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In this study, an experimental model for the camera calibration process in a machine vision
system was developed. A calibration pattern was designed to acquire the world coordinates
of the calibration points. The corresponding image coordinates were obtained using double
cameras positioned on opposite sides of the calibration pattern. After getting the world
coordinates and the corresponding image coordinates, the six-point method was applied to
determine the total calibration matrix. Subsequently, stereo image techniques were used
to establish the relationship between the image coordinates and the world coordinates. The
accuracy of the proposed model was evaluated through the reprojection error between the
original image coordinates and the reprojected coordinates obtained from the estimated
total calibration matrix. Experimental results indicated that the average reprojection errors
of the six calibration points were approximately 1.226 pixels for the left camera and 1.057
pixels for the right camera. In addition, to further verify the system performance, the
calibration points were reconstructed using the total calibration matrix, and the proposed
method was also applied to measure the dimensions of a real object.

1. INTRODUCTION

Nowadays, with the rapid advancement of science and
technology, machine vision has been widely applied across
various domains of daily life and industrial production. It is
utilized in non-contact measurement of industrial components
[1-3], product quality inspection on production lines [4, 5],
medical image analysis [6, 7], and robotics applications [8-10].
In machine vision systems, camera calibration plays a vital
role, as it directly affects the accuracy, reliability, and overall
performance of the system.

Camera calibration is the process of establishing the
relationship between image coordinates in the two-
dimensional (2-D) space and world coordinates in both two-
dimensional (2-D) and three-dimensional (3-D) spaces. Up to
now, numerous studies have been conducted on camera
calibration to improve the accuracy and efficiency of machine
vision systems. For example, in a study by Lee et al. [11], the
authors proposed a method for single-image camera
calibration based on an end-to-end neural network. This
method directly estimates parameters of the camera from an
image and a set of line segments. They also introduced an
auxiliary task of line classification to train the network to
effectively extract global geometric information from the
lines. Experimental results demonstrated that the proposed
method outperformed previous state-of-the-art approaches. In
a study by Hao et al. [12], the authors optimized the camera
calibration process by identifying the optimal distance and
angle to capture checker-board images for improving
calibration efficiency. The authors explored the effects of
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distance and orientation factors as well as the feasibility of
independently manipulating these factors. Three calibration
methods including calibration based on distance factors (D, H,
V), orientation factors (R, P, Y), and a combination of the two
sets of influential factors were proposed using three different
stereo cameras. Experimental results showed that D was the
most influential factor, while H and V had nearly equal
influence in method A; P and R were the two most influential
orientation factors in Method B. Method C required
approximately 10% more calibration images than methods A
and B combined. Therefore, method C was recommended. The
proposed methods can be applied to improve the calibration
accuracy of stereo cameras for object detection and ranging
applications. In another study, Zhao et al. [13] proposed a
calibration method that combines bundle adjustment with
diagonal constraints of the calibration target. In this study,
first, the Canny edge detection algorithm was performed to
obtain the sub-pixel centroid of each ellipse. Then, Zhang’s
calibration method was applied to obtain the initial values of
the calibration parameters. Finally, the diagonal constraints
were used to optimize the camera’s extrinsic parameters.
Experimental results showed that the proposed method can
significantly improve calibration accuracy. In the study by Ma
et al. [14], a minimal-parameter depth-dependent distortion
model (MDM) was proposed to improve the accuracy of stereo
vision systems by accounting for radial and decentering lens
distortions. The authors also presented a calibration method
for the MDM using a commonly employed planar calibration
pattern. Experimental results demonstrated that the MDM
significantly improved calibration accuracy compared with
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traditional distortion models. In another study, Schreuder and
Theart [15] also proposed an optimized sterco calibration
framework designed for conventional RGB cameras and
standard calibration targets. They analyzed the influence of
key calibration parameters, including a 45° camera pair angle
and an A2 sized calibration board. They also presented a better
evaluation method that produced a more accurate metric by
implementing 3-D point projection and 2-D back-projection.
Experimental results demonstrated a substantial reduction in
3-D projection and 2-D back-projection errors, significantly
enhancing the accuracy of 3-D pose estimation dataset
generation. Adil et al. [16] developed a Python-based
algorithm to estimate the parameters of each camera, rectify
the images, create the disparity maps and finally use these
maps for distance measurements of a stereo vision system.
Experiments demonstrated the effectiveness of the proposed
method and showed that the calculated distance to the obstacle
was relatively accurate. Zhao et al. [17] proposed a multi-
camera-based method for six-degree-of-freedom (6-DOF)
measurement. Their method employs at least two ordinary
cameras calibrated based on Zhang’s calibration method [18].
The 6-DOF calculation model was analyzed by the matrix
analysis method. The experiment results indicated that the
average rotational DOF measurement error was less than 1.1
deg, and the average error of the movement DOF measurement
was less than 0.007 m. Real-Moreno et al. [19] proposed a
camera calibration method to improve depth estimation
accuracy in stereo vision systems. In their study, lens
distortion problem was addressed by adjusting the image
coordinates of surface points before the triangulation process.
The corrected image coordinates are calculated using
calibration coefficients. In addition, the authors corrected the
relative orientation of the cameras and computed a
compensation angle. Experiment results demonstrated that the
proposed method significantly improved depth estimation
accuracy in stereo vision systems. Khrouch et al. [20]
presented an elitist genetic algorithm for camera calibration to
determine the intrinsic and extrinsic parameters of cameras
and compared with standard genetic algorithm. This study
showed that the proposed method was robust and gave good
results. In the study by Han et al. [21], a binocular stereo-
vision mapping model was used as the learning model to
explore the ability of artificial neural networks (ANNs) to
perform image object mapping. The researchers constructed a
sample dataset using the image coordinates and world
coordinates of checkerboard corners, built the ANN, and
verified the learning performance of the network using
training and testing samples. Experimental results showed that
the ANN model could learn the image object mapping
relationship more effectively, minimize the influence of lens
distortion, and achieve more accurate nonlinear mapping
along the image contours. The proposed method demonstrated
the ability to learn the image object mapping relationship from
a limited number of sample points without considering too
many uncertain intermediate factors.

It can be observed that numerous studies have focused on
camera calibration in three-dimensional (3-D) space for
machine vision systems applied in various scenarios, yielding
significant benefits. Therefore, it is necessary to conduct
further research and develop experimental models to
determine the total calibration matrix using the six-point
method and the stereo image techniques for 3-D camera
calibration, as well as to evaluate the reprojection accuracy of
machine vision systems.
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2. RESEARCH METHODOLOGY
2.1 Camera model

In the camera model illustrated in Figure 1, the world
coordinate system (OXYZ) is used to define the position of the
camera and the real point w, in 3-D space. The camera
coordinate system is denoted as OXYZ, and the projection of
wj onto the image plane is c;. It is assumed that the camera is
mounted on a rotating stand, which can rotate by an angle 8
around the OZ axis and by an angle a around the OX axis. The
translation vector between the center of the rotating stand and
the origin of the world coordinate system OXYZ is represented
by G, while the translation vector between the image plane
center and the rotation center is denoted as r = (ry, 1z, r3).

Y

Xo
Yo

Figure 1. Camera model

To translate the origin of the world coordinate system to the
rotation center of the camera, the translation matrix G is
defined as follows:

10 0 —X,
00 1 -2,
0 0 0 1

To align the ox axis with the OX axis and the oz axis with
the OZ axis, the rotation matrices Rn and Ry are applied. The
general rotation matrix R is then expressed as follows:

R =R, Ry
Then,
cos @ sin@ 0 0
_|—sin OBcosa cosBcosa sina 0
sinfsina —cosf@sina cosa 0
0 0 0 1

To shift the center of the image plane so that it coincides
with the camera’s rotation center, a transformation matrix C is
applied, which has the following form:

10 0 -n
1o 1 0 -n
C_001—r3
000 1



Then, the equation that describes the relationship between
the camera coordinate system and the world coordinate system
is expressed as follows:

Ch :PCRGWh (1)

2.2 Stereo image

In this method, a point in 3-D space is projected onto two
separate image planes corresponding to two cameras. The
distance between the centers of the two lenses is referred to as
the baseline. These two image planes generate two
corresponding image coordinates, denoted as p'(x, ) and
p@(x, y). It is assumed that both cameras are fixed and
precisely aligned, as illustrated in Figure 2. This method
enables the determination of the depth (Z coordinate) of a point
in real space from its 2-D image coordinates.

P(X. Y, 2)

Right Image plane

Left Image plane

Left Camera Right Camera

Figure 2. Stereo image

2.3 Determining the total calibration matrix

In the camera model, the parameters Xy, Yy, Zy, A, @ and «
can be measured directly; however, it is often difficult to
accurately determine one or more of these parameters using
the camera itself as a measuring device. Therefore, a set of
pixels corresponding to the known world coordinates is
required. The process of determining the camera parameters
based on these known points is called camera calibration.

From the camera model, the relationship between the real
point (X, Y, Z) in the world coordinate system and the
corresponding image point (x, y) on the image plane can be
expressed as:

cn = PCRGwy, (2)
Denote,
A = PCRG
Then,
cp = Awy 3)

Then, Eq. (3) is expressed in the following homogeneous

form:
SX a1 Q1 QA3 Q4] [X
SYy| _ |421 G2z G23 Qa||Y )
Sz A3y Qzz Q33 Q34| |Z
N Qg1 Qa2 Q43 Qaa]ll

Because in the ¢, matrix, the value sz in the third row is
usually equal to zero, the third row of the total calibration
matrix A can be omitted during the calculation process without
affecting the accuracy of the transformation. By substituting
sx = x.s and sy = y.s into the above equation, we obtain:

{Xall + Ya12 + Za13 + 1a14 + Oa21 + 0a22 + Oa23 + 0a24 - xXa4_1 - xYa42 - xZa43 - xa14 = 0

0a11 + 0a12 + 0a13 + 0a14 + Xa21 + Yazz + Za23 + 1a24_ - yXa41 - yYa4_2 - yZa43

To determine the parameters in the matrix A4, the world
coordinates (X;, Y;, Z;) of six points in space and the
corresponding image coordinates (x;, y;) are used to substitute

The image coordinates in Eq. (6) are obtained separately
from the left and right cameras. By substituting these data into
the equations, the corresponding total calibration matrices A:
and A: are determined for the left and right cameras,
respectively.

X, Y, Z, 1 0 0 0 0 —xX,
0 0 0 0 X, v, Z 1 —yX,
X, Y, Z, 1. 0 0 0 0 —x,X,
0 0 0 0 X, Y, Z, 1 —yX,
Xs Y5 Zz 1 0 0 0 0 —x5Xs
0 0 0 0 X; Y5 Zs 1 —ysXs
X, Y, Z, 1 0 0 0 0 —xX,
0 0 0 0 X, Y Z, 1 —yX,
Xs Yo Zs 1 0 0 0 0 —xgXs
0 0 0 0 Xy Y5 Zs 1 —ysXs
Xe Yo Zg 1 0 0 0 0 —xX,
[0 0 0 0 X, Y, Zg 1 —yuX,
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—Ya;4, =0 )

into the Eq. (5). This process establishes a set of linear
equations that can be solved to find the unknown coefficients
of the matrix A. We have:

Y1 —x%Zy —Xq|paq4, 1017
- -z —yil|asnz 0
—xY, —xZ, —Xx3||ass 0
=yoYo —¥2Z; —Yi||Q1a 0
—x3Y3 —X3Z3 —Xx3(|Q21 0
—y3¥s —Yy3Z; —Y3||Q22 _ 0 6)
XYy —X4Z4 —X4||Q23 0
—Va¥a —VaZs —Ya||%24 0
_x5Y5 _xSZS _xs a4-1 O
—ysYs —Y¥sZs —ys||%42 0
—xeYs —X¢Zo —xgl||%a3 0
—Ve¥s —Vele —Yel a4 -0

2.4 Relationship between image coordinate and the world
coordinate

From Eq. (6), the total calibration matrix 4 has been
determined, meaning that the transformation coefficients a;
are known. Then, Eq. (5) can be rewritten in the form of Eq.



(7). In the Eq. (7), it is assumed that image coordinates (x, )

{(an = g X)X + (a1, — ax)Y + (13 — a43x)Z + (A4 — Agex) =0
(az1 = ag )X + (a2 — a42Y)Y + (Az3 — A43Y)Z + (s — A4sy) =0

The Eq. (7) contains three unknowns (X, Y, Z). With only
two equations and three unknowns, it is not yet possible to
obtain a unique solution. Therefore, by applying the stereo

And,

{(a(n

(a(l) _

{(a@)

(a(Z)

agll)x)X + (a(l)
agYy)X + (ag; -

- agzl)x)X + (a(z) —
ay)X + (af) -

In the two Egs. (8) and (9), the superscripts (') and (?)

are known.

(N

image techniques using double cameras, Eq. (7) can be
rewritten into two separate Eqgs. (8) and (9), as follows:

aglz)x)Y + (a(l) ai?x)Z + (a(l) ag})x) =0
ag Y)Y + (a5 — ay)Z + (a5 — aii)y) = 0
agzz)x)Y + (a(z) - ai?x)Z + (a(z) - aii)x) =0
aZ V)Y + (a5 = ay)Z + (a3 — aifly) = 0

®)

(€))

and (9) can be rewritten in the form of matrix equations as

correspond to the total calibration matrices A: and A, follows:
respectively. For convenience in solving the problem, Egs. (8)
@® — x0a®y (@D — x0Dy (@D _ @)Dy ~(@® — xa)
1 1 1 1 1 1 1
@7 —yPa) (@) -yPap) (@ -yPa)|[f]_|-@d -yOad) o
(a§2) x(z)a(Z)) (a§2) x(z)a(Z)) (a§2) x(z)a(Z)) —(aiz) x(z)a(Z))
2 2 2 2 2
(@ ~y@a)) (@F ~yPad) (@ -yPa) ~(ag; = y®agZ)
By solving Eq. (10), the world coordinates (X, Y, Z) can be 3.2 Calibration pattern
determined.
To obtain the world coordinates for the calibration process,
a 3-D calibration pattern was designed, as illustrated in Figure
3. EXPERIMENTAL MODEL 4. The coordinate values of the calibration points are listed in

Table 2.

3.1 Experimental system
Table 2. The world coordinates of calibration points (mm)

In this study, double Logitech C525 cameras were

employed for image acquisition. The specifications of these Data X Y Z
cameras are presented in Table 1. The experimental system is 1 100 0 10
shown in Figure 3. 2 0 0 10
3 0 100 10
: . 4 100 O 110
Table 1. Specifications of cameras 5 0 o 110
6 0 100 110

Specifications
1 HD video calling (1280 x 720 pixels)
2 HD video recording: Up to 1280 x 720 pixels
3 Logitech Fluid Crystal™ technology
4 Autofocus
5
6
7

Photo: Up to 8 Megapixels
High-speed USB 2.0 port
Lens and sensor type: Plastic

Figure 4. Calibration pattern

Left camera 4. RESULTS AND DISCUSSION

Right camera

=

Figure 3. Experimental system

4.1 Determining corresponding image coordinates

To obtain the corresponding image coordinates, the double

346



cameras sequentially captured images of the calibration
pattern, as shown in Figures 5 and 6. As illustrated, the
calibration points on the two image planes of the cameras
correspond to the points on the calibration pattern shown in
Figure 4. The image coordinates obtained from both cameras
are presented in Table 3.

Figure 5. Center recognition results of the left camera

Figure 6. Center recognition results of the right camera

Table 3. Image coordinates corresponding from two cameras

Image Coordinates of Image Coordinates of the

Data  the Left Camera (Pixel) Right Camera (Pixel)
X y X y
1 173 352 156 327
2 343 283 368 286
3 549 351 523 377
4 173 81 155 71
5 355 49 381 53
6 578 92 552 107
4.2 Total calibration matrix
After obtaining the world coordinates and the

corresponding image coordinates from the left and right
cameras, the coefficients of the total calibration matrix are
determined using Eq. (10). Accordingly, the total calibration
matrices 4; and A: are obtained as follows. The matrix A4,
obtained from the left camera, is expressed as follows:

—1.9387 14613 —0.1085 342.0275
A; =10.1818 03022 —2.3564 304.7735
—0.0014 -0.0011 -0.0006 1.0

The matrix 42, obtained from the right camera, is expressed
as follows:

—2.2549 0.7636 —0.1097 366.5374
A, =1 0.0900 0.3423 —2.3487 307.6497
—0.0010 -0.0015 -0.0006 1.0

4.3 Analyzing reprojection error

4.3.1 Calculation of the reprojection image coordinates
The reprojection image coordinates can be calculated as
follows:

Xc X
)%] =Aly (11
1 A

where, A is the total calibration matrix determined in the
previous section.

4.3.2 Reprojection error of each point

Reprojection error is a metric used in camera calibration
process, 3-D reconstruction to measure how accurately a
camera model represents the observed image data. The
reprojection error for each point is calculated as follows:

e = O — x)? + O — Yei)? (12)

In which, e; is the reprojection error of each point; x;, y; are
the original image coordinates; X.;, y.; are the reprojected
image coordinates along the ox and oy axes, respectively; i is
the number of the calibration points. Accordingly, the
reprojection errors are presented in Tables 4 and 5 for the left

and right cameras, respectively.

Table 4. Reprojection error of the left camera (Pixel)

Original Reprojection Image  Reprojection
Image .
Data . Coordinates Error
Coordinates
X ¥y Xe JYe e
1 173 352 172.216  350.573 1.628
2 343 283 343.001 282.907 0.093
3 549 351 550.987  352.296 2372
4 173 81 171.565 80.289 1.602
5 355 49 353.418 48.789 1.596
6 578 92 577.939 91.977 0.064

Table 5. Reprojection error of the right camera (Pixel)

Original

Reprojection Image Reprojection
Data Imz!ge C(;Iordinates # Eril'or
Coordinates
X Yy Xc Ye e
1 156 327 156.544 327.922 1.071
2 368 286 367.646 285.878 0.374
3 523 377 523.460 377.242 0.520
4 155 71 154.653 69.895 0.363
5 381 53 379.518 52.776 1.498
6 552 107 549.528 106.534 2.515
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The average reprojection error of the calibration points is
calculated using the following Eq. (13):

(13)

-

i=

In which, 4 represents the average reprojection error of the
points, and N is the total number of calibration points.
Accordingly, the average errors of the left (4:) and right (42)
cameras are calculated as follows:



_ 1628+ 0.093 + 2.372 + 1.602 + 1.596 + 0.064

1=

6
= 1.226(Pixels)

A 1.071 4+ 0.374 + 0.520 + 0.363 + 1.498 + 2.515
2 =
6
= 1.057(Pixels)

The obtained errors are within an acceptable range for a
vision system and can be effectively applied to non-contact
measurement of parts requiring medium accuracy.

4.4 Reconstruction determination

After determining the two total calibration matrices 4 and
Az, the world coordinates of any point in space corresponding
to the six calibration points can be obtained using Eq. (10). To
verify the accuracy of the system, the world coordinate values
of the six calibration points were recalculated. The results are
presented in Table 6.

Table 6 shows that the maximum error along the OX axis

occurs at point 6 with a value of -2.283 mm, while the
maximum error along the OY axis occurs at point 3 with -1.440
mm, and the maximum error along the OZ axis occurs at point
1 with 0.609 mm. The minimum error along the OX axis
occurs at point 4 with 0.360 mm, along the OY axis at point 2
with -0.328 mm, and along the OZ axis at point 5 with -0.035
mm. The results also indicate that the error along the OZ axis
is the most stable and smallest overall.

4.5 Application for measuring sizes of a part

In this section, to verify the accuracy of the proposed
method, a real object was used as a measuring sample, as
shown in Figure 7. The object was placed within the calibrated
3-D workspace, as illustrated in Figure 8. The image
coordinates of the measuring points 4 and B were extracted
from the image planes of the left and right cameras. Using
these image coordinates, the corresponding the world
coordinates were determined according to Eq. (7). The results
of the reconstruction are presented in Table 7.

Table 6. Results of reconstruction determination

Original World Coordinate (mm) Reconstruction of the Calibration Points (mm) Deviation
Data (mm)
X Y 4 X Y Y4 AX AY AZ
1 100 0 10 100.908 1.327 10.609 0.908 1.327 0.609
2 0 0 10 -0.429 -0.328 9.753 -0.429  -0.328  -0.247
3 0 100 10 -1.154 98.560 9.470 -1.154 -1.44 -0.53
4 100 0 110 100.360 1.058 109.906 0.360 1.058 -0.094
5 0 0 110 0.381 0.504 109.965 0.381 0.504 -0.035
6 0 100 110 -2.283 98.856 109.438 -2.283 -1.144 0.562
Table 7. Results of determining the world coordinates of 4 and B
Image Coordinates of the Left Camera Image Coordinates of the Right Camera The World Coordinate
Data (Pixel) (Pixel) (mm)
X y X y X Y 4
A 482 167 463 178 10.172  69.667 77.961
B 266 163 247 157 71.133  17.866 79.343

45
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Figure 7. Size of the measuring part
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(b)

Figure 8. Position of measuring points 4 and B of the left camera (a) and right camera (b)

From the coordinate data presented in Table 7, the distance
between the two points 4 and B in real space is determined
using the following equation:

dap = \/(XA —Xpg)?+ Yy —Yp)?* + (Zy — Zp)? (14)
=80.01 (mm)

where, (X4, Y4, Z4) and (X3, Y3, Zp) are the world coordinates

of points 4 and B, respectively.

The distance measurement results show that the
measurement deviation, when compared to the actual size of
the part shown in Figure 7, is calculated as follows:

6 =280.01 - 80=0.01 (mm)

This deviation level is considered quite good. However, it
strongly depends on the position of the object, the location of
the measurement points, and the image processing algorithm
used to determine the corresponding point positions on the
image planes of the two cameras.

5. CONCLUSIONS

In this study, an experimental model for performing camera
calibration within a 3-D space for machine vision systems was
developed successfully. Both image coordinates and the world
coordinates were utilized to determine the total calibration
matrix in camera model using the six-point method. The
obtained results were verified by evaluating the reprojection
error between the original and image coordinates obtaining
from total calibration matrices. Moreover, the study employed
a 3-D imaging approach to establish the relationship between
2-D image coordinates and 3-D coordinates in the world
coordinate system using stereo image techniques. The
experimental results demonstrate that the proposed method is
effective for camera calibration in machine vision systems
applied to non-contact measurement, product surface quality
inspection, and robot navigation and positioning. To further
enhance system accuracy and reduce measurement errors, the
use of high-resolution cameras and an increased number of
calibration points are recommended. In addition, integrating
machine learning or deep learning techniques may
significantly improve the efficiency and precision of the
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camera calibration process.
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