce blur pooling filters before down-sampling. Anti-
aliased CNNs suppress high-frequency artifacts and improve
shift-invariance [30], and they have been successfully applied
in medical imaging, e.g., tuberculosis detection [31]. This
ensures that clinically important small structures are preserved
during feature reduction.

3.3.5 Multi-scale aggregation head

For classification, we aggregate features from the last four
stages of the backbone. Each feature map is globally pooled
and projected, then concatenated with outputs from a spatial
pyramid pooling (SPP/PSP) module applied to the final stage.
This design captures both local and global contextual



information. Multi-scale pooling is a well-established strategy
for robust scene parsing [32] and has proven effective in
medical imaging tasks [33-35]. By combining global averages
with pyramid pooling bins, our head integrates fine and coarse
features critical for dental diagnosis.

3.3.6 Calibration layers

Reliable probability estimates are essential in medical
decision support. We incorporate two complementary
calibration techniques. First, Logit Normalization (Logit-
Norm) stabilizes training by constraining logit magnitudes
[36]. Second, a learnable temperature scaling parameter is
optimized post-training to align predicted confidence with true
correctness [37]. Surveys highlight that uncalibrated networks
tend to be overconfident [38], while medical imaging reviews
stress calibration as a requirement for trustworthy clinical Al
[39, 40]. Together, these mechanisms improve the
interpretability and clinical reliability of the model outputs.

3.4 Training strategy

The overall workflow of training and evaluation is

Start point

ﬂ

-

—{ PreProcess

illustrated in Figure 4. Training was conducted in two phases:
an initial heavy augmentation stage followed by a light
augmentation stage to refine features on cleaner inputs. Class
imbalance was addressed using weighted cross-entropy loss
with label smoothing, where class weights were derived from
the inverse frequency of each class. The complete dataset of
4,439 single-tooth images was first divided into a fixed hold-
out test set (10%) and a main set (90%) used for cross-
validation. The fixed test set (n = 444) remained completely
unseen during model development and was used only for final
evaluation. Within the main set (n = 3,995), a stratified 5-fold
cross-validation scheme was applied to preserve the class
distribution in each fold. In every rotation, 3,196 images were
used for training and 799 images for validation. The best-
performing model from each fold (based on validation F1-
score) was saved and Training stopped if F1 did not improve
for 30 epochs. After selecting the best-performing checkpoint
in each fold, temperature scaling was optimized on the
corresponding validation set to improve probability
calibration. The five best models were later combined through
soft-voting ensemble averaging to produce the final results on
the independent test set.

‘\ Dataset \

Test Set
~ ~ - ™
‘ Full Dataseet Split Dataset
Train/Val Set

/ Cross-validitation and |

N

training

Stratified 5-Fold
Cross-Validation

Fold Loop |

Trainin

Validation Set

Train with
proposed model
with
Augmentation
(Heavy + light)

g Set

Save Best
Model

y

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Ensembling and evalutaion

Soft Voting
Ensemble

Evaluate

Ensemble 2l

Figure 4. Training and evaluation workflow of the proposed framework

3210



3.5 Cross-validation and ensemble learning

Cross-validation is the standard practice for validating a
model's capacity for generalization. Data is split into a number
of folds, and each fold takes a turn as the validation set while
the others are used for training. The rotation is a more
equitable measure of performance than a single split [41].
Stratified k-fold cross-validation specifically preserves class
proportions within folds, so results are more reproducible [42-
44].

Ensemble learning improves robustness by considering the
predictions of multiple models rather than relying on one
model. Ensembles can be homogeneous, where the same
model architecture is trained differently, or heterogencous,
where different types of models are used [45, 46]. A common
approach is soft voting, where probability outputs are averaged
to form the final prediction [47]. In our study, we used a
homogeneous cross-validation ensemble, averaging the
probability outputs from the best model of each fold to
generate the final results.

3.6 Evaluate metrics

To evaluate classification performance, we used several
standard metrics. Accuracy measures the proportion of
correctly classified samples among all cases:

P TP + TN
CCUracY = TP ¥ TN + FP + FN

(1

Precision indicates how many of the predicted positive
cases are correct:

TP

_— 2
TP+ FP @

Precision =

Recall (Sensitivity) measures how many of the actual

positive cases were correctly identified:

TP

Recall = TP+—FN

€)

To balance these two aspects, the F1-score combines them
into a single value:

2 - Precision - Recall
F1 =

“4)

Precision + Recall

Finally, the confusion matrix summarizes predictions across
classes in tabular form, showing true versus predicted labels
and highlighting common misclassifications.

4. RESULTS

Training and validation behavior were monitored across
folds to evaluate convergence. Figure 5 summarizes the
learning curves, including training loss, mean training loss
with £1 standard deviation, validation accuracy per fold, and
mean validation accuracy across folds. These curves
demonstrate smooth convergence, steady improvements in
validation accuracy, and no evidence of overfitting,
confirming the robustness of the proposed model.

We further analyzed validation performance at the class
level. Figure 6 presents precision, recall, and F1-score for each
class as a function of training progress. For every metric, the
solid line represents the mean value across folds, while the
shaded area shows the +1 standard deviation, reflecting
variability between folds. The results demonstrate that
performance improved steadily during training and converged
consistently across classes, providing a detailed view of model
behavior beyond overall averages.

Train Loss vs Epoch (per fold)

Mean Train Loss vs % Progress across folds

Train Loss

Train Loss

—— Mean across folds
=1std
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o

20 40
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e
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Figure 5. Training and validation loss curves across folds
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Figure 6. Per-class validation metrics (Precision, Recall, and F1-score) averaged across five folds
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Figure 7. Normalized confusion matrix of the ensemble model

A quantitative summary of model performance is provided
in Table 2, which reports accuracy, precision, recall, and F1-
score for each of the five folds as well as the final ensemble
model. The ensemble, obtained through soft voting, provides
a more robust estimate of performance compared to individual
folds.

The ensemble model’s results are summarized in the
normalized confusion matrix shown in Figure 7. Each row
corresponds to the true class, and each column to the predicted
class, with values normalized to account for different sample
sizes. The matrix highlights that most samples were correctly
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classified, as indicated by the strong diagonal values.
Occasional misclassifications are visible, particularly between
Class-2 and Class-1, and between Class-4 and Class-1, while
Class-3 achieved perfect separation. Overall, the confusion
matrix confirms the balanced and reliable performance of the
ensemble model across all categories. The variation in F1-
score across folds (Table 2), including the relatively lower
performance in Fold 5, can be attributed to differences in the
composition of training subsets under stratified cross-
validation. Despite preserving overall class proportions,
individual folds may contain more challenging samples, such



as subtle lesions or borderline cases, which can affect learning.
Importantly, the ensemble model mitigates this variance by
aggregating predictions across folds, resulting in more stable
and improved overall performance.

The previous related studies have all applied deep learning
for single-tooth disease classification. Chen et al. [11] reported
results for caries and periodontitis, ForouzeshFar et al. [12]
focused on binary caries classification, Liu et al. [13] classified
caries versus non-caries, and Li et al. [14] evaluated caries and
periapical periodontitis. A comparison of their reported
outcomes with the results of this study is shown in Table 3.

Table 2. Fold-wise and ensemble performance of the

proposed method

Folds Accuracy  Precision Recall F1-Score

Fold 1 0.948 0.919 0.931 0.924

Fold 2 0.957 0.968 0.925 0.945

Fold 3 0.944 0.956 0.908 0.930

Fold 4 0.948 0.930 0.902 0.915

Fold 5 0.939 0.897 0.907 0.901
Ensemble 0.980 0.986 0.963 0.974

Table 3. Fold-wise and ensemble performance of the proposed method

Ref. Class Results

[11] Normal, Caries, Periodontitis, Both accuracy = 0.9494 (caries), accuracy = 0.9544 (periodontitis)
[12] Sound vs Decayed Accuracy =0.939

[13] Caries vs non-caries Accuracy ~ 0.92

[14] Caries, Periapical periodontitis, Both, Normal F1 = 0.83 (for both diseases)

In this study  Caries, Deep Caries, Impacted, Periapical Lesion

Accuracy = 0.980, Precision = 0.986, Recall = 0.963, F1 =0.974

5. DISCUSSION

The findings of this study demonstrate that convolutional
neural networks can reliably classify multiple dental diseases
at the single-tooth level from OPG-derived crops. The
ensemble approach provided consistent and robust
performance across folds, indicating that deep learning is
effective for capturing disease-specific features in panoramic
radiographs once teeth are isolated.

The confusion matrix (Figure 7) shows that most errors
occur between visually similar categories, particularly
between caries and deep caries (Class-1 and Class-2), and
between caries and periapical lesions (Class-1 and Class-4).
These classes may share overlapping radiographic features at
early or transitional stages, such as subtle radiolucency’s and
poorly defined boundaries. Class imbalance and limited
samples for advanced lesions may also contribute to these
misclassifications, indicating areas for further improvement.

Previous related studies have confirmed the feasibility of
single-tooth classification using deep learning, but most were
restricted to binary tasks or focused on a limited number of
conditions in periapical or bitewing radiographs. The present
study extends this line of research by addressing four clinically
relevant categories—caries, deep caries, impacted teeth, and
periapical lesions—on OPG-derived single-tooth images, and
demonstrates high performance across all classes (Table 3).
The comparison in Table 3 is based on single-tooth disease
classification, not on whole-image or imaging-modality-level
performance. Since all referenced studies perform
classification at the single-tooth level, the comparison reflects
task-level performance rather than differences in imaging
modality.

These results have meaningful clinical implications.
Automated tooth-level classification can assist dentists in
routine evaluation of panoramic radiographs by highlighting
potential abnormalities that may otherwise be overlooked. By
improving diagnostic efficiency, such systems may also help
reduce the workload of dental professionals, enabling them to
devote more time to complex or urgent clinical cases.

Despite these strengths, several task-specific limitations
should be acknowledged. Data availability constrained the
diversity of the training set, and class imbalance was present.
Nevertheless, the model was able to effectively learn under
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low-sample conditions, supported by weighted cross-entropy
loss, data augmentation, and ensemble averaging, as reflected
by stable performance across folds, although a limited sample
size may reduce robustness and contribute to residual
misclassifications. In addition, only four disease categories
were included, whereas a comprehensive diagnosis would
require a broader range of dental conditions. Moreover, while
single-tooth cropping is consistent with the study’s task
formulation and standardizes inputs, it may limit access to the
surrounding anatomical context that could further aid
discrimination between advanced disease patterns.

Future work should therefore focus on incorporating multi-
center datasets to improve generalizability, expanding the
number of disease categories, and addressing class imbalance.
Moreover, as this study relied on pre-provided bounding boxes
for tooth cropping, integrating the classifier with an automated
detection or segmentation model will be necessary to build a
complete end-to-end diagnostic system. Prospective validation
in real-world clinical settings will also be important to confirm
clinical applicability.

6. CONCLUSIONS

This study developed a deep learning framework for multi-
class single-tooth disease classification using crops derived
from panoramic radiographs. The proposed model achieved
high performance, with the ensemble reaching an accuracy of
0.980 and an F1-score of 0.974. These results indicate that
convolutional neural networks can effectively support
diagnosis at the tooth level, potentially reducing workload for
dental professionals and allowing more focus on complex
cases. Future research should aim to expand the diversity of
datasets, include a wider range of dental diseases, and integrate
classification with detection models to enable a complete end-
to-end diagnostic system.

DATA AVAILABILITY

The experiments were conducted using the DENTEX
panoramic dental X-ray dataset, a publicly available
benchmark providing tooth-level annotations for detection and



diagnosis

tasks. The dataset is available at

https://arxiv.org/abs/2305.19112.
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OPG

Coco

JSON
CNN
CLAHE
SiLU

Orthopantomogram Dental
Radiograph)

Common Objects in Context (Dataset Annotation
Format)

JavaScript Object Notation

Convolutional Neural Network

Contrast-Limited Adaptive Histogram Equalization

Sigmoid Linear Unit

(Panoramic

MBConv Mobile Inverted Bottleneck Convolution

ECA

Efficient Channel Attention
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