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Efficient utilization of spectrum has become increasingly important in the last few 

decades. This trend is due to the expansion of communication applications and users. This 

has given scope for the shift to explore technologies such as cognitive radio and software 

defined radio (SDR) for dynamic access. By utilizing SDR architectures to provide a 

programmable environment with novel detection schemes, such as energy detection (ED). 

Energy detection using SDR makes it appealing for real-world sensing, yet its performance 

is susceptible to low signal-to-noise ratio (SNR), noise uncertainty, and fading. This 

experiment evaluates energy detection using a Realtek-based software defined radio (RTL 

SDR) in six diverse environments—moderately noisy urban, high-noise industrial, 

suburban or mixed-rural, interference-prone, deep-fading, and rural sparse signal 

contexts—by measuring detection probability (Pd) and false alarm probability (Pfa). The 

findings reveal that differences over environments, with the obtained Pd ranging from 

1.37% to 67.84%, and Pfa from 8.86% to 68.32%, and the SNR ranging from -10.72 dB 

to -32.75 dB. These results demonstrate the detection probability in six diverse 

environments and the comparative study of various SNR. The results gained a better 

balance with the high detection rate and a reasonably low false alarm rate and a suitable 

SNR value of -15.69 dB in the ‘Interference Prone’ environment. The real-time signals 

were extracted using RTL SDR 2832U hardware in six diverse environments using the 

energy detection spectrum sensing method. Further, the results have been simulated in 

Matrix Laboratory 2024b, and pd and pfa performance parameters have been plotted for 

different SNR values obtained by the experimental analysis. 
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1. INTRODUCTION

Spectrum sensing efficiently detects the available frequency 

bands, enabling dynamic spectrum access in cognitive radio 

systems. Cognitive radio has emerged as a transformative 

paradigm, allowing secondary users to opportunistically 

access unused licensed spectrum while avoiding interference 

with primary users. Central to CR’s effectiveness is spectrum 

sensing, which assesses whether frequency bands are 

occupied. Among the primary spectrum sensing methods, such 

as energy detection, matched filtering, and cyclostationary 

feature detection methods, energy detection is to be used 

efficiently in both time and frequency domains. 

Energy detection has been the topic of interest for many 

researchers during the last five decades, particularly related to 

spectrum sensing in SDR and CR environments. The concept 

of energy detection was stated in 1967 by Urkowitz [1], with 

the help of Shannon’s sampling formula, by addressing the 

detection of unknown signals. 

In this paper several time-bandwidth products are drawn 

using several receiver operating curves (ROC) and extended 

to chi-square cumulative probability for calculating detection 

probabilities and false alarms. Building on these early 

findings, Digham et al. [2] in 2003 investigated the problem of 

energy detection over different fading channels. Here it 

performed different diversity schemes on detection 

probability, false alarm, and SNR and could not find much 

improvement in these parameters. Shortly after, Hoven et al. 

[3] showed that the trade-off between power and space for

secondary users and interference protection for primary users

leads to the detection of signals with the combination of

quantization and noise uncertainty. In 2005, Haykin [4]

addressed the cognitive tasks such as radio scene analysis,

channel state estimation and predictive modelling, transmit

power control, and dynamic spectrum management, which

underscored the operational simplicity of energy detection.

Cabric et al. [5] analyzed the cyclostationary feature detection

method and found out it has more advantages over all other

sensing methods because of its ability to differentiate

modulated signals, interference, and noise under low SNR

values. Ghasemi and Sousa [6], in 2005, studied the challenges

faced to find out the unlicensed spectrum and proposed a

collaborative spectrum sensing method to improve the sensing

performance.

These findings guided this research for considering the 

probability of detection, the probability of false alarm, and 

SNR parameters to take into consideration for this research 

work. 
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Further, Akyildiz et al. [7] did the survey on next-generation 

wireless networks, cognitive radio networks, and dynamic 

spectrum access. Tandra and Sahai [8] in 2008 contributed a 

simple mathematical model on the concept of SNR walls, 

revealing fundamental performance limits for energy 

detection. Responding to these concerns, A detailed study has 

been done on the cooperative spectrum sensing, and its various 

sensing methods were done in 2009 by Yucek and Arslan [9]. 

Baldini et al. [10] did a survey on security aspects in software-

defined radio and cognitive radio. The survey summarizes the 

main security threats and challenges and the related protection 

techniques in SDR and CR. Sasipriya et al. [11] analyzed 

spectrum sensing detection based on the correlation sum 

method by utilizing the multiuser multiple input multiple 

output technique over fading and Additive White Gaussian 

Noise (AWGN) channel. In 2020, Bhattacharjee et al. [12] 

proposed an energy-efficient multicasting in hybrid cognitive 

small cell networks and compared the proposed method with 

the conventional approach and proved the new scheme 

contributes much more energy efficiency than the 

conventional one. Jain and Taneja [13] explained about 

various hardware and software packages in SDR. Salahdine et 

al. [14] provided certain techniques that handle the uncertainty 

of cognitive radio. 

These findings lead to the identification of the research gap 

for considering an efficient method in CR spectrum sensing to 

be merged with SDR to analyse real-time signals to take into 

consideration for this research work. 

Recent studies reported from Federal Communications 

Commission (FCC) measurements that some channels are 

heavily used while others are sparsely used, as represented in 

Figure 1. 

 

 

 
 

Figure 1. Dynamic spectrum access [15] 

 

Recent years have witnessed a shift toward leveraging 

machine learning and hybrid techniques for improved 

performance. In 2022, research [16] introduced fuzzy-based, 

energy-efficient cognitive radio schemes for IoT and IRS-

aided spectrum sensing strategies to enhance SNR through 

weighted energy detection. Lin et al. [17] highlighted a new 

intelligent reflecting surface (IRS)-aided spectrum sensing 

scheme which improves the performance gain. Usman et al. 

[18] developed a two stage spectrum sensing using energy 

detection which outperforms single stage spectrum sensing 

schemes. 

By 2023, deep learning-driven multistage thresholding [19] 

achieved remarkably low false alarms and missed detections 

by dynamically estimating detection thresholds. The most 

recent studies states by Sabrina et al. [20] proposed a CNN-

LSTM model which provides a high detection rate under low 

SNR. In 2024, study [21] explored the integration of K-

Nearest Neighbours (KNN) and convolutional neural 

networks (CNNs) for spectrum sensing. KNN achieves 

classification accuracy at low SNR, and CNN-based 

approaches demonstrate substantial improvements in AWGN 

environments. 

Another CNN based approach proposed by Abdelbaset et 

al. [22] outperforms the accuracy to identify the unused 

frequency bands precisely. The studies by Venkatapathi et al. 

[23] discusses cooperative spectrum sensing approach to 

enhance the long-term overall performance of the Secondary 

User. Most recent study done by Mokhtar [24] employs 

machine learning with feature extraction and random forest 

classifier to enhance the individual secondary user energy 

detection accuracy in presence of a high level noise power 

density. 

SDR-based implementations of hybrid CNN-LSTM models 

showed real-time detection reliability across FM, GSM, and 

OFDM applications. It shows hybrid energy-and-entropy two-

stage approach demonstrated clear advantages over single-

stage methods. Rao and Sahaai [25] developed an adaptive and 

residual hybrid network (A-RHN) to enable more efficient use 

of the available spectrum by avoiding transmitting on 

frequencies that are already in use in the year 2025. 

From the literature gaps identified, there are indications of 

possibility in exploring varied ambient conditions on energy 

detection-based spectrum sensing in this work. In energy 

detection, most of the existing works rely on analytically 

generated or simulated signals under idealized noise and 

channel conditions. The novelty in this work is the multi-

environment performance analysis of energy detection 

focused on real-world signal acquisition using Realtek-based 

software defined radio (RTL SDR). 

In this work, an evaluation of the real-world performance of 

the energy detector across varied environmental conditions has 

been proposed. This analysis fills that gap by capturing real-

time signals with the RTL-SDR in six representative 

environments, such as moderately noisy urban, high-noise 

industrial, suburban or mixed-rural, interference-prone, deep-

fading, and rural sparse signal environments, and assessing 

energy detection’s performance in terms of probability of 

density and probability of false alarm. 

This paper is organized as follows: Section 2 speaks for the 

design methodology of the work, followed by the experimental 

methodology. Section 3 represents the experimental setup and 

the simulation results, succeeded by comparison plots of 

obtained Pd, Pfa, and SNR values for six diverse 

environments. This section also shows the comparison table 

for the obtained parameters, limitations, and future scope. 

 

 

2. ENERGY DETECTION METHOD 

 

A low-cost RTL-SDR connected to a broadband antenna 

was used to capture in-phase/quadrature (IQ) samples across 

multiple frequency bands in six diverse environments: 

moderately noisy urban, high-noise industrial, 

suburban/mixed-rural, interference-prone, deep-fading, and 

rural sparse-signal contexts. These environments were 

considered to represent a comprehensive range of actual 

conditions affecting signal quality, interference, and channel 

characteristics. Using an energy detection strategy, the 

captured signals were processed by determining the squared 

magnitude of received samples across fixed observation 

periods. Detector thresholds were derived from estimated 
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noise variance. A detection decision was made if observed 

energy exceeded the threshold. Performance metrics—

probability of detection (Pd) and probability of false alarm 

(Pfa)—were estimated through repeated measurements and 

varied by environmental conditions and measured SNR.

 

 
 

Figure 2. Design methodology for energy detector using RTL SDR 2832U 

 

The proposed design methodology, represented in Figure 2, 

an RTL SDR 2832U was used in the receiver front-end to 

receive the real-time signal for further processes. The 

specifications of this hardware are stated as it is an adaptable 

software defined radio (SDR). It uses a Realtek RTL2832U 

chip, which acts as a wideband radio receiver. The technical 

specifications for accurate signal processing using this device 

are mentioned with its parameters, such as a tuner frequency 

of 100 MHz and a tuner gain of 25 dB. Its sampling rate is 

between 1 MHz and 2.4 MHz, and it is expected to get high-

resolution signal capture. For substantial data handling 

capacity, the data frame size provides 4096. Maintaining a 

tuner PPM correction of '0' and utilizing a 'single' data type. 

 

2.1 Methodology/ conditions 

 

The methodology employed in this work is centred on the 

use of an energy-detection-based spectrum-sensing 

framework implemented with an RTL-SDR receiver. Among 

the spectrum sensing techniques, such as energy detection, 

cyclostationary feature detection, and matched filter detection, 

energy detection was preferred to evaluate real-time signals in 

this work because it can be used in various environments, 

making it suitable for practical SDR experiments. In this 

approach, the decision on whether a frequency band is 

occupied is based on the total energy of the received signal 

over a fixed observation interval, which is compared against a 

predetermined detection threshold. The energy detection 

model is explained in Figure 3. 

 

 
 

Figure 3. Energy detection model [14] 

The steps involved in energy detection are as follows: 

Conventionally, the received signal is modelled as a binary 

hypothesis test given by y(t) in Eq. (1): 

 

𝑦(𝑡) = {

𝑛(𝑡),             𝐻0 (noise only)

𝑆(𝑡) + 𝑛(𝑡), 𝐻1 (𝑆𝑖𝑔𝑛𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒) (1) 

 

where, n(t) denotes Additive White Gaussian Noise (AWGN) 

with zero mean and variance 𝜎𝑛
2 , and S(t) represents the 

transmitted signal.  

Under hypothesis H0, the band is unoccupied since it 

consists of only noise signal, while under hypothesis H1, the 

band is occupied by a primary user transmission since it 

consists of the combination of signal and noise signals. 

Theoretical framework of energy detection: 

The test statistic of the energy detector is defined as the 

accumulated energy, E of the received samples from 1 to N 

given by Eq. (2):  

 

𝐸 = ∑ |𝑦(𝑖)

𝑁

𝑖=1

|2 (2) 

 

where, N represents the number of samples in one observation 

window. This test statistic is then compared with a threshold λ 

to determine the channel occupancy according to the rule 

given in Eq. (3). 

 

𝐸 = {
𝐻0, 𝐸 < 𝜆
𝐻1, 𝐸 > 𝜆

 (3) 

 

Eq. (3) indicates: 

If the measured energy exceeds the threshold - H1 - signal 

present. 

If the measured energy is less than the threshold - H0 - only 

noise is present. 

The Received Signal Strength (RSS) in decibels was also 

calculated as RSSdB to normalize the energy values and 

facilitate interpretation which is represented Eq. (4): 

 

RSSdB =10log10(E)  (4) 
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To estimate the signal-to-noise ratio (SNR) represented in 

Eq. (5), the captured signal was divided into two regions: the 

initial portion of the dataset, assumed to contain noise only, 

and the final portion, assumed to contain the signal. The 

average noise power and signal power were computed, and the 

SNR was obtained as: 

 

SNRdB =10log10(Psignal/Pnoise)  (5) 

 

The probability of detection (Pd) is the probability of 

correctly declaring a signal when it is present. The probability 

of false alarm was estimated experimentally by applying a 

range of thresholds to the noise-only portion of the signal and 

calculating the fraction of windows exceeding the threshold.  

In defiance of its limitations, energy detection is favored for 

its fast and simple implementation. It is highly suitable for 

real-time applications in cognitive radio and dynamic 

spectrum access systems in view of SNR. The practical 

implementations and simulation results have been explained 

in Section 3 as follows. 

 

 

3. EXPERIMENTAL SETUP AND RESULTS 

 

Signals were captured over a duration of a few seconds to 

several minutes in each environment. The acquired complex 

I/Q samples were stored for offline processing in ‘.mat’ 

format. The samples were segmented into non-overlapping 

windows of 1024 samples, and the energy for each window 

was computed using the energy detection model expression. 

In this section, the evaluation of energy detector analysis for 

the performance of a spectrum sensing algorithm by 

examining its probability of detection (Pd) and probability of 

false alarm (Pfa) across six different SNR values ranging from 

–32.75 dB to –10.72 dB. Figure 4 shows the experimental 

setup: 

Probability of detection, probability of false alarm and 

Signal to Noise Ratio are crucial in cognitive radio 

applications to identify spectrum availability as accurate as 

necessary for reliable communication without interfering with 

licensed users. 

 

 
(a) Signal acquisition using RTL SDR 2832U

 
(b) Elements of RTL SDR 2832U

 
(c) Signal processing using RTL SDR 2832U 

 

Figure 4. Experimental setup of energy detection scheme 

 

In Figure 5, the yellow-coloured spectrogram indicates 

regions of extremely high power where the signal is strongest, 

such as a carrier or dominant tone. Here, an SNR of -10.72 dB 

and a detection rate of 40.71% demonstrate a relatively 

balanced performance. The Pd of 61.90% and Pfa of 33.64% 

suggest that the signal is detectable despite moderate noise, 

making this environment best described as a moderately noisy 

urban environment. It represents typical city conditions where 

multiple overlapping signals and moderate noise are present. 

Figure 6 exhibits a much lower detection rate of 17.23% and 

an indigent Pd of only 1.37%, even though its total energy 

(0.0788 J) and average power are not the lowest among the 

sets. Here the spectrogram indicates still strong power levels. 

The high PFA of 22.52% combined with an SNR of -24.55 dB 

indicates a high-noise industrial environment, where strong 

electromagnetic interference (EMI) is corrupting the signal. 

Such environments are common in manufacturing zones, 

power plants, or near heavy electrical equipment. 

In contrast, Figure 7 shows a detection rate of 33.61% and 

a high Pd of 67.84% at an SNR of -15.69 dB. The moderate 

PFA (22.21%) and mid-level energy consumption in this 

suburban or mixed-rural environment suggest a good balance 

between sensitivity and reliability, but it is occasionally 

impacted by environmental noise. 

Figure 8 represents the highest detection rate of 68.05%. 

The spectrogram indicates strong power levels. However, it 

also shows an excessively high false alarm rate of 68.32%, 

which points to an over-aggressive detection threshold. These 

findings exhibit a relatively low SNR of -19.64 dB and the 

lowest among all energies in other sets (0.0107 J). This depicts 

an interference-prone environment, which is certainly found in 

military applications and also in misconfigured sensing 

systems. 

The lowest among all SNR values is represented in Figure 

9 as -32.75 dB. This spectrogram typically represents medium 

power, where the signal is present but not as dominant. Here 

the detection rate is just 9.11%, and the obtained Pd (9.35%) 

and Pfa (8.86%) are minimal, which shows that the signal is 

deeply buried in noise. This deep fading environment is 

typically found in shielded locations such as tunnels, 

basements, etc. 

There is a unique scenario with low energy (0.0059 J) 

represented in Figure 10, which gives the lowest average 

power of 9.85e-04 W. With an SNR of -14.03 dB and a 

detection rate of 28.67%, it has a moderately high PFA of 

47.00% despite a poor Pd of 10.34%. These values imply the 

presence of weak or infrequent transmissions in a quiet but 

sensitive setting. This depicts a low-power device 

environment, a rural sparse signal scenario, where devices 

transmit infrequently or from long distances. 
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Figure 5. Moderately noisy urban environment energy detector 

 

 
 

Figure 6. High-noise industrial environment energy detector 
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Figure 7. Suburban or mixed-rural environment energy detector 

 

 
 

Figure 8. Interference-prone energy detector 
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The simulation results in Figure 5 to Figure 10 have been 

summarized in Table 1. This experimental analysis explains 

the sensitivity of energy detection to various channel and 

environmental conditions.  

Figure 11 depicts low detection probability in urban noisy 

and industrial environments and gives better ranges in rural 

and interference-prone areas. 

Probability of false alarm is equally significant to 

probability of detection for steady sensing represented in 

Figure 12, which determines the rate of occurrence of the 

detector misidentifying noise as a valid signal. A high false 

alarm rate leads to inefficient spectrum utilization because 

secondary users may unnecessarily abandon channels that are 

truly free. 

The rural sparse signal case had the best performance 

balance among the six environments, with a false alarm rate of 

about 34% and a detection probability of about 62%. Although 

not ideal, these values imply that acceptable performance 

could be attained with threshold optimization and the potential 

application of cooperative sensing, which involves several 

secondary users sharing sensing results.  Despite a false alarm 

rate of more than 22%, the detection probability decreased to 

almost zero (1.37%) in the worst-case scenario, which was the 

high-noise industrial environment. This suggests that energy 

detection by itself cannot provide dependable spectrum 

sensing in extremely noisy or interference-rich environments. 

Figure 13 highlights that energy detection endeavours in 

very noisy or faded environments (low Pd, sometimes high 

Pfa). In high-noise industrial settings (dB), Pd drops to 1.37%, 

and Pfa rises to 22.52%, while rural sparse signals (dB) 

achieve Pd of 61.90% and Pfa of 33.64%. Detection is more 

successful in rural/spread-out signals and interference-prone 

regions, but often at the cost of increased false alarms. High 

SNR (less negative) improves detection, but trade-offs remain 

between Pd and Pfa depending on environmental conditions. 

 

Table 1. Comparison of performance metrics in varied ambient conditions 

 
Environment SNR (dB) Pd (%) Pfa (%) 

Moderately Noisy Urban -32.75 9.35 8.86 

High Noise Industrial -24.55 1.37 22.52 

Suburban/Mixed Rural -19.64 67.78 68.32 

Interference Prone -15.69 67.84 22.21 

Deep Fading -14.03 10.34 47.00 

Rural Sparse Signals -10.72 61.90 33.64 
 

 
 

Figure 9. Deep fading environment energy detector 
 

 
 

Figure 10. Rural sparse signals energy detector 
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Figure 11. Probability of detection across environments 

 

 
 

Figure 12. Probability of false alarm across environments 

 

 
 

Figure 13. Pfa and Pd across environments in different SNR 
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4. CONCLUSION  

 

This work was focused on studying the impact of different 

ambient conditions from the signal acquisition to the energy 

detection stage of SDR. Energy detection was chosen due to 

its simplicity and cost-effectiveness for various research 

applications. It also provides the joint analysis of SNR, Pd, and 

Pfa. This study provides the gap between theoretical analysis 

and practical implementation. There are key findings observed 

in this experimental analysis using performance metrics such 

as SNR, Pfa, and Pd. It has been observed that a reasonable 

SNR value was obtained, which suggests a better environment 

as a rural sparse signal environment, i.e., -10.72 dB, and an 

interference-prone area, i.e., -15.69 dB. 

However, there are limitations in this work; even though 

real-time signal acquisition from different ambient conditions 

is taken, the occurrence of false alarms may not be avoidable. 

The accuracy obtained in this experiment is limited by scope 

to detect the signal efficiently in these varied ambient 

conditions. 

This experimental analysis shall be further extended by 

surpassing these limitations for achieving better accuracy with 

methods such as integration of multiple classifiers. Further 

investigation will be directed towards mitigating the SNR 

ranges and reducing false alarm rates. Hybrid spectrum 

sensing methods can be explored with the combination of 

energy detection and cyclostationary feature detection or 

energy detection and matched filtering to enhance the 

performance in deep fading environments. Additionally, a 

paradigm shift in choosing different SDR platforms such as 

ADALM-Pluto, USRP B200/B210, Lime SDRmini, and Hack 

RF gives a performance comparison of hardware architectures 

for real-world cognitive radio deployments. 
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NOMENCLATURE 

 

E Accumulated energy 

Pd Probability of detection 

Pfa Probability of false alarm 

SNR Signal to noise ratio 

RSS Received signal strength 

P Power 
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