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Dental radiographs are essential for diagnosing tooth-related diseases, yet their 

interpretation is often time-consuming and varies among clinicians. Although deep learning 

has advanced dental image analysis, most existing studies remain limited to binary 

classification or specific imaging modalities. This study aims to develop and evaluate a deep 

learning framework capable of multi-class single-tooth disease classification from 

radiographic images. A dataset of 4,439 single-tooth images was prepared from annotated 

dental radiographs, representing four clinically relevant categories: caries, deep caries, 

impacted teeth, and periapical lesions. The network integrates efficient convolutional and 

attention-based feature extraction with anti-aliased down-sampling and multi-scale feature 

aggregation to enhance representation and calibration reliability. Training employed a two-

phase augmentation strategy (heavy to light) and weighted cross-entropy loss under 

stratified five-fold cross-validation, with final predictions obtained through soft-voting 

ensemble averaging. The framework achieved an accuracy of 0.980 and an F1-score of 

0.974, surpassing the performance reported in recent single-tooth classification studies, 

which typically achieve accuracies in the range of 0.92-0.95 and F1-scores of approximately 

0.83-0.94. These findings indicate that deep learning can provide accurate, consistent, and 

interpretable multi-class diagnosis at the tooth level, potentially reducing the diagnostic 

workload of dental professionals and allowing greater focus on complex clinical cases.  
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1. INTRODUCTION

Oral disorders are among the most common health problems 

worldwide, affecting an estimated 3.5 billion people and 

contributing substantially to disease burden across all age 

groups [1]. Despite this burden, oral health often receives 

limited attention in health policy, and access to care remains a 

challenge, particularly in lower-income settings [2-4]. 

Radiographic imaging is central to dental diagnosis. 

Intraoral radiographs, cone-beam computed tomography 

(CBCT), and panoramic radiography (OPG) are the main 

modalities, with OPG being the most widely used because it is 

quick, accessible, and provides a full view of the dentition. 

However, OPG images are often affected by overlapping 

structures, low contrast, and distortion, making subtle 

abnormalities difficult to detect [5]. These strengths and 

limitations make OPG both essential in daily practice and a 

key focus for computer-based diagnostic support. 

Artificial intelligence (AI) has rapidly advanced radiology, 

improving accuracy and efficiency while raising challenges of 

bias, transparency, and accountability [6, 7]. Dentistry has also 

adopted AI, with promising results in implant planning and 

anatomical analysis [8]. However, applications targeting 

dental abnormalities and diseases—including caries, 

periapical lesions, and other tooth disorders—remain limited. 

Most studies emphasize prosthetics and implants, leaving a 

critical gap in single-tooth disease classification that this study 

addresses. 

Recent reviews indicate that AI is being progressively 

utilized in dentistry, yielding positive outcomes for caries 

detection and management. Outcomes, however, differ among 

studies, and the absence of standardization and dependable 

validation constrains clinical application [9, 10]. These gaps 

show that dental imaging needs to be more consistent and 

focused on diseases. 

While AI has advanced in dental imaging, little work has 

addressed single-tooth disease classification, especially when 

multiple conditions must be distinguished. This study 

therefore, aims to develop a deep learning model for 

classifying dental disorders at the individual tooth level and to 

address the challenges of multi-class classification to improve 

diagnostic reliability.  
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2. RELATED WORK

Recent studies have demonstrated the potential of deep 

learning for single-tooth classification of dental diseases, 

although most are restricted by imaging modality or the 

number of disease categories. 

Chen et al. [11] applied convolutional neural networks to 

single-tooth periapical radiographs, classifying each tooth into 

normal, caries, periodontitis, or both. Their work showed that 

deep learning could handle multi-label classification at the 

single-tooth level, achieving high accuracy across multiple 

conditions. 

ForouzeshFar et al. [12] focused on bitewing radiographs, 

cropping them into 6,032 single-tooth images. They compared 

multiple convolutional neural networks (CNNs) for binary 

classification (sound vs. decayed), with VGG19 achieving 

93.9% accuracy. 

Liu et al. [13] developed a pipeline for periapical 

radiographs where teeth were first segmented and then 

classified with InceptionV3 as caries or non-caries. This 

approach confirmed the effectiveness of single-tooth binary 

classification in periapical images. 

Li et al. [14] proposed a deep learning system for detecting 

both caries and periapical periodontitis from single-tooth 

regions cropped from periapical radiographs. Their dataset of 

over 4,000 periapical radiographs provided one of the first 

large-scale demonstrations of multi-disease classification at 

the tooth level. 

A comparison of these related studies with the present work 

is summarized in Table 1, highlighting the imaging modalities, 

tasks, and dataset sizes used across different single-tooth 

classification approaches. 

Table 1. Comparison of related studies on single-tooth disease classification using deep learning 

Ref. Imaging Modality Input Task Classes Dataset Size 

[11] Periapical Single-tooth Classification 
Normal, Caries, 

Periodontitis, Both 

2850 images + augmented 

images = 8150 

[12] Bitewing Single-tooth Classification Sound vs Decayed 
713 bitewings → 6,032 

single-tooth crops 

[13] Periapical Single-tooth Classification Caries vs non-caries 2136 images 

[14] Periapical Single-tooth Classification 
Caries, Periapical 

periodontitis, Both, Normal 

4,129 periapical 

radiographs (7,924 tooth 

regions) 

3. MATERIALS AND METHODS

3.1 Dataset 

The images were sourced from the Dentex Dental 

Radiography Challenge and obtained via Roboflow, which 

provided COCO-format annotations (JSON) including 

polygonal segmentation masks and bounding boxes. During 

export, Roboflow applied a minor augmentation (horizontal 

flips) to slightly increase the sample count. The exported set 

comprised 873 panoramic orthopantomogram (OPG) 

radiographs. 

From these OPGs, we extracted single-tooth crops using the 

provided masks within our preprocessing pipeline (Section 

3.2). This yielded a final dataset of 4439 single-tooth images 

with the following class distribution: Caries (n = 2822), Deep 

Caries (n = 689), Impacted (n = 748), and Periapical Lesion (n 

= 180), reflecting a pronounced class imbalance (see Figure 

1). Because Dentex is a public research dataset, no additional 

ethical approval was required. 

Figure 1. Sample count per disease class in the dataset 

3.2 Preprocess and augmentations 

Each panoramic OPG can contain multiple annotations, 

each corresponding to a single tooth. Using the COCO 

segmentation polygon and its bounding box, we decoded a 

binary mask and extracted the tooth region. A fixed 320 × 320 

square was centered on the bounding-box center (clamped at 

borders), and the aligned mask was obtained within this crop. 

Enhancement was applied only inside the mask to avoid 

altering the non-tooth context.  

Inside the mask we apply CLAHE to amplify local dental 

contrast, a mild gamma tweak to stabilize mid-tones, and small 

brightness/contrast adjustments (±0.05) to accommodate 

exposure variation [15, 16]. To avoid hard edges, the mask is 

Gaussian-blurred and used as an alha matte to feather-blend 

the enhanced tooth onto a uniform gray background. The result 

is saved at 320 × 320. Figure 2 summarizes the steps. 

Figure 2. Step-by-step illustration of the tooth preprocessing 

workflow 

Train-time augmentation. We apply augmentations only to 

the 320 × 320 single-tooth images produced by preprocessing. 

validation/test use normalization only. The following were 
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applied: 

1. HEAVY (early training)

• Horizontal flip

• Affine transforms

• Photometric jitter (brightness/contrast, gamma)

• Occasional light blur or sensor-style noise

• Gentle unsharp masking

• Normalization

2. LIGHT (mid → late training)

• Horizontal flip

• Very mild photometric jitter (gamma)

• Normalization

3. CLEAN (validation/test)

• Normalization

Correctly chosen augmentations increase data variety, 

reduce overfitting, and improve robustness to small changes in 

position/orientation, exposure/illumination, and mild 

blur/noise—while keeping tooth details intact. Misaligned 

augmentations can hurt performance, so we keep them 

conservative. 

3.3 Model architecture 

Our proposed method is a convolutional neural network 

designed specifically for single-tooth radiographs. The overall 

architecture is illustrated in Figure 3, which shows the 

convolutional stem, MBConv-ECA backbone with anti-

aliased down-sampling, the multi-scale aggregation head, and 

the calibration layers. This design combines efficient 

convolutional blocks, lightweight attention, anti-aliasing, 

multi-scale aggregation, and probability calibration to achieve 

both high accuracy and reliable predictions. 

Figure 3. Structural diagram of the proposed model 

The proposed network is organized as a unified pipeline for 

multi-class single-tooth classification. The MBConv backbone 

extracts compact representations, ECA emphasizes 

diagnostically informative channel responses, and anti-aliased 

filtering is applied at stride-2 transitions to reduce aliasing and 

preserve fine lesion-related structures. The classifier then 

aggregates features from multiple backbone stages and applies 

pyramid pooling on the deepest stage to combine local cues 

with broader contextual information. Finally, confidence 

calibration is incorporated through LogitNorm and post-hoc 

temperature scaling to improve the reliability of predicted 

probabilities under multi-class and imbalanced conditions. 

3.3.1 Stem 

The network begins with a convolutional stem (3 × 3, stride 

2) followed by normalization and activation. Convolutions

with normalization layers are the foundation of medical image

CNNs, including dental radiographs [17]. We adopt Group

Normalization (GN), which provides stable training under the

small-batch settings typical of medical imaging [18, 19]. For

activation, we employ the SiLU (Swish) function, a smooth

non-linear activation that supports effective gradient flow and

convergence stability [20]. Recent studies further confirm that

SiLU and its variants improve diagnostic performance in

classification tasks [21].

3.3.2 Backbone blocks 

The core of the network is built from MBConv blocks, an 

inverted bottleneck design with depthwise separable 

convolutions that improves parameter efficiency and 

representational power. Originally introduced in 

MobileNetV2 and scaled in EfficientNet [22], MBConv has 

since been adapted to biomedical imaging for efficient feature 

extraction [23-25]. These blocks allow the model to balance 

compactness with accuracy, making them suitable for clinical 

imaging where computational efficiency is critical. 

3.3.3 Efficient channel attention 

To enhance feature representation without significant 

overhead, we integrate Efficient Channel Attention (ECA) into 

each MBConv block. ECA computes channel attention via a 

fast 1-D convolution, avoiding the heavy fully connected 

layers used in earlier methods [26]. Reviews of attention 

mechanisms emphasize ECA as a lightweight yet effective 

choice [27], and recent work confirms its continued relevance 

in CNN design [28] as well as in medical image segmentation 

pipelines [29]. 

3.3.4 Anti-aliased down-sampling 

In stride-2 operations, aliasing can distort fine structural 

details such as lesion boundaries. To mitigate this, we 

introduce blur pooling filters before down-sampling. Anti-

aliased CNNs suppress high-frequency artifacts and improve 

shift-invariance [30], and they have been successfully applied 

in medical imaging, e.g., tuberculosis detection [31]. This 

ensures that clinically important small structures are preserved 

during feature reduction. 

3.3.5 Multi-scale aggregation head 

For classification, we aggregate features from the last four 

stages of the backbone. Each feature map is globally pooled 

and projected, then concatenated with outputs from a spatial 

pyramid pooling (SPP/PSP) module applied to the final stage. 

This design captures both local and global contextual 
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information. Multi-scale pooling is a well-established strategy 

for robust scene parsing [32] and has proven effective in 

medical imaging tasks [33-35]. By combining global averages 

with pyramid pooling bins, our head integrates fine and coarse 

features critical for dental diagnosis. 

3.3.6 Calibration layers 

Reliable probability estimates are essential in medical 

decision support. We incorporate two complementary 

calibration techniques. First, Logit Normalization (Logit-

Norm) stabilizes training by constraining logit magnitudes 

[36]. Second, a learnable temperature scaling parameter is 

optimized post-training to align predicted confidence with true 

correctness [37]. Surveys highlight that uncalibrated networks 

tend to be overconfident [38], while medical imaging reviews 

stress calibration as a requirement for trustworthy clinical AI 

[39, 40]. Together, these mechanisms improve the 

interpretability and clinical reliability of the model outputs. 

3.4 Training strategy 

The overall workflow of training and evaluation is 

illustrated in Figure 4. Training was conducted in two phases: 

an initial heavy augmentation stage followed by a light 

augmentation stage to refine features on cleaner inputs. Class 

imbalance was addressed using weighted cross-entropy loss 

with label smoothing, where class weights were derived from 

the inverse frequency of each class. The complete dataset of 

4,439 single-tooth images was first divided into a fixed hold-

out test set (10%) and a main set (90%) used for cross-

validation. The fixed test set (n = 444) remained completely 

unseen during model development and was used only for final 

evaluation. Within the main set (n = 3,995), a stratified 5-fold 

cross-validation scheme was applied to preserve the class 

distribution in each fold. In every rotation, 3,196 images were 

used for training and 799 images for validation. The best-

performing model from each fold (based on validation F1-

score) was saved and Training stopped if F1 did not improve 

for 30 epochs. After selecting the best-performing checkpoint 

in each fold, temperature scaling was optimized on the 

corresponding validation set to improve probability 

calibration.  The five best models were later combined through 

soft-voting ensemble averaging to produce the final results on 

the independent test set. 

Figure 4. Training and evaluation workflow of the proposed framework
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3.5 Cross-validation and ensemble learning 

Cross-validation is the standard practice for validating a 

model's capacity for generalization. Data is split into a number 

of folds, and each fold takes a turn as the validation set while 

the others are used for training. The rotation is a more 

equitable measure of performance than a single split [41]. 

Stratified k-fold cross-validation specifically preserves class 

proportions within folds, so results are more reproducible [42-

44]. 

Ensemble learning improves robustness by considering the 

predictions of multiple models rather than relying on one 

model. Ensembles can be homogeneous, where the same 

model architecture is trained differently, or heterogeneous, 

where different types of models are used [45, 46]. A common 

approach is soft voting, where probability outputs are averaged 

to form the final prediction [47]. In our study, we used a 

homogeneous cross-validation ensemble, averaging the 

probability outputs from the best model of each fold to 

generate the final results. 

3.6 Evaluate metrics 

To evaluate classification performance, we used several 

standard metrics. Accuracy measures the proportion of 

correctly classified samples among all cases: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

Precision indicates how many of the predicted positive 

cases are correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

Recall (Sensitivity) measures how many of the actual 

positive cases were correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3) 

To balance these two aspects, the F1-score combines them 

into a single value: 

𝐹1 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4) 

Finally, the confusion matrix summarizes predictions across 

classes in tabular form, showing true versus predicted labels 

and highlighting common misclassifications. 

4. RESULTS

Training and validation behavior were monitored across 

folds to evaluate convergence. Figure 5 summarizes the 

learning curves, including training loss, mean training loss 

with ±1 standard deviation, validation accuracy per fold, and 

mean validation accuracy across folds. These curves 

demonstrate smooth convergence, steady improvements in 

validation accuracy, and no evidence of overfitting, 

confirming the robustness of the proposed model. 

We further analyzed validation performance at the class 

level. Figure 6 presents precision, recall, and F1-score for each 

class as a function of training progress. For every metric, the 

solid line represents the mean value across folds, while the 

shaded area shows the ±1 standard deviation, reflecting 

variability between folds. The results demonstrate that 

performance improved steadily during training and converged 

consistently across classes, providing a detailed view of model 

behavior beyond overall averages. 

Figure 5. Training and validation loss curves across folds 
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Figure 6. Per-class validation metrics (Precision, Recall, and F1-score) averaged across five folds 

Figure 7. Normalized confusion matrix of the ensemble model 

A quantitative summary of model performance is provided 

in Table 2, which reports accuracy, precision, recall, and F1-

score for each of the five folds as well as the final ensemble 

model. The ensemble, obtained through soft voting, provides 

a more robust estimate of performance compared to individual 

folds. 

The ensemble model’s results are summarized in the 

normalized confusion matrix shown in Figure 7. Each row 

corresponds to the true class, and each column to the predicted 

class, with values normalized to account for different sample 

sizes. The matrix highlights that most samples were correctly 

classified, as indicated by the strong diagonal values. 

Occasional misclassifications are visible, particularly between 

Class-2 and Class-1, and between Class-4 and Class-1, while 

Class-3 achieved perfect separation. Overall, the confusion 

matrix confirms the balanced and reliable performance of the 

ensemble model across all categories. The variation in F1-

score across folds (Table 2), including the relatively lower 

performance in Fold 5, can be attributed to differences in the 

composition of training subsets under stratified cross-

validation. Despite preserving overall class proportions, 

individual folds may contain more challenging samples, such 
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as subtle lesions or borderline cases, which can affect learning. 

Importantly, the ensemble model mitigates this variance by 

aggregating predictions across folds, resulting in more stable 

and improved overall performance. 

The previous related studies have all applied deep learning 

for single-tooth disease classification. Chen et al. [11] reported 

results for caries and periodontitis, ForouzeshFar et al. [12] 

focused on binary caries classification, Liu et al. [13] classified 

caries versus non-caries, and Li et al. [14] evaluated caries and 

periapical periodontitis. A comparison of their reported 

outcomes with the results of this study is shown in Table 3. 

Table 2. Fold-wise and ensemble performance of the 

proposed method 

Folds Accuracy Precision Recall F1-Score 

Fold 1 0.948 0.919 0.931 0.924 

Fold 2 0.957 0.968 0.925 0.945 

Fold 3 0.944 0.956 0.908 0.930 

Fold 4 0.948 0.930 0.902 0.915 

Fold 5 0.939 0.897 0.907 0.901 

Ensemble 0.980 0.986 0.963 0.974 

Table 3. Fold-wise and ensemble performance of the proposed method 

Ref. Class Results 

[11] Normal, Caries, Periodontitis, Both accuracy = 0.9494 (caries), accuracy = 0.9544 (periodontitis) 

[12] Sound vs Decayed Accuracy = 0.939 

[13] Caries vs non-caries Accuracy ≈ 0.92 

[14] Caries, Periapical periodontitis, Both, Normal F1 ≈ 0.83 (for both diseases) 

In this study Caries, Deep Caries, Impacted, Periapical Lesion Accuracy = 0.980, Precision = 0.986, Recall = 0.963, F1 = 0.974 

5. DISCUSSION

The findings of this study demonstrate that convolutional 

neural networks can reliably classify multiple dental diseases 

at the single-tooth level from OPG-derived crops. The 

ensemble approach provided consistent and robust 

performance across folds, indicating that deep learning is 

effective for capturing disease-specific features in panoramic 

radiographs once teeth are isolated. 

The confusion matrix (Figure 7) shows that most errors 

occur between visually similar categories, particularly 

between caries and deep caries (Class-1 and Class-2), and 

between caries and periapical lesions (Class-1 and Class-4). 

These classes may share overlapping radiographic features at 

early or transitional stages, such as subtle radiolucency’s and 

poorly defined boundaries. Class imbalance and limited 

samples for advanced lesions may also contribute to these 

misclassifications, indicating areas for further improvement. 

Previous related studies have confirmed the feasibility of 

single-tooth classification using deep learning, but most were 

restricted to binary tasks or focused on a limited number of 

conditions in periapical or bitewing radiographs. The present 

study extends this line of research by addressing four clinically 

relevant categories—caries, deep caries, impacted teeth, and 

periapical lesions—on OPG-derived single-tooth images, and 

demonstrates high performance across all classes (Table 3). 

The comparison in Table 3 is based on single-tooth disease 

classification, not on whole-image or imaging-modality-level 

performance. Since all referenced studies perform 

classification at the single-tooth level, the comparison reflects 

task-level performance rather than differences in imaging 

modality. 

These results have meaningful clinical implications. 

Automated tooth-level classification can assist dentists in 

routine evaluation of panoramic radiographs by highlighting 

potential abnormalities that may otherwise be overlooked. By 

improving diagnostic efficiency, such systems may also help 

reduce the workload of dental professionals, enabling them to 

devote more time to complex or urgent clinical cases. 

Despite these strengths, several task-specific limitations 

should be acknowledged. Data availability constrained the 

diversity of the training set, and class imbalance was present. 

Nevertheless, the model was able to effectively learn under 

low-sample conditions, supported by weighted cross-entropy 

loss, data augmentation, and ensemble averaging, as reflected 

by stable performance across folds, although a limited sample 

size may reduce robustness and contribute to residual 

misclassifications. In addition, only four disease categories 

were included, whereas a comprehensive diagnosis would 

require a broader range of dental conditions. Moreover, while 

single-tooth cropping is consistent with the study’s task 

formulation and standardizes inputs, it may limit access to the 

surrounding anatomical context that could further aid 

discrimination between advanced disease patterns. 

Future work should therefore focus on incorporating multi-

center datasets to improve generalizability, expanding the 

number of disease categories, and addressing class imbalance. 

Moreover, as this study relied on pre-provided bounding boxes 

for tooth cropping, integrating the classifier with an automated 

detection or segmentation model will be necessary to build a 

complete end-to-end diagnostic system. Prospective validation 

in real-world clinical settings will also be important to confirm 

clinical applicability.  

6. CONCLUSIONS

This study developed a deep learning framework for multi-

class single-tooth disease classification using crops derived 

from panoramic radiographs. The proposed model achieved 

high performance, with the ensemble reaching an accuracy of 

0.980 and an F1-score of 0.974. These results indicate that 

convolutional neural networks can effectively support 

diagnosis at the tooth level, potentially reducing workload for 

dental professionals and allowing more focus on complex 

cases. Future research should aim to expand the diversity of 

datasets, include a wider range of dental diseases, and integrate 

classification with detection models to enable a complete end-

to-end diagnostic system. 

DATA AVAILABILITY 

The experiments were conducted using the DENTEX 

panoramic dental X-ray dataset, a publicly available 

benchmark providing tooth-level annotations for detection and 
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NOMENCLATURE 

OPG 
Orthopantomogram (Panoramic Dental 

Radiograph) 

COCO 
Common Objects in Context (Dataset Annotation 

Format) 

JSON JavaScript Object Notation 

CNN Convolutional Neural Network 

CLAHE Contrast-Limited Adaptive Histogram Equalization 

SiLU Sigmoid Linear Unit 

MBConv Mobile Inverted Bottleneck Convolution 

ECA Efficient Channel Attention 
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