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In this study, an experimental model for the camera calibration process in a machine vision 

system was developed. A calibration pattern was designed to acquire the world coordinates 

of the calibration points. The corresponding image coordinates were obtained using double 

cameras positioned on opposite sides of the calibration pattern. After getting the world 

coordinates and the corresponding image coordinates, the six-point method was applied to 

determine the total calibration matrix. Subsequently, stereo image techniques were used 

to establish the relationship between the image coordinates and the world coordinates. The 

accuracy of the proposed model was evaluated through the reprojection error between the 

original image coordinates and the reprojected coordinates obtained from the estimated 

total calibration matrix. Experimental results indicated that the average reprojection errors 

of the six calibration points were approximately 1.226 pixels for the left camera and 1.057 

pixels for the right camera. In addition, to further verify the system performance, the 

calibration points were reconstructed using the total calibration matrix, and the proposed 

method was also applied to measure the dimensions of a real object. 
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1. INTRODUCTION

Nowadays, with the rapid advancement of science and 

technology, machine vision has been widely applied across 

various domains of daily life and industrial production. It is 

utilized in non-contact measurement of industrial components 

[1-3], product quality inspection on production lines [4, 5], 

medical image analysis [6, 7], and robotics applications [8-10]. 

In machine vision systems, camera calibration plays a vital 

role, as it directly affects the accuracy, reliability, and overall 

performance of the system.  

Camera calibration is the process of establishing the 

relationship between image coordinates in the two-

dimensional (2-D) space and world coordinates in both two-

dimensional (2-D) and three-dimensional (3-D) spaces. Up to 

now, numerous studies have been conducted on camera 

calibration to improve the accuracy and efficiency of machine 

vision systems. For example, in a study by Lee et al. [11], the 

authors proposed a method for single-image camera 

calibration based on an end-to-end neural network. This 

method directly estimates parameters of the camera from an 

image and a set of line segments. They also introduced an 

auxiliary task of line classification to train the network to 

effectively extract global geometric information from the 

lines. Experimental results demonstrated that the proposed 

method outperformed previous state-of-the-art approaches. In 

a study by Hao et al. [12], the authors optimized the camera 

calibration process by identifying the optimal distance and 

angle to capture checker-board images for improving 

calibration efficiency. The authors explored the effects of 

distance and orientation factors as well as the feasibility of 

independently manipulating these factors. Three calibration 

methods including calibration based on distance factors (D, H, 

V), orientation factors (R, P, Y), and a combination of the two 

sets of influential factors were proposed using three different 

stereo cameras. Experimental results showed that D was the 

most influential factor, while H and V had nearly equal 

influence in method A; P and R were the two most influential 

orientation factors in Method B. Method C required 

approximately 10% more calibration images than methods A 

and B combined. Therefore, method C was recommended. The 

proposed methods can be applied to improve the calibration 

accuracy of stereo cameras for object detection and ranging 

applications. In another study, Zhao et al. [13] proposed a 

calibration method that combines bundle adjustment with 

diagonal constraints of the calibration target. In this study, 

first, the Canny edge detection algorithm was performed to 

obtain the sub-pixel centroid of each ellipse. Then, Zhang’s 

calibration method was applied to obtain the initial values of 

the calibration parameters. Finally, the diagonal constraints 

were used to optimize the camera’s extrinsic parameters. 

Experimental results showed that the proposed method can 

significantly improve calibration accuracy. In the study by Ma 

et al. [14], a minimal-parameter depth-dependent distortion 

model (MDM) was proposed to improve the accuracy of stereo 

vision systems by accounting for radial and decentering lens 

distortions. The authors also presented a calibration method 

for the MDM using a commonly employed planar calibration 

pattern. Experimental results demonstrated that the MDM 

significantly improved calibration accuracy compared with 

Instrumentation Mesure Métrologie 
Vol. 24, No. 6, December, 2025, pp. 343-350 

Journal homepage: http://iieta.org/journals/i2m 

343

https://orcid.org/0000-0001-5443-4005
https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.240601&domain=pdf


 

traditional distortion models. In another study, Schreuder and 

Theart [15] also proposed an optimized stereo calibration 

framework designed for conventional RGB cameras and 

standard calibration targets. They analyzed the influence of 

key calibration parameters, including a 45° camera pair angle 

and an A2 sized calibration board. They also presented a better 

evaluation method that produced a more accurate metric by 

implementing 3-D point projection and 2-D back-projection. 

Experimental results demonstrated a substantial reduction in 

3-D projection and 2-D back-projection errors, significantly 

enhancing the accuracy of 3-D pose estimation dataset 

generation. Adil et al. [16] developed a Python-based 

algorithm to estimate the parameters of each camera, rectify 

the images, create the disparity maps and finally use these 

maps for distance measurements of a stereo vision system. 

Experiments demonstrated the effectiveness of the proposed 

method and showed that the calculated distance to the obstacle 

was relatively accurate. Zhao et al. [17] proposed a multi-

camera-based method for six-degree-of-freedom (6-DOF) 

measurement. Their method employs at least two ordinary 

cameras calibrated based on Zhang’s calibration method [18]. 

The 6-DOF calculation model was analyzed by the matrix 

analysis method. The experiment results indicated that the 

average rotational DOF measurement error was less than 1.1 

deg, and the average error of the movement DOF measurement 

was less than 0.007 m. Real-Moreno et al. [19] proposed a 

camera calibration method to improve depth estimation 

accuracy in stereo vision systems. In their study, lens 

distortion problem was addressed by adjusting the image 

coordinates of surface points before the triangulation process. 

The corrected image coordinates are calculated using 

calibration coefficients. In addition, the authors corrected the 

relative orientation of the cameras and computed a 

compensation angle. Experiment results demonstrated that the 

proposed method significantly improved depth estimation 

accuracy in stereo vision systems. Khrouch et al. [20] 

presented an elitist genetic algorithm for camera calibration to 

determine the intrinsic and extrinsic parameters of cameras 

and compared with standard genetic algorithm. This study 

showed that the proposed method was robust and gave good 

results. In the study by Han et al. [21], a binocular stereo-

vision mapping model was used as the learning model to 

explore the ability of artificial neural networks (ANNs) to 

perform image object mapping. The researchers constructed a 

sample dataset using the image coordinates and world 

coordinates of checkerboard corners, built the ANN, and 

verified the learning performance of the network using 

training and testing samples. Experimental results showed that 

the ANN model could learn the image object mapping 

relationship more effectively, minimize the influence of lens 

distortion, and achieve more accurate nonlinear mapping 

along the image contours. The proposed method demonstrated 

the ability to learn the image object mapping relationship from 

a limited number of sample points without considering too 

many uncertain intermediate factors.  

It can be observed that numerous studies have focused on 

camera calibration in three-dimensional (3-D) space for 

machine vision systems applied in various scenarios, yielding 

significant benefits. Therefore, it is necessary to conduct 

further research and develop experimental models to 

determine the total calibration matrix using the six-point 

method and the stereo image techniques for 3-D camera 

calibration, as well as to evaluate the reprojection accuracy of 

machine vision systems. 

2. RESEARCH METHODOLOGY  

 

2.1 Camera model 

 

In the camera model illustrated in Figure 1, the world 

coordinate system (OXYZ) is used to define the position of the 

camera and the real point wₕ in 3-D space. The camera 

coordinate system is denoted as OXYZ, and the projection of 

wₕ onto the image plane is cₕ. It is assumed that the camera is 

mounted on a rotating stand, which can rotate by an angle θ 

around the OZ axis and by an angle α around the OX axis. The 

translation vector between the center of the rotating stand and 

the origin of the world coordinate system OXYZ is represented 

by G, while the translation vector between the image plane 

center and the rotation center is denoted as r = (r₁, r₂, r₃). 

 

 
 

Figure 1. Camera model 

 

To translate the origin of the world coordinate system to the 

rotation center of the camera, the translation matrix G is 

defined as follows: 
 

𝐺 = [

1 0 0 −𝑋0

0 1 0 −𝑌0

0 0 1 −𝑍0

0 0 0 1

] 

 

To align the ox axis with the OX axis and the oz axis with 

the OZ axis, the rotation matrices R and R are applied. The 

general rotation matrix R is then expressed as follows: 
 

𝑅 = 𝑅𝛼 ⋅ 𝑅𝜃 
 

Then, 
 

𝑅 = [

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0 0
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0
𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛼 − 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0

0 0 0 1

] 

 

To shift the center of the image plane so that it coincides 

with the camera’s rotation center, a transformation matrix C is 

applied, which has the following form: 

 

𝐶 = [

1 0 0 −𝑟1
0 1 0 −𝑟2
0 0 1 −𝑟3
0 0 0 1

] 
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Then, the equation that describes the relationship between 

the camera coordinate system and the world coordinate system 

is expressed as follows: 

 

𝑐ℎ = 𝑃𝐶𝑅𝐺𝑤ℎ (1) 

 

2.2 Stereo image 

 

In this method, a point in 3-D space is projected onto two 

separate image planes corresponding to two cameras. The 

distance between the centers of the two lenses is referred to as 

the baseline. These two image planes generate two 

corresponding image coordinates, denoted as p(1)(x, y) and 

p(2)(x, y). It is assumed that both cameras are fixed and 

precisely aligned, as illustrated in Figure 2. This method 

enables the determination of the depth (Z coordinate) of a point 

in real space from its 2-D image coordinates. 

 

 
 

Figure 2. Stereo image 

 

2.3 Determining the total calibration matrix 

 

In the camera model, the parameters X0, Y0, Z0, ,  and  

can be measured directly; however, it is often difficult to 

accurately determine one or more of these parameters using 

the camera itself as a measuring device. Therefore, a set of 

pixels corresponding to the known world coordinates is 

required. The process of determining the camera parameters 

based on these known points is called camera calibration. 

From the camera model, the relationship between the real 

point (X, Y, Z) in the world coordinate system and the 

corresponding image point (x, y) on the image plane can be 

expressed as: 

 

𝑐ℎ = 𝑃𝐶𝑅𝐺𝑤ℎ (2) 

 

Denote, 

 

𝐴 = 𝑃𝐶𝑅𝐺 

 

Then, 

 

𝑐ℎ = 𝐴𝑤ℎ (3) 

 

Then, Eq. (3) is expressed in the following homogeneous 

form: 

 

[

𝑠𝑥
𝑠𝑦
𝑠𝑧
𝑠

] = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

] [

𝑋
𝑌
𝑍
1

] (4) 

 

Because in the ch matrix, the value sz in the third row is 

usually equal to zero, the third row of the total calibration 

matrix A can be omitted during the calculation process without 

affecting the accuracy of the transformation. By substituting 

sx = x.s and sy = y.s into the above equation, we obtain: 

 

{
𝑋𝑎11 + 𝑌𝑎12 + 𝑍𝑎13 + 1𝑎14 + 0𝑎21 + 0𝑎22 + 0𝑎23 + 0𝑎24 − 𝑥𝑋𝑎41 − 𝑥𝑌𝑎42 − 𝑥𝑍𝑎43 − 𝑥𝑎14 = 0
0𝑎11 + 0𝑎12 + 0𝑎13 + 0𝑎14 + 𝑋𝑎21 + 𝑌𝑎22 + 𝑍𝑎23 + 1𝑎24 − 𝑦𝑋𝑎41 − 𝑦𝑌𝑎42 − 𝑦𝑍𝑎43 − 𝑦𝑎14 = 0

 (5) 

 

To determine the parameters in the matrix A, the world 

coordinates (Xi, Yi, Zi) of six points in space and the 

corresponding image coordinates (xi, yi) are used to substitute 

into the Eq. (5). This process establishes a set of linear 

equations that can be solved to find the unknown coefficients 

of the matrix A. We have: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1 1 0 0 0 0 −𝑥1𝑋1 −𝑥1𝑌1 −𝑥1𝑍1 −𝑥1

0 0 0 0 𝑋1 𝑌1 𝑍1 1 −𝑦1𝑋1 −𝑦1𝑌1 −𝑦1𝑍1 −𝑦1

𝑋2 𝑌2 𝑍2 1 0 0 0 0 −𝑥2𝑋2 −𝑥2𝑌2 −𝑥2𝑍2 −𝑥2

0 0 0 0 𝑋2 𝑌2 𝑍2 1 −𝑦2𝑋2 −𝑦2𝑌2 −𝑦2𝑍2 −𝑦2

𝑋3 𝑌3 𝑍3 1 0 0 0 0 −𝑥3𝑋3 −𝑥3𝑌3 −𝑥3𝑍3 −𝑥3

0 0 0 0 𝑋3 𝑌3 𝑍3 1 −𝑦3𝑋3 −𝑦3𝑌3 −𝑦3𝑍3 −𝑦3

𝑋4 𝑌4 𝑍4 1 0 0 0 0 −𝑥4𝑋4 −𝑥4𝑌4 −𝑥4𝑍4 −𝑥4

0 0 0 0 𝑋4 𝑌4 𝑍4 1 −𝑦4𝑋4 −𝑦4𝑌4 −𝑦4𝑍4 −𝑦4

𝑋5 𝑌5 𝑍5 1 0 0 0 0 −𝑥5𝑋5 −𝑥5𝑌5 −𝑥5𝑍5 −𝑥5

0 0 0 0 𝑋5 𝑌5 𝑍5 1 −𝑦5𝑋5 −𝑦5𝑌5 −𝑦5𝑍5 −𝑦5

𝑋6 𝑌6 𝑍6 1 0 0 0 0 −𝑥6𝑋6 −𝑥6𝑌6 −𝑥6𝑍6 −𝑥6

0 0 0 0 𝑋6 𝑌6 𝑍6 1 −𝑦6𝑋6 −𝑦6𝑌6 −𝑦6𝑍6 −𝑦6]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑎11

𝑎12

𝑎13

𝑎14

𝑎21

𝑎22

𝑎23

𝑎24

𝑎41

𝑎42

𝑎43

𝑎44]
 
 
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 
 
 

 (6) 

 

The image coordinates in Eq. (6) are obtained separately 

from the left and right cameras. By substituting these data into 

the equations, the corresponding total calibration matrices A1 

and A2 are determined for the left and right cameras, 

respectively. 

 

2.4 Relationship between image coordinate and the world 

coordinate 

 

From Eq. (6), the total calibration matrix A has been 

determined, meaning that the transformation coefficients aij 

are known. Then, Eq. (5) can be rewritten in the form of Eq. 
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(7). In the Eq. (7), it is assumed that image coordinates (x, y) are known. 

 

{
(𝑎11 − 𝑎41𝑥)𝑋 + (𝑎12 − 𝑎42𝑥)𝑌 + (𝑎13 − 𝑎43𝑥)𝑍 + (𝑎14 − 𝑎44𝑥) = 0

(𝑎21 − 𝑎41𝑦)𝑋 + (𝑎22 − 𝑎42𝑦)𝑌 + (𝑎23 − 𝑎43𝑦)𝑍 + (𝑎24 − 𝑎44𝑦) = 0
 (7) 

 

The Eq. (7) contains three unknowns (X, Y, Z). With only 

two equations and three unknowns, it is not yet possible to 

obtain a unique solution. Therefore, by applying the stereo 

image techniques using double cameras, Eq. (7) can be 

rewritten into two separate Eqs. (8) and (9), as follows: 

 

{
(𝑎11

(1)
 −  𝑎41

(1)
𝑥)𝑋 + (𝑎12

(1)
− 𝑎42

(1)
𝑥)𝑌 + (𝑎13

(1)
− 𝑎43

(1)
𝑥)𝑍 + (𝑎14

(1)
− 𝑎44

(1)
𝑥) = 0

(𝑎21
(1)

− 𝑎41
(1)

𝑦)𝑋 + (𝑎22
(1)

− 𝑎42
(1)

𝑦)𝑌 + (𝑎23
(1)

− 𝑎43
(1)

𝑦)𝑍 + (𝑎24
(1)

− 𝑎44
(1)

𝑦) = 0
 (8) 

 

And, 

 

{
(𝑎11

(2)
 −  𝑎41

(2)
𝑥)𝑋 + (𝑎12

(2)
− 𝑎42

(2)
𝑥)𝑌 + (𝑎13

(2)
− 𝑎43

(2)
𝑥)𝑍 + (𝑎14

(2)
− 𝑎44

(2)
𝑥) = 0

(𝑎21
(2)

− 𝑎41
(2)

𝑦)𝑋 + (𝑎22
(2)

− 𝑎42
(2)

𝑦)𝑌 + (𝑎23
(2)

− 𝑎43
(2)

𝑦)𝑍 + (𝑎24
(2)

− 𝑎44
(2)

𝑦) = 0
 (9) 

 

In the two Eqs. (8) and (9), the superscripts (1) and (2) 

correspond to the total calibration matrices A1 and A2, 

respectively. For convenience in solving the problem, Eqs. (8) 

and (9) can be rewritten in the form of matrix equations as 

follows: 

 

[
 
 
 
 
 (𝑎11

(1)
− 𝑥(1)𝑎41

(1)
) (𝑎12

(1)
− 𝑥(1)𝑎42

(1)
) (𝑎13

(1)
− 𝑥(1)𝑎43

(1)
)

(𝑎21
(1)

− 𝑦(1)𝑎41
(1)

) (𝑎22
(1)

− 𝑦(1)𝑎42
(1)

) (𝑎23
(1)

− 𝑦(1)𝑎43
(1)

)

(𝑎12
(2)

− 𝑥(2)𝑎43
(2)

) (𝑎12
(2)

− 𝑥(2)𝑎42
(2)

) (𝑎13
(2)

− 𝑥(2)𝑎43
(2)

)

(𝑎21
(2)

− 𝑦(2)𝑎41
(2)

) (𝑎22
(2)

− 𝑦(2)𝑎42
(2)

) (𝑎23
(2)

− 𝑦(2)𝑎43
(2)

)]
 
 
 
 
 

[
𝑋
𝑌
𝑍
] =  

[
 
 
 
 
 −(𝑎14

(1)
− 𝑥(1)𝑎44

(1)
)

−(𝑎24
(1)

− 𝑦(1)𝑎44
(1)

)

−(𝑎14
(2)

− 𝑥(2)𝑎44
(2)

)

−(𝑎24
(2)

− 𝑦(2)𝑎44
(2)

)]
 
 
 
 
 

 (10) 

 

By solving Eq. (10), the world coordinates (X, Y, Z) can be 

determined. 

 

 

3. EXPERIMENTAL MODEL 

 

3.1 Experimental system 

 

In this study, double Logitech C525 cameras were 

employed for image acquisition. The specifications of these 

cameras are presented in Table 1. The experimental system is 

shown in Figure 3. 

 

Table 1. Specifications of cameras 

 
No. Specifications 

1 HD video calling (1280 × 720 pixels) 

2 HD video recording: Up to 1280 × 720 pixels 

3 Logitech Fluid Crystal™ technology 

4 Autofocus 

5 Photo: Up to 8 Megapixels 

6 High-speed USB 2.0 port 

7 Lens and sensor type: Plastic 

 

 
 

Figure 3. Experimental system 

3.2 Calibration pattern 

 

To obtain the world coordinates for the calibration process, 

a 3-D calibration pattern was designed, as illustrated in Figure 

4. The coordinate values of the calibration points are listed in 

Table 2.  

 

Table 2. The world coordinates of calibration points (mm) 

 
Data X Y Z 

1 100 0 10 

2 0 0 10 

3 0 100 10 

4 100 0 110 

5 0 0 110 

6 0 100 110 

 

 
 

Figure 4. Calibration pattern 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Determining corresponding image coordinates 

 

To obtain the corresponding image coordinates, the double 
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cameras sequentially captured images of the calibration 

pattern, as shown in Figures 5 and 6. As illustrated, the 

calibration points on the two image planes of the cameras 

correspond to the points on the calibration pattern shown in 

Figure 4. The image coordinates obtained from both cameras 

are presented in Table 3. 

 

 
 

Figure 5. Center recognition results of the left camera 

 

 
 

Figure 6. Center recognition results of the right camera 

 

Table 3. Image coordinates corresponding from two cameras 

 

Data 

Image Coordinates of 

the Left Camera (Pixel) 

Image Coordinates of the 

Right Camera (Pixel) 

x y x y 

1 173 352 156 327 

2 343 283 368 286 

3 549 351 523 377 

4 173 81 155 71 

5 355 49 381 53 

6 578 92 552 107 

 

4.2 Total calibration matrix 

 

After obtaining the world coordinates and the 

corresponding image coordinates from the left and right 

cameras, the coefficients of the total calibration matrix are 

determined using Eq. (10). Accordingly, the total calibration 

matrices A₁ and A₂ are obtained as follows. The matrix A₁, 

obtained from the left camera, is expressed as follows: 

 

𝐴1 = [
−1.9387 1.4613 −0.1085 342.0275
0.1818 0.3022 −2.3564 304.7735

−0.0014 −0.0011 −0.0006 1.0
] 

 

The matrix A2, obtained from the right camera, is expressed 

as follows: 

 

𝐴2 = [
−2.2549 0.7636 −0.1097 366.5374
0.0900 0.3423 −2.3487 307.6497

−0.0010 −0.0015 −0.0006 1.0
] 

4.3 Analyzing reprojection error 

 

4.3.1 Calculation of the reprojection image coordinates 

The reprojection image coordinates can be calculated as 

follows: 

 

[
𝑥𝑐

𝑦𝑐

1
] = 𝐴 [

𝑋
𝑌
𝑍
] (11) 

 

where, A is the total calibration matrix determined in the 

previous section. 

 

4.3.2 Reprojection error of each point 

Reprojection error is a metric used in camera calibration 

process, 3-D reconstruction to measure how accurately a 

camera model represents the observed image data. The 

reprojection error for each point is calculated as follows: 

 

𝑒𝑖 = √(𝑥𝑖 − 𝑥𝑐𝑖)
2 + (𝑦𝑖  −  𝑦𝑐𝑖)

2 (12) 

 

In which, ei is the reprojection error of each point; xi, yi are 

the original image coordinates; 𝑥𝑐𝑖 , 𝑦𝑐𝑖  are the reprojected 

image coordinates along the ox and oy axes, respectively; i is 

the number of the calibration points. Accordingly, the 

reprojection errors are presented in Tables 4 and 5 for the left 

and right cameras, respectively. 

 

Table 4. Reprojection error of the left camera (Pixel) 

 

Data 

Original 

Image 

Coordinates  

Reprojection Image 

Coordinates  

Reprojection 

Error  

x y xc yc e 

1 173 352 172.216 350.573 1.628 

2 343 283 343.001 282.907 0.093 

3 549 351 550.987 352.296 2.372 

4 173 81 171.565 80.289 1.602 

5 355 49 353.418 48.789 1.596 

6 578 92 577.939 91.977 0.064 

 

Table 5. Reprojection error of the right camera (Pixel) 

 

Data 

Original 

Image 

Coordinates  

Reprojection Image 

Coordinates  

Reprojection 

Error  

 x y xc yc e 

1 156 327 156.544 327.922 1.071 

2 368 286 367.646 285.878 0.374 

3 523 377 523.460 377.242 0.520 

4 155 71 154.653 69.895 0.363 

5 381 53 379.518 52.776 1.498 

6 552 107 549.528 106.534 2.515 

 

The average reprojection error of the calibration points is 

calculated using the following Eq. (13): 

 

∆ =  
1

𝑁
∑𝑒𝑖

𝑁

𝑖=1

 (13) 

 

In which, Δ represents the average reprojection error of the 

points, and N is the total number of calibration points. 

Accordingly, the average errors of the left (Δ₁) and right (Δ₂) 

cameras are calculated as follows: 
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∆1 =  
1.628 + 0.093 + 2.372 + 1.602 + 1.596 + 0.064

6
 

= 1.226(𝑃𝑖𝑥𝑒𝑙𝑠) 

 

∆2 =  
1.071 + 0.374 + 0.520 + 0.363 + 1.498 + 2.515

6
 

= 1.057(𝑃𝑖𝑥𝑒𝑙𝑠) 

 

The obtained errors are within an acceptable range for a 

vision system and can be effectively applied to non-contact 

measurement of parts requiring medium accuracy. 

 

4.4 Reconstruction determination 

 

After determining the two total calibration matrices A1 and 

A2, the world coordinates of any point in space corresponding 

to the six calibration points can be obtained using Eq. (10). To 

verify the accuracy of the system, the world coordinate values 

of the six calibration points were recalculated. The results are 

presented in Table 6. 

Table 6 shows that the maximum error along the OX axis 

occurs at point 6 with a value of -2.283 mm, while the 

maximum error along the OY axis occurs at point 3 with -1.440 

mm, and the maximum error along the OZ axis occurs at point 

1 with 0.609 mm. The minimum error along the OX axis 

occurs at point 4 with 0.360 mm, along the OY axis at point 2 

with -0.328 mm, and along the OZ axis at point 5 with -0.035 

mm. The results also indicate that the error along the OZ axis 

is the most stable and smallest overall. 

 

4.5 Application for measuring sizes of a part 

 

In this section, to verify the accuracy of the proposed 

method, a real object was used as a measuring sample, as 

shown in Figure 7. The object was placed within the calibrated 

3-D workspace, as illustrated in Figure 8. The image 

coordinates of the measuring points A and B were extracted 

from the image planes of the left and right cameras. Using 

these image coordinates, the corresponding the world 

coordinates were determined according to Eq. (7). The results 

of the reconstruction are presented in Table 7. 

 

Table 6. Results of reconstruction determination 

 

Data 
Original World Coordinate (mm) Reconstruction of the Calibration Points (mm) 

Deviation 

(mm) 

X Y Z X Y Z X Y Z 

1 100 0 10 100.908 1.327 10.609 0.908 1.327 0.609 

2 0 0 10 -0.429 -0.328 9.753 -0.429 -0.328 -0.247 

3 0 100 10 -1.154 98.560 9.470 -1.154 -1.44 -0.53 

4 100 0 110 100.360 1.058 109.906 0.360 1.058 -0.094 

5 0 0 110 0.381 0.504 109.965 0.381 0.504 -0.035 

6 0 100 110 -2.283 98.856 109.438 -2.283 -1.144 0.562 

 

Table 7. Results of determining the world coordinates of A and B 

 

Data 

Image Coordinates of the Left Camera 

(Pixel) 

Image Coordinates of the Right Camera 

(Pixel) 

The World Coordinate 

(mm) 

x y x y X Y Z 

A 482 167 463 178 10.172 69.667 77.961 

B 266 163 247 157 71.133 17.866 79.343 

 

 
 

Figure 7. Size of the measuring part 
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(a) 

 
(b) 

 

Figure 8. Position of measuring points A and B of the left camera (a) and right camera (b) 

 

From the coordinate data presented in Table 7, the distance 

between the two points A and B in real space is determined 

using the following equation: 

 

𝑑𝐴𝐵 = √(𝑋𝐴 − 𝑋𝐵)2 + (𝑌𝐴 − 𝑌𝐵)2 + (𝑍𝐴 − 𝑍𝐵)2  

= 80.01 (mm) 
(14) 

 

where, (XA, YA, ZA) and (XB, YB, ZB) are the world coordinates 

of points A and B, respectively. 

 

𝑑𝐴𝐵 = 80.01 (mm) 

 

The distance measurement results show that the 

measurement deviation, when compared to the actual size of 

the part shown in Figure 7, is calculated as follows:  

 

𝛿 = 80.01 - 80 = 0.01 (mm) 

 

This deviation level is considered quite good. However, it 

strongly depends on the position of the object, the location of 

the measurement points, and the image processing algorithm 

used to determine the corresponding point positions on the 

image planes of the two cameras. 

 

 

5. CONCLUSIONS 

 

In this study, an experimental model for performing camera 

calibration within a 3-D space for machine vision systems was 

developed successfully. Both image coordinates and the world 

coordinates were utilized to determine the total calibration 

matrix in camera model using the six-point method. The 

obtained results were verified by evaluating the reprojection 

error between the original and image coordinates obtaining 

from total calibration matrices. Moreover, the study employed 

a 3-D imaging approach to establish the relationship between 

2-D image coordinates and 3-D coordinates in the world 

coordinate system using stereo image techniques. The 

experimental results demonstrate that the proposed method is 

effective for camera calibration in machine vision systems 

applied to non-contact measurement, product surface quality 

inspection, and robot navigation and positioning. To further 

enhance system accuracy and reduce measurement errors, the 

use of high-resolution cameras and an increased number of 

calibration points are recommended. In addition, integrating 

machine learning or deep learning techniques may 

significantly improve the efficiency and precision of the 

camera calibration process. 

 

 

ACKNOWLEDGMENT 

 

The work described in this paper was supported by Thai 

Nguyen University of Technology (TNUT), Thai Nguyen, 

Vietnam. 

 

 

REFERENCES  

 

[1] Setyawan, R.A., Soenoko, R., Mudjirahardjo, P., 

Choiron, M.A. (2018). Measurement accuracy analysis 

of distance between cameras in stereo vision. In 2018 

Electrical Power, Electronics, Communications, 

Controls and Informatics Seminar (EECCIS), Batu, 

Indonesia, pp. 169-172. 

https://doi.org/10.1109/EECCIS.2018.8692999 

[2] Ngo, N.V., Hsu, Q.C., Hsiao, W.L., Yang, C.J. (2017). 

Development of a simple three-dimensional machine 

vision measurement system for in-process mechanical 

parts. Advances in Mechanical Engineering, 9(10). 

https://doi.org/10.1177/1687814017717183 

[3] Zaarane, A., Slimani, I., Al Okaishi, W., Atouf, I., 

Hamdoun, A. (2020). Distance measurement system for 

autonomous vehicles using stereo camera. Array, 5: 

100016. https://doi.org/10.1016/j.array.2020.100016 

[4] Profili, A., Magherini, R., Servi, M., Spezia, F., 

Gemmiti, D., Volpe, Y. (2024). Machine vision system 

for automatic defect detection of ultrasound probes. The 

International Journal of Advanced Manufacturing 

Technology, 135: 3421-3435. 

https://doi.org/10.1007/s00170-024-14701-6 

[5] Kim, B., Shin, M., Hwang, S. (2024). Design and 

development of a precision defect detection system based 

on a line scan camera using deep learning. Applied 

Sciences, 14(24): 12054. 

https://doi.org/10.3390/app142412054 

[6] Tan, H., Xu, H., Yu, N., Yu, Y., Duan, H.F., Fan, Q.J., 

Tian, Z.Y. (2023). The value of deep learning-based 

computer aided diagnostic system in improving 

diagnostic performance of rib fractures in acute blunt 

trauma. BMC Medical Imaging, 23: 55. 

https://doi.org/10.1186/s12880-023-01012-7 

[7] Zuo, L. (2024). Application of deep learning-based 

computer vision in medical image analysis. Applied and 

349



 

Computational Engineering, 41: 259-262. 

https://doi.org/10.54254/2755-2721/41/20230761 

[8] Ngo, N.V., Duong, V.C. (2024). Development of an 

automatic measurement and classification system for a 

robotic arm using machine vision. International Journal 

of Mechanical Engineering and Robotics Research, 

13(4): 489-494. 

https://doi.org/10.18178/ijmerr.13.4.489-494 

[9] Ngo, N.V., Porter, G.A., Hsu, Q.C. (2019). Development 

of a color object classification and measurement system 

using machine vision. Sensors and Materials, 31(12): 

4135-4154. https://doi.org/10.18494/SAM.2019.2412 

[10] Robinson, N., Tidd, B., Campbell, D., Kulić, D., Corke, 

P. (2023). Robotic vision for human-robot interaction 

and collaboration: A survey and systematic review. ACM 

Transactions on Human-Robot Interaction, 12(1): 1-66. 

https://doi.org/10.1145/3570731 

[11] Lee, J., Go, H., Lee, H., Cho, S., Sung, M., Kim, J. 

(2021). CTRL-C: Camera calibration transformer with 

line-classification. In 2021 IEEE/CVF International 

Conference on Computer Vision (ICCV), pp 16228-

16237. https://doi.org/10.1109/ICCV48922.2021.01592 

[12] Hao, Y.N., Tai, V.C., Tan, Y.C. (2023). A systematic 

stereo camera calibration strategy: Leveraging Latin 

hypercube sampling and 2k full factorial design of 

experiment methods. Sensors, 23(19): 8240. 

https://doi.org/10.3390/s23198240 

[13] Zhao, C.L., Fan, C.Y., Zhao, Z.Y. (2024). A binocular 

camera calibration method based on circle detection. 

Heliyon, 10(19): e38347. 

https://doi.org/10.1016/j.heliyon.2024.e38347 

[14] Ma, X., Zhu, P.C., Li, X., Zheng, X.Y., Zhou, J.S., Wang, 

X.C. (2024). A minimal set of parameters-based depth-

dependent distortion model and its calibration method for 

stereo vision systems. IEEE Transactions on 

Instrumentation and Measurement, 73: 1-11. 

https://doi.org/10.1109/TIM.2024.3406802 

[15] Schreuder, C.M., Theart, R.P. (2025). Robust stereo 

calibration for improved 2D-3D projection in real world 

pose estimation. Multimedia Tools and Applications, 84: 

43901-43928. https://doi.org/10.1007/s11042-025-

20846-7 

[16] Adil, E., Mikou, M., Mouhsen, A. (2022). A novel 

algorithm for distance measurement using stereo camera. 

CAAI Transactions on Intelligence Technology, 

7(2):177-186. https://doi.org/10.1049/cit2.12098 

[17] Zhao, Z., Zhu, Y., Li, Y., Qiu, Z., Luo, Y., Xie, C., 

Zhang, Z. (2020). Multi-camera-based universal 

measurement method for 6-DOF of rigid bodies in world 

coordinate system. Sensors, 20(19), 5547. 

https://doi.org/10.3390/s20195547 

[18] Zhang, Z. (2002). A flexible new technique for camera 

calibration. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 22(11): 1330-1334. 

https://doi.org/10.1109/34.888718 

[19] Real-Moreno, O., Rodríguez-Quiñonez, J.C., Flores-

Fuentes, W., Sergiyenko, O., Miranda-Vega, J.E., 

Trujillo-Hernández, G., Hernández-Balbuena, D. (2024). 

Camera calibration method through multivariate 

quadratic regression for depth estimation on a stereo 

vision system. Optics and Lasers in Engineering, 174: 

107932. 

https://doi.org/10.1016/j.optlaseng.2023.107932 

[20] Khrouch, H., Mahdaoui, A., Tantaoui, M., Chana, I., 

Bouazi, A. (2024). Camera calibration based on elitist 

genetic algorithm. In 2024 4th International Conference 

on Innovative Research in Applied Science, Engineering 

and Technology (IRASET), FEZ, Morocco, pp. 1-7. 

https://doi.org/10.1109/IRASET60544.2024.10549372 

[21] Han, F., Bian, Y., Liu, B., Zeng, Q., Tian, Y. (2023). 

Research on calibration of a binocular stereo-vision 

imaging system based on the artificial neural network. 

Journal of the optical society of America A, 40(2): 337-

354. https://doi.org/10.1364/JOSAA.469332 

 

350

https://doi.org/10.1007/s11042-025-20846-7
https://doi.org/10.1007/s11042-025-20846-7
https://doi.org/10.1049/cit2.12098
https://doi.org/10.3390/s20195547
https://doi.org/10.1016/j.optlaseng.2023.107932



