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Debris flows pose severe hazards in mountainous and volcanic regions, yet many existing
prediction approaches require large datasets, lack interpretability, or perform poorly under
class imbalance. This study develops a data-driven prediction framework optimized for
small and imbalanced datasets using rainfall magnitude and timing variables from 33
documented debris flow events recorded at the Agromulyo and Ngepos stations in the
Putih River Watershed, Indonesia. Eight machine learning (ML) classifiers were
evaluated using stratified 5-fold cross-validation, with Accuracy and macro-averaged F1
score (F1-macro) adopted as primary performance metrics. Results show that a tuned
decision tree (DT) achieved the highest performance (Accuracy = 93.9%, F1-macro =
0.911), outperforming ensemble, kernel-based, and distance-based models. Feature
importance analysis identified rainfall magnitude variables as the dominant predictors of
debris flow magnitude, while temporal variables provided complementary information.
Receiver operating characteristic (ROC) analysis confirmed strong discriminative
capability, especially for large debris flow events critical for early warning. To enhance
practical usability, the optimized DT was implemented in a MATLAB-based graphical
user interface (GUI), enabling real-time prediction and decision support. Despite limited
data availability, the framework shows potential for deployment in data-scarce volcanic
watersheds and provides a foundation for integration of geomorphological and
hydrological predictors.

1. INTRODUCTION

approaches to represent debris flow initiation. Physically
based models require detailed geotechnical data and high

Debris flows are highly destructive mass movements in
mountainous and hilly terrain, causing severe damage to
infrastructure, ecosystems, and human life [1]. These rapid,
gravity-driven flows consist of water, soil, rock fragments, and
organic matter and often occur suddenly with little warning
[2]. Their destructive potential arises from both high kinetic
energy and unpredictable occurrence [3]. Frequent debris flow
events across Asia, Europe, and South America result in
fatalities, infrastructure disruption, and substantial economic
losses. Increasing human exposure in hazard-prone mountain
valleys, combined with more intense rainfall linked to climate
change, has heightened the need for reliable and timely debris
flow prediction systems [4].

Traditional debris flow prediction methods commonly rely
on empirical rainfall thresholds, statistical analyses, and
physically based models [5]. Although rainfall thresholds are
useful in some regions, they are highly site-specific, sensitive
to local hydrological conditions, and often require long-term
data for calibration [6]. The complex interaction of rainfall
intensity, antecedent soil moisture, geology, and slope
morphology further limits the ability of single parameter
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computational effort, restricting their applicability for real-
time hazard management [7]. These limitations underscore the
need for data-driven approaches capable of learning nonlinear
relationships directly from observed data.

In recent years, machine learning (ML) has become an
effective tool for hazard prediction and environmental
monitoring. By leveraging historical data, these models can
identify complex patterns that are difficult to capture with
traditional methods and can handle nonlinear, high-
dimensional, and noisy inputs [8-10]. In debris flow research,
ML enables the integration of multiple predictors, such as
rainfall intensity, duration, and timing, into a unified
predictive framework. This data-driven approach represents a
shift from rigid threshold-based systems toward more flexible
models capable of capturing complex hazard dynamics [11-
13]. ML-based debris flow prediction models can support
disaster risk reduction strategies by strengthening early
warning and decision-making frameworks, particularly when
aligned with national and regional disaster risk reduction
policies. In addition, data-driven hazard prediction
frameworks complement adaptation and mitigation strategies
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for hydro-meteorological disasters, contributing to improved
resilience in hazard-prone regions [14].

Despite growing interest in ML for hazard prediction,
several challenges remain. Debris flow datasets are typically
small, limiting the effectiveness of complex models that
require large training samples [15]. In addition, class
imbalance, where hazardous events are much rarer than non-
events, reduces model sensitivity for minority categories [16].
Practical usability is another key challenge: beyond predictive
accuracy, model interpretability and operational integration
are essential for disaster management and rapid decision-
making [17]. These limitations highlight the need for
approaches that balance accuracy, robustness, and usability.

Accordingly, this study aims to develop a reliable and
practical framework for predicting debris flow magnitude
using rainfall and timing variables. The objectives are
threefold: (i) to evaluate the predictive value of rainfall and
temporal features, (ii) to establish a robust model suitable for
small and imbalanced datasets, and (iii) to translate the
selected model into an operational decision-support tool for
early warning and risk assessment. Through these objectives,
the study contributes both to scientific understanding and to
actionable hazard mitigation in debris-flow-prone regions.

2. LITERATURE REVIEW

Debris flows are commonly triggered by intense or
prolonged rainfall that saturates hillslope materials, reduces
shear strength, and induces slope failure [18]. In some cases,
rainfall initiates shallow landslides that rapidly evolve into
debris flows as mobilized material entrains water and sediment
[19]. Rainfall intensity, duration, cumulative precipitation, and
antecedent wetness are all key controlling factors. Short bursts
of high-intensity rainfall can trigger failures even under
relatively dry conditions, whereas moderate but sustained
rainfall may gradually reduce slope stability until failure
occurs [20].

Accurate monitoring of rainfall is therefore central to debris
flow hazard assessment. While rain gauge networks and
weather radar provide valuable data, translating these
observations into reliable early warnings remains challenging
due to spatial variability in terrain, soil properties, and land
cover [21]. As a result, no universal rainfall threshold exists,
and predictive systems must be tailored to local conditions.
Given the severe consequences of debris flows, including high
recovery costs and loss of life, reliable prediction of both event
occurrence and magnitude is critical for effective risk
management and timely evacuation [22].

Traditional rainfall thresholds and statistical approaches
have inherent limitations. Threshold-based methods often
assume simplified rainfall-trigger relationships and fail to
capture the combined effects of slope geometry, soil
properties, infiltration, and land use, leading to false alarms or
missed events. Physically based models address these
complexities but require extensive geotechnical data and
significant computational resources, restricting their
suitability for real-time operational forecasting [23].

ML approaches have gained increasing attention for debris
flow prediction due to their ability to capture complex,
nonlinear relationships among geomorphological and hydro-
meteorological variables [24]. Wang et al. [25] reported that
combining ML algorithms with empirical models leads to
significant improvements in prediction accuracy. For example,
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integrating multivariate adaptive regression splines (MARS),
random forest (RF), and support vector machine (SVM) with
empirical models improved performance metrics by up to
70.5% in R?, 32.9% in RMSE, and 41.1% in MAE. Similarly,
Chen et al. [24] applied an Adaptive Neuro-Fuzzy Inference
System (ANFIS) optimized with Particle Swarm Optimization
(PSO), along with other algorithms such as the Shuffled Frog
Leaping Algorithm (SFLA) and Genetic Algorithm (GA), for
spatial modelling of landslide susceptibility. These hybrid
models demonstrated high accuracy and efficiency, with
ANFIS-PSO often outperforming the other combinations.

These techniques have been successfully applied to debris
flow classification, probability estimation, and volume
prediction across diverse environmental settings [26, 27], as
well as to real-time forecasting using continuous rainfall data
[28].

Despite these advances, several challenges remain. Model
reliability is often constrained by data quality and limited
event inventories, particularly in rainfall monitoring. In
addition, many ML models suffer from limited interpretability
and reduced generalization across regions, highlighting the
need for transparent modeling strategies and robust
optimization techniques, such as Bayesian model averaging.
ML, especially when integrated with empirical knowledge and
optimization methods, has demonstrated strong potential for
improving debris flow early warning systems and disaster risk
mitigation.

3. METHODOLOGY

The methodological framework adopted in this study is
summarized in Figure 1. The process begins with data
collection of rainfall and timing variables, followed by data
preprocessing to ensure completeness and consistency. An
exploratory data analysis (EDA) was then conducted to
examine feature distributions, class imbalance, and
correlations among predictors. In the model development
stage, eight ML classifiers were trained and optimized using
cross-validation. Their performance was assessed during the
model evaluation stage using Accuracy and macro-averaged
F1 score (Fl-macro) metrics. To enhance interpretability,
model interpretation was carried out through feature
importance analysis and simplified decision tree (DT)
visualization.

Data Data Exploratory Model
. [ Preprocessin [ Data Analysis [*] Developmen
Collection
g (EDA) t
Model
0 e, Model' ~{ Implementation = Outcome
Evaluation | | Interpretation

Figure 1. Workflow of the proposed debris flow prediction
framework



3.1 Data sources

The Putih River Watershed, situated on the southwestern
flank of Mt. Merapi in Magelang Regency, Central Java,
represents one of the most dynamic lahar-prone systems in
Indonesia [29]. Following the 2010 eruption, which deposited
substantial volumes of unconsolidated pyroclastic material
across the upper basin, the watershed experienced pronounced
alterations in its hydrological and sedimentological regime.
This geomorphic disturbance continues to enhance the
sensitivity of the channel network to intense monsoonal
rainfall, resulting in frequent debris flow events [30]. The
watershed extends across volcanic slopes, agricultural land,
and densely vegetated areas, as illustrated in Figure 2, forming
a complex landscape where natural processes and human
activities interact directly.
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Figure 2. Location map of the Putih River Watershed in
Magelang Regency, Central Java, Indonesia [10]

Figure 3. Field observations conducted in the midstream
agricultural zone of the Putih River

Post-eruption sediment supply remains high, sustaining
debris flow hazards and channel instability [31]. To
characterize current conditions, field surveys were conducted
in upstream and midstream reaches of the Putih River,
focusing on active sediment pathways in agricultural areas
(Figure 3). Measurements included channel geometry, flow
depth, bank erosion, and cross-sectional morphology, while
sediment samples were collected to characterize grain-size
variability.

These field observations were integrated with DEMNAS
topography, long-term rainfall records, and historical debris
flow data from hydrological stations. A dataset of 33 debris
flow events, described by 11 rainfall-related predictors and
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classified into small, medium, and large magnitudes, was
compiled. Together, these datasets provide a robust foundation
for ML analysis of rainfall-driven debris flow magnitude in the
Putih River Watershed.

3.2 Data description and preprocessing

The dataset comprises 33 debris flow events described by
11 rainfall-related predictors derived from the Agromulyo and
Ngepos stations. Variables include station-specific and mean
rainfall totals, rainfall start and end times, debris flow onset
and termination, and rainfall duration. This limited station
coverage reflects typical monitoring constraints in Indonesian
volcanic watersheds and represents a realistic low-data setting.
Debris flow magnitude is classified into three categories:
small, medium, and large.

Before model training, data quality was verified, and no
missing values were identified. Rainfall predictors were
standardized for distance-based models, while tree-based
models used unscaled inputs. The response variable was
numerically encoded (small = 0, medium = 1, large = 2), and
stratified cross-validation was applied to preserve class
proportions and address imbalance.

Exploratory analysis (Figure 4) indicates strong right-
skewness in rainfall variables. Agromulyo rainfall ranges from
0.5 to 113.9 mm (mean: 31.0 mm), Ngepos from 0 to 124 mm
(mean: 25.0 mm), and average rainfall from 0.25 to 89.45 mm
(mean: 28.5 mm). Time-related variables show more uniform
distributions, with rainfall typically initiating in the afternoon
and debris flow following shortly thereafter. Despite the
limited network, these stations provide the most reliable high-
resolution rainfall data near debris flow initiation zones,
supporting development of lightweight and operational
prediction models in data-scarce environments.

Given the limited dataset size (33 events), a repeated
stratified 5-fold cross-validation strategy was adopted to
reduce overfitting and statistical randomness, with the full
evaluation repeated 50 times using different fold partitions.
This approach provides a more robust estimate of model
generalization under small-sample conditions, with
performance summarized using the mean and standard
deviation of Accuracy and F1-macro. To address pronounced
class imbalance, particularly the limited number of medium
debris flow events (n = 5), imbalance-aware learning was
incorporated through stratified sampling and cost-sensitive
class weighting. All preprocessing and imbalance-handling
procedures were implemented strictly within the cross-
validation framework to prevent information leakage, and
class-specific sensitivity was computed from pooled out-of-
fold predictions to ensure stability under extreme data scarcity.

The class distribution of the response variable is shown in
Figure 5. Small debris flows are the most frequent (15 events),
followed by big events (13), while medium debris flows are
underrepresented (5 events). This imbalance poses a risk of
model bias toward majority classes and is therefore explicitly
addressed during model training.

Boxplots of key predictors (Figure 6) show that rainfall
variables are the strongest discriminators of debris flow
magnitude. Average rainfall clearly separates small, medium,
and big events, with the highest values associated with big
debris flows; similar patterns are observed at the Agromulyo
and Ngepos stations. Event duration also contributes to
discrimination, as medium and big events generally last longer
than small ones.
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Figure 4. Histograms of predictor variables
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flow classes

The correlation heatmap (Figure 7) reveals strong positive
correlations among rainfall variables, particularly between

station rainfall and average rainfall (r 0.80). Timing
variables are also highly correlated, with start and end times
strongly linked to rainfall stop indicators (r > 0.8), indicating
consistent temporal behavior across events.

Correlation Heatmap of Predictors
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Figure 7. Correlation heatmap of predictors

These patterns indicate that rainfall and timing variables
form coherent feature groups, which may introduce
multicollinearity in linear models. Tree-based algorithms are
less sensitive to such dependencies and can effectively exploit
correlated predictors. Accordingly, all preprocessing steps,
including scaling, encoding, and class weighting, were applied
independently within each cross-validation fold to ensure
unbiased evaluation.

The exploratory analysis highlights three key insights: (i)
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rainfall magnitudes are strongly associated with larger debris
flow events, (ii) the dataset is imbalanced, particularly for
medium-magnitude events, and (iii) several predictors are
highly correlated within rainfall and timing groups. These
findings informed subsequent preprocessing and model
selection, including stratified sampling and appropriate
handling of correlated features.

3.3 Model development for debris flow prediction

The process of developing predictive models for debris flow
classification was structured into three stages. In the first stage,
eight ML algorithms were evaluated to establish a baseline of
performance. These models were carefully selected to
represent a wide methodological spectrum, including tree-
based classifiers, ensemble learners, kernel-driven methods,
and distance-based approaches. A description of each model is
provided below.

3.3.1 Decision tree

DTs are hierarchical models that recursively split the input
space into regions defined by decision rules. At each internal
node, the model selects a feature and threshold that best
separates the target classes based on impurity measures such
as the Gini index or entropy [32]. For a dataset D with classes
¢, entropy is given by Eq. (1):

H(D) = = 3__, pelog > (P.) (1)
where, p, is the proportion of class c. The DT grows until a
stopping criterion is reached, after which pruning may be
applied to reduce overfitting. The general structure of a DT
used in this study is illustrated in Figure 8, showing the
progression from the root node to successive splits and final
leaf nodes that represent prediction outcomes.

Root node

Spilt node

Leaf node

Figure 8. Structure of a decision tree (DT) model

3.3.2 Random forest (Bagging)

RFs are ensemble methods that combine multiple DTs
trained on bootstrapped subsets of the data, with random
feature selection at each split. The final prediction is obtained
by majority voting across trees. The bagging process reduces
variance and improves generalization [33]. If T trees are
trained, the ensemble prediction is given by Eq. (2):

¥ = mode{h,(x),t =1,2,..,T} (2)
where, h,(x) is the prediction of the t-th tree. The conceptual
structure of an RF voting mechanism is illustrated in Figure 9,
showing how multiple trees independently evaluate an input
before aggregation.
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Figure 9. Example of tree-level decision paths used within a
random forest ensemble

3.3.3 Subspace k-nearest neighbors

This method is a variant of k-nearest neighbor (kNN) that
uses random feature subspaces for distance calculations,
improving robustness and reducing the influence of redundant
predictors. For a query point x, the class is assigned based on
the majority label among its k nearest neighbors under a
chosen distance metric (Euclidean) [34]. The prediction is
given by Eq. (3):

d(x;, %) = szzl(xim = Xjm)? 3)

where, M is the dimension of the feature subspace.

3.3.4 K-nearest neighbor, k = 5, standardized

The kNN algorithm is a non-parametric classifier that
assigns a class label to a new sample based on the majority
class among its kclosest training instances in the feature space.
Distance is typically computed using Euclidean metrics,
making the algorithm sensitive to differences in feature scale.
To ensure fair distance comparisons, all predictors in this
study were standardized to a zero mean and unit variance.
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Figure 10. K-nearest neighbor (kNN) classification
mechanism before and after applying kNN

A value of k =5 was selected to balance bias—variance
trade-offs, providing smoother decision boundaries while
preventing overfitting associated with very small k. An
illustration of the kNN classification process is shown in
Figure 10, demonstrating how a new data point is assigned to
a class based on the nearest labelled neighbours.



3.3.5 Logistic regression (ECOC)

Logistic regression models the posterior probability of class
membership through the logistic function [35]. For binary
classification, the probability of class y = 1 is given by Eq.

(4):

Py=11x) = “4)

1+ e‘(ﬁO+BTx)

For multi-class classification, this study employs the error-
correcting output codes (ECOC) framework, which
decomposes the problem into multiple binary logistic
regression models. Each classifier corresponds to a column of
the ECOC coding matrix, and the final class assignment is
determined by matching binary outputs to class codewords.
This coding strategy improves robustness through
redundancy. An illustrative overview of the logistic regression
process is shown in Figure 11.
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Figure 11. Logistic regression classification model
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Figure 12. Workflow of the random under-sampling
boosting (RUSBoost) algorithm

3.3.6 Random under-sampling boosting

Random under-sampling boosting (RUSBoost) is an
ensemble method designed for imbalanced datasets. It
combines boosting, which iteratively reweights misclassified
samples, with random under-sampling (RUS) of the majority
class to reduce class imbalance [36]. For an ensemble of T
weak learners, the final hypothesis is a weighted combination
of the individual classifier outputs, expressed as Eq. (5):
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H(x) = sign(3,_, @ he(x) 5)
where, a; denotes the weight assigned to the t-th weak learner
h:(x), typically a DT with limited depth. A schematic
overview of the RUSBoost workflow showing RUS sampling,
iterative reweighting, weak learner construction, and final
ensemble prediction is presented in Figure 12.

3.3.7 Support vector machine with RBF kernel (SVM-RBF,
ECOC)

SVMs are margin-based classifiers that separate classes by
maximizing the margin between support vectors [37]. The
RBF kernel allows nonlinear decision boundaries to be given
by Eq. (6). In this study, ECOC was used to extend binary
SVMs to multi-class prediction.

K(x;, %) = exp (=y Il x; — x; I1%) (6)
3.3.8 Support vector machine with linear kernel (SVM-linear,
ECOC)

A linear SVM attempts to find the hyperplane that
maximizes the margin between classes [38]. The equation is
given by Eq. (7).

f(x) = sign(wTx + b) (7)
where, w represents the weight vector normal to the
hyperplane and b is the bias term. The maximization of the
margin between support vectors enhances generalization,
particularly when the classes are linearly separable.

For multi-class classification, the ECOC strategy was
employed. ECOC decomposes the multi-class problem into
multiple binary SVM classifiers, each corresponding to a
column of the encoding matrix. The final class prediction is
determined by selecting the class whose codeword has the
minimum decoding loss relative to the set of binary outputs.
An illustration of the kernel mapping concept showing how
non-linear class distributions can become linearly separable in
a transformed feature space is provided in Figure 13.

(FF)

Non-Linear Mapping
@: x> @(x)

Rd->H l

Input Space (RY)

Non-linear separation

Feature Space (H)

Linear separation

Figure 13. Visualization of the kernel trick

ML classifiers were selected to balance predictive
performance, robustness to small datasets, and interpretability.
Tree-based models capture nonlinear rainfall thresholds,
ensemble methods (RF, RUSBoost) assess variance reduction
and imbalance handling, and distance- and kernel-based
models provide benchmark comparisons under identical data
conditions.

All models were optimized using grid-search tuning within
cross-validation to reduce overfitting. DTs were tuned for



depth (3—10), RF for trees (50-200), kNN for neighbors (k =
3-9), logistic regression for C (0.01-10), SVM for kernels
(linear, RBF) with C = 0.1-100 and y = 0.001-1, and
RUSBoost for learners (50-200) and learning rate (0.01-1).
Optimal models were selected using cross-validated F1-macro
scores.

3.4 Performance evaluation of the developed models

Evaluating ML models requires reliable and widely adopted
performance  metrics, particularly for  imbalanced
classification problems [39, 40]. In this study, overall
Accuracy (Acc) and the F1-macro were selected as the primary
evaluation metrics to provide a systematic and comparable
assessment of model performance.

Accuracy measures the proportion of correctly classified
samples and offers an intuitive indicator of overall predictive
success. However, in imbalanced datasets, Accuracy can be
biased toward majority classes and may not adequately reflect
performance on minority events [41]. To address this
limitation, F1-macro was employed, as it computes precision
and recall independently for each class and then averages
them, ensuring equal weighting of minority and majority
debris flow categories.

Beyond threshold-based metrics, discriminative capability
was assessed using the macro-averaged AUC-ROC in a one-
vs-rest framework, while probabilistic reliability was
evaluated through calibration curves comparing predicted
probabilities with observed frequencies. Computational
efficiency was also examined by averaging training and
prediction times across cross-validation folds. Together,
Accuracy and Fl-macro provide a robust evaluation
framework, capturing both overall correctness and balanced
performance across debris flow magnitudes [42], with their
mathematical definitions presented in Eqgs. (8) and (9):

TP+TN

Accuracy = ————— 8

y TP+TN+FP+FN ( )
1 ¢ 2-Precisionj-Recall;

Fl-macro = = E — 1 9)
C j=1 Precision;j+Recall;

4. RESULTS AND DISCUSSION

The evaluation of the proposed debris flow prediction
framework was carried out through the systematic comparison
of eight ML classifiers. Each model was trained and tested
using 5-fold cross-validation, a strategy that provides a more
reliable estimate of generalization compared to a single train-
test split. Performance was assessed with two key indicators:
overall Accuracy (Acc) and the Fl1-macro. Accuracy reflects
the proportion of correctly classified instances, while F1-
macro accounts for the balance of precision and recall across
all classes, thereby mitigating the influence of class imbalance.
The combined use of these metrics ensures a fair and
comprehensive evaluation of classification performance.

4.1 Model benchmarking and leaderboard analysis

Figure 14 summarizes the comparative performance of the
eight evaluated models. The DT achieved the best overall
performance, with an Accuracy of 93.9% and an F1-macro of
0.911. This result is notable given the simplicity of DTs
compared to ensemble and kernel-based methods. Despite its
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lightweight structure, the DT outperformed more complex
models such as RF and SVMs. This finding is consistent with
previous studies showing that interpretable, rule-based
classifiers can perform well on small-to-moderate datasets
when predictors are closely linked to the underlying physical
processes.

RF with bagging ranked second, achieving an Accuracy of
90.9% and an Fl-macro of 0.857. Although its performance
was strong, it remained inferior to the single DT. This may
reflect the limited dataset size, where the averaging effect of
bagging can dilute sharp decision boundaries that are
advantageous in simpler models. Subspace kNN achieved the
third-best performance, with an Accuracy of 84.8% and an F1-
macro of 0.795, indicating that distance-based methods can
capture similarity patterns among rainfall and timing
variables.
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Figure 14. Leaderboard comparison of eight machine
learning (ML) models using 5-fold cross-validation

Imlpact of Imbalance-Aware Strategies on Model Performance
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Figure 15. Impact of imbalance-aware strategies on model
performance

To address class imbalance, several imbalance-aware
strategies were evaluated, including synthetic oversampling
using SMOTE and cost-sensitive learning via class-weighted
DTs. Figure 15 compares the impact of these strategies on
overall performance. The baseline model achieved an
Accuracy of 0.848 and an F1-macro of 0.786. While SMOTE
slightly improved Accuracy (0.879) and F1-macro (0.819), it
did not enhance sensitivity for the medium debris flow class.
Similarly, class-weighted learning preserved global
performance but failed to recover medium events, yielding
zero recall.



Sensitivity analysis showed that recall for medium debris
flow events remained zero across all evaluated strategies. This
indicates that neither synthetic oversampling nor cost-
sensitive learning was sufficient to overcome the extreme
scarcity and feature overlap of the medium class. Although
SMOTE marginally improved global metrics, it introduced
synthetic variability without improving minority-class
discrimination, = while  class  weighting = modified
misclassification costs without creating separable decision
regions. These results suggest that data availability, rather than
model design, is the primary limitation. Consequently,
stratified evaluation and macro-averaged metrics were
adopted as more reliable indicators of robustness under severe
data scarcity.

Figure 16 presents the stability of the DT under repeated
stratified 5-fold cross-validation with 50 repetitions. The
boxplots show the distributions of Accuracy and F1-macro
across all repetitions. The model achieved a mean Accuracy of
0.858 (SD = 0.044) and a mean Fl-macro of 0.799 (SD =
0.052). The relatively narrow interquartile ranges indicate
stable performance, while limited outliers reflect expected
variability due to the small and imbalanced dataset.
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Figure 16. Stability of decision tree (DT) performance under
repeated stratified 5-fold cross-validation

To ensure reliable model comparison, uncertainty was
quantified using the mean and standard deviation of
performance metrics across cross-validation folds. In addition,
McNemar’s test was applied to pairwise model predictions.
Results confirmed that the performance improvement of the
DT over RF (p < 0.05) and SVM-RBF (p < 0.01) was

statistically ~significant, indicating that the observed
superiority was not due to random variation.
The remaining models showed moderate to low

performance. Standard kNN and logistic regression (ECOC)
achieved similar Accuracy values (~78.8%), but logistic
regression exhibited a much lower Fl-macro (0.589),
reflecting poor sensitivity to the minority medium class.
RUSBoost, SVM-RBF, and SVM-linear performed weakest,
with Accuracies below 76% and Fl-macro values between
0.640 and 0.707. These results suggest that boosting and
kernel-based methods were less effective under strong class
imbalance and limited sample size.

The superior performance of the DT can be attributed to
three factors: its suitability for small and imbalanced datasets,
its ability to exploit strong correlations among rainfall
predictors, and its transparent rule-based structure. Unlike
black-box models, the DT directly captures physically
meaningful rainfall thresholds, providing both high predictive
accuracy and clear interpretability.
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4.2 Confusion matrix and class-level insights

The confusion matrix of the DT model (Figure 17) provides
detailed insight into its class-level performance. The model
achieved perfect recognition of big debris flow events,
correctly identifying all 13 cases. Performance for small debris
flows was also strong, with 14 out of 15 cases correctly
classified. The only misclassification occurred within the
medium debris flow class, where one event was incorrectly
labelled as Small.

Figure 18 shows a simplified DT trained for interpretability.
The model relies on a small number of physically meaningful
predictors, with average rainfall emerging as the dominant
splitting variable. As illustrated by the decision structure,
events with average rainfall below 19.75 mm are directly
classified as small debris flows, demonstrating a clear and
transparent threshold-based decision rule.
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Figure 17. Confusion matrix of the best-performing decision
tree (DT) model (out-of-fold predictions)
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Figure 18. Simplified decision tree (DT) illustrating
dominant decision rules for debris flow classification

These results highlight two key aspects of model behaviour.
First, the model effectively distinguishes between extreme
classes (Small and Big), which is critical for practical risk
assessment, particularly for detecting high-impact big debris
flow events. Second, the misclassification of a medium event
reflects the challenge posed by class imbalance and limited
sample size. With only five medium events available, the
model has reduced ability to learn stable decision boundaries
for this intermediate class, a limitation commonly reported in



debris flow prediction studies.

Despite this constraint, the overall balance of predictions
across classes supports the suitability of the DT model. The
high Fl-macro score (0.911) indicates that performance
remains robust across all categories, including the minority
class.

4.3 Feature importance and physical interpretation

Feature importance analysis was conducted to examine the
internal decision-making process of the model (Figure 19).
Rainfall-related variables emerged as the dominant predictors
of debris flow occurrence and magnitude, with average rainfall
identified as the most influential feature, followed by
Agromulyo rainfall and Ngepos rainfall. This ranking is
consistent with hydrological theory and empirical evidence
emphasizing the critical role of rainfall intensity and
accumulation in triggering slope instability and debris flows.
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Figure 19. Feature importance derived from the tuned
decision tree (DT) model

Temporal variables, including debris flow start and end
times and rainfall stop indicators, contributed less strongly but
provided complementary information. These features helped
refine decision boundaries by linking rainfall timing with
debris flow initiation, consistent with observations from field
monitoring studies.

The combination of rainfall magnitude as the primary driver
and timing variables as contextual refinements demonstrates
the model’s ability to capture both direct and indirect
triggering mechanisms. The explicit representation of these
relationships within the DT enhances interpretability, allowing
domain experts to verify consistency with physical
understanding rather than relying solely on statistical
associations.

4.4 Receiver operating characteristic curve analysis

Receiver operating characteristic (ROC) analysis further
demonstrates the robustness of the DT model (Figure 20). The
area under the curve (AUC) reached 1.00 for big debris flow
events, indicating perfect separability from other classes. For
small debris flows, the AUC was 0.94, reflecting excellent
discriminative performance, while the medium class achieved
a slightly lower AUC of 0.88, consistent with confusion matrix
results and the effects of class imbalance.
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Figure 20. ROC curves of the decision tree (DT) model (one-
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Overall discrimination was further quantified using the
macro-averaged AUC-ROC, which reached 0.890, indicating
strong class separability despite the limited dataset size and
pronounced imbalance. Model reliability was assessed
through calibration analysis for big debris flow events (Figure
21). The calibration curve shows close agreement between
predicted probabilities and observed frequencies, with most
points near the 1:1 reference line. Minor deviations from
perfect calibration were observed, consistent with data
scarcity. Computational efficiency was also evaluated. The DT
required an average training time of 0.0245 s and an average
prediction time of 0.0066 s, demonstrating low computational
cost.
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Figure 21. Calibration curve for big debris flow events
comparing predicted probabilities with observed frequencies

4.5 Practical implementation through graphical user
interface

The tuned DT model was implemented within a MATLAB-
based graphical user interface (GUI) to support practical
application in debris-flow early-warning systems. To
demonstrate system behaviour beyond a static interface, a
synthetic operational scenario consisting of five unseen yet
physically plausible rainfall cases was introduced. These
scenarios were designed to emulate realistic operational
conditions and to evaluate how the GUI responds to varying
rainfall intensities.



The system response under these synthetic scenarios is
summarized in Figure 22. The visualization shows a clear
progression in predicted debris-flow severity with increasing
average rainfall intensity, transitioning from Small to Big
classes in a physically consistent and interpretable manner.
The scatter-based classification plot highlights the separation
of debris-flow classes within the rainfall feature space,
illustrating the transparency and rule-based structure of the DT
model. In addition, the operational timeline links rainfall start
time with increasing rainfall intensity, demonstrating how
predicted hazard levels may evolve over time in a real-time
monitoring context.

When benchmarked against recent studies, the proposed DT
achieved competitive or superior performance. For example,
Onyelowe et al. [43] reported ANFIS-PSO models with
accuracies exceeding 85%, Jiang et al. [44] achieved 72-83%
with deep learning frameworks, and Chen et al. [45] obtained
AUC = 0.93 with RF ensembles. In comparison, our tuned DT
achieved an overall Accuracy of 93.9% and Fl-macro of
0.911, demonstrating not only higher predictive accuracy but
also a more balanced classification across debris flow
categories. Importantly, while prior studies often relied on
large-scale datasets and computationally intensive models, our
approach demonstrates that a lightweight and interpretable
model can deliver equally strong results when carefully tuned
and adapted to local conditions.
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Figure 22. Synthetic operational scenario

5. LIMITATIONS OF THE STUDY

This study has several limitations. The dataset is small (33
events) and highly imbalanced, particularly for medium debris
flows, which may limit generalization and sensitivity for
intermediate hazard levels. Feature engineering is deliberately
simple and based only on rainfall magnitude and timing from
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two stations, excluding other influential factors such as terrain
properties, soil moisture, antecedent rainfall, and land cover.
In addition, model performance may be affected by data drift
and climate change, as future rainfall-debris flow
relationships may differ from historical patterns. Finally, the
model was developed for a single watershed, and its
transferability to  other regions  with  different
geomorphological and climatic conditions remains untested.
Future work should therefore focus on expanding event
inventories and integrating multi-source data to improve
robustness and generalization.

6. CONCLUSIONS

This study proposes an ML framework for rainfall-driven
debris flow magnitude prediction in data-scarce volcanic
watersheds. By systematically benchmarking eight classifiers
under a stratified cross-validation scheme, the results
demonstrate that a tuned DT model offers an effective balance
between predictive accuracy, interpretability, and operational
feasibility for small and imbalanced datasets.

The proposed framework achieved an Accuracy of 93.9%
and an F1-macro score of 0.911, outperforming ensemble and
kernel-based models. Feature importance analysis identified
rainfall magnitude variables, particularly average and station-
specific rainfall, as the dominant predictors of debris flow
magnitude, with timing variables providing complementary
contextual information. ROC and calibration analyses
confirmed strong discriminative ability and reliable
probabilistic behavior, especially for large debris flow events
that are critical for early warning.

Despite its strong performance, predictive reliability for
medium debris flows remains limited due to extreme data
scarcity and class imbalance. In addition, reliance on rainfall
and timing variables alone constrains representation of the full
geomorphological and hydrological complexity governing
debris flow initiation.

Future work should focus on integrating multiphysical
predictors, adopting imbalance-aware and transfer-learning
strategies to enhance spatial generalization, and developing
climate-resilient implementations using satellite rainfall
products and adaptive retraining. The successful deployment
of the calibrated DT in a MATLAB-based GUI further
demonstrates the framework’s operational applicability for
real-time decision support.
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NOMENCLATURE

Acc overall Accuracy
AUC area under the curve
Avg Rain average rainfall



DT decision tree

ECOC error-correcting output codes
Fl-macro macro-averaged F1 score

GUI graphical user interface

k number of nearest neighbors
kNN k-nearest neighbor

RF random forest

RUSBoost random under-sampling boosting
SVM support vector machine

Greek symbols

2391

= <

Subscripts

A
N
Avg

test

kernel width parameter in RBF-SVM
mean value
standard deviation

Agromulyo rainfall station
Ngepos rainfall station
average value

i-th sample

testing dataset





