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Debris flows pose severe hazards in mountainous and volcanic regions, yet many existing 

prediction approaches require large datasets, lack interpretability, or perform poorly under 

class imbalance. This study develops a data-driven prediction framework optimized for 

small and imbalanced datasets using rainfall magnitude and timing variables from 33 

documented debris flow events recorded at the Agromulyo and Ngepos stations in the 

Putih River Watershed, Indonesia. Eight machine learning (ML) classifiers were 

evaluated using stratified 5-fold cross-validation, with Accuracy and macro-averaged F1 

score (F1-macro) adopted as primary performance metrics. Results show that a tuned 

decision tree (DT) achieved the highest performance (Accuracy = 93.9%, F1-macro = 

0.911), outperforming ensemble, kernel-based, and distance-based models. Feature 

importance analysis identified rainfall magnitude variables as the dominant predictors of 

debris flow magnitude, while temporal variables provided complementary information. 

Receiver operating characteristic (ROC) analysis confirmed strong discriminative 

capability, especially for large debris flow events critical for early warning. To enhance 

practical usability, the optimized DT was implemented in a MATLAB-based graphical 

user interface (GUI), enabling real-time prediction and decision support. Despite limited 

data availability, the framework shows potential for deployment in data-scarce volcanic 

watersheds and provides a foundation for integration of geomorphological and 

hydrological predictors. 
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1. INTRODUCTION

Debris flows are highly destructive mass movements in 

mountainous and hilly terrain, causing severe damage to 

infrastructure, ecosystems, and human life [1]. These rapid, 

gravity-driven flows consist of water, soil, rock fragments, and 

organic matter and often occur suddenly with little warning 

[2]. Their destructive potential arises from both high kinetic 

energy and unpredictable occurrence [3]. Frequent debris flow 

events across Asia, Europe, and South America result in 

fatalities, infrastructure disruption, and substantial economic 

losses. Increasing human exposure in hazard-prone mountain 

valleys, combined with more intense rainfall linked to climate 

change, has heightened the need for reliable and timely debris 

flow prediction systems [4]. 

Traditional debris flow prediction methods commonly rely 

on empirical rainfall thresholds, statistical analyses, and 

physically based models [5]. Although rainfall thresholds are 

useful in some regions, they are highly site-specific, sensitive 

to local hydrological conditions, and often require long-term 

data for calibration [6]. The complex interaction of rainfall 

intensity, antecedent soil moisture, geology, and slope 

morphology further limits the ability of single parameter 

approaches to represent debris flow initiation. Physically 

based models require detailed geotechnical data and high 

computational effort, restricting their applicability for real-

time hazard management [7]. These limitations underscore the 

need for data-driven approaches capable of learning nonlinear 

relationships directly from observed data. 

In recent years, machine learning (ML) has become an 

effective tool for hazard prediction and environmental 

monitoring. By leveraging historical data, these models can 

identify complex patterns that are difficult to capture with 

traditional methods and can handle nonlinear, high-

dimensional, and noisy inputs [8-10]. In debris flow research, 

ML enables the integration of multiple predictors, such as 

rainfall intensity, duration, and timing, into a unified 

predictive framework. This data-driven approach represents a 

shift from rigid threshold-based systems toward more flexible 

models capable of capturing complex hazard dynamics [11-

13]. ML-based debris flow prediction models can support 

disaster risk reduction strategies by strengthening early 

warning and decision-making frameworks, particularly when 

aligned with national and regional disaster risk reduction 

policies. In addition, data-driven hazard prediction 

frameworks complement adaptation and mitigation strategies 
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for hydro-meteorological disasters, contributing to improved 

resilience in hazard-prone regions [14]. 

Despite growing interest in ML for hazard prediction, 

several challenges remain. Debris flow datasets are typically 

small, limiting the effectiveness of complex models that 

require large training samples [15]. In addition, class 

imbalance, where hazardous events are much rarer than non-

events, reduces model sensitivity for minority categories [16]. 

Practical usability is another key challenge: beyond predictive 

accuracy, model interpretability and operational integration 

are essential for disaster management and rapid decision-

making [17]. These limitations highlight the need for 

approaches that balance accuracy, robustness, and usability. 

Accordingly, this study aims to develop a reliable and 

practical framework for predicting debris flow magnitude 

using rainfall and timing variables. The objectives are 

threefold: (i) to evaluate the predictive value of rainfall and 

temporal features, (ii) to establish a robust model suitable for 

small and imbalanced datasets, and (iii) to translate the 

selected model into an operational decision-support tool for 

early warning and risk assessment. Through these objectives, 

the study contributes both to scientific understanding and to 

actionable hazard mitigation in debris-flow-prone regions. 

 

 

2. LITERATURE REVIEW 

 

Debris flows are commonly triggered by intense or 

prolonged rainfall that saturates hillslope materials, reduces 

shear strength, and induces slope failure [18]. In some cases, 

rainfall initiates shallow landslides that rapidly evolve into 

debris flows as mobilized material entrains water and sediment 

[19]. Rainfall intensity, duration, cumulative precipitation, and 

antecedent wetness are all key controlling factors. Short bursts 

of high-intensity rainfall can trigger failures even under 

relatively dry conditions, whereas moderate but sustained 

rainfall may gradually reduce slope stability until failure 

occurs [20]. 

Accurate monitoring of rainfall is therefore central to debris 

flow hazard assessment. While rain gauge networks and 

weather radar provide valuable data, translating these 

observations into reliable early warnings remains challenging 

due to spatial variability in terrain, soil properties, and land 

cover [21]. As a result, no universal rainfall threshold exists, 

and predictive systems must be tailored to local conditions. 

Given the severe consequences of debris flows, including high 

recovery costs and loss of life, reliable prediction of both event 

occurrence and magnitude is critical for effective risk 

management and timely evacuation [22].  

Traditional rainfall thresholds and statistical approaches 

have inherent limitations. Threshold-based methods often 

assume simplified rainfall–trigger relationships and fail to 

capture the combined effects of slope geometry, soil 

properties, infiltration, and land use, leading to false alarms or 

missed events. Physically based models address these 

complexities but require extensive geotechnical data and 

significant computational resources, restricting their 

suitability for real-time operational forecasting [23]. 

ML approaches have gained increasing attention for debris 

flow prediction due to their ability to capture complex, 

nonlinear relationships among geomorphological and hydro-

meteorological variables [24]. Wang et al. [25] reported that 

combining ML algorithms with empirical models leads to 

significant improvements in prediction accuracy. For example, 

integrating multivariate adaptive regression splines (MARS), 

random forest (RF), and support vector machine (SVM) with 

empirical models improved performance metrics by up to 

70.5% in R², 32.9% in RMSE, and 41.1% in MAE. Similarly, 

Chen et al. [24] applied an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) optimized with Particle Swarm Optimization 

(PSO), along with other algorithms such as the Shuffled Frog 

Leaping Algorithm (SFLA) and Genetic Algorithm (GA), for 

spatial modelling of landslide susceptibility. These hybrid 

models demonstrated high accuracy and efficiency, with 

ANFIS-PSO often outperforming the other combinations. 

 These techniques have been successfully applied to debris 

flow classification, probability estimation, and volume 

prediction across diverse environmental settings [26, 27], as 

well as to real-time forecasting using continuous rainfall data 

[28].  

Despite these advances, several challenges remain. Model 

reliability is often constrained by data quality and limited 

event inventories, particularly in rainfall monitoring. In 

addition, many ML models suffer from limited interpretability 

and reduced generalization across regions, highlighting the 

need for transparent modeling strategies and robust 

optimization techniques, such as Bayesian model averaging. 

ML, especially when integrated with empirical knowledge and 

optimization methods, has demonstrated strong potential for 

improving debris flow early warning systems and disaster risk 

mitigation. 

 

 

3. METHODOLOGY 

 

The methodological framework adopted in this study is 

summarized in Figure 1. The process begins with data 

collection of rainfall and timing variables, followed by data 

preprocessing to ensure completeness and consistency. An 

exploratory data analysis (EDA) was then conducted to 

examine feature distributions, class imbalance, and 

correlations among predictors. In the model development 

stage, eight ML classifiers were trained and optimized using 

cross-validation. Their performance was assessed during the 

model evaluation stage using Accuracy and macro-averaged 

F1 score (F1-macro) metrics. To enhance interpretability, 

model interpretation was carried out through feature 

importance analysis and simplified decision tree (DT) 

visualization.  

 

 
 

Figure 1. Workflow of the proposed debris flow prediction 

framework 
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3.1 Data sources 

 

The Putih River Watershed, situated on the southwestern 

flank of Mt. Merapi in Magelang Regency, Central Java, 

represents one of the most dynamic lahar-prone systems in 

Indonesia [29]. Following the 2010 eruption, which deposited 

substantial volumes of unconsolidated pyroclastic material 

across the upper basin, the watershed experienced pronounced 

alterations in its hydrological and sedimentological regime. 

This geomorphic disturbance continues to enhance the 

sensitivity of the channel network to intense monsoonal 

rainfall, resulting in frequent debris flow events [30]. The 

watershed extends across volcanic slopes, agricultural land, 

and densely vegetated areas, as illustrated in Figure 2, forming 

a complex landscape where natural processes and human 

activities interact directly. 

 

 
 

Figure 2. Location map of the Putih River Watershed in 

Magelang Regency, Central Java, Indonesia [10] 

 

 
 

Figure 3. Field observations conducted in the midstream 

agricultural zone of the Putih River 

 

Post-eruption sediment supply remains high, sustaining 

debris flow hazards and channel instability [31]. To 

characterize current conditions, field surveys were conducted 

in upstream and midstream reaches of the Putih River, 

focusing on active sediment pathways in agricultural areas 

(Figure 3). Measurements included channel geometry, flow 

depth, bank erosion, and cross-sectional morphology, while 

sediment samples were collected to characterize grain-size 

variability. 

These field observations were integrated with DEMNAS 

topography, long-term rainfall records, and historical debris 

flow data from hydrological stations. A dataset of 33 debris 

flow events, described by 11 rainfall-related predictors and 

classified into small, medium, and large magnitudes, was 

compiled. Together, these datasets provide a robust foundation 

for ML analysis of rainfall-driven debris flow magnitude in the 

Putih River Watershed. 

 

3.2 Data description and preprocessing 

 

The dataset comprises 33 debris flow events described by 

11 rainfall-related predictors derived from the Agromulyo and 

Ngepos stations. Variables include station-specific and mean 

rainfall totals, rainfall start and end times, debris flow onset 

and termination, and rainfall duration. This limited station 

coverage reflects typical monitoring constraints in Indonesian 

volcanic watersheds and represents a realistic low-data setting. 

Debris flow magnitude is classified into three categories: 

small, medium, and large. 

Before model training, data quality was verified, and no 

missing values were identified. Rainfall predictors were 

standardized for distance-based models, while tree-based 

models used unscaled inputs. The response variable was 

numerically encoded (small = 0, medium = 1, large = 2), and 

stratified cross-validation was applied to preserve class 

proportions and address imbalance. 

Exploratory analysis (Figure 4) indicates strong right-

skewness in rainfall variables. Agromulyo rainfall ranges from 

0.5 to 113.9 mm (mean: 31.0 mm), Ngepos from 0 to 124 mm 

(mean: 25.0 mm), and average rainfall from 0.25 to 89.45 mm 

(mean: 28.5 mm). Time-related variables show more uniform 

distributions, with rainfall typically initiating in the afternoon 

and debris flow following shortly thereafter. Despite the 

limited network, these stations provide the most reliable high-

resolution rainfall data near debris flow initiation zones, 

supporting development of lightweight and operational 

prediction models in data-scarce environments. 

Given the limited dataset size (33 events), a repeated 

stratified 5-fold cross-validation strategy was adopted to 

reduce overfitting and statistical randomness, with the full 

evaluation repeated 50 times using different fold partitions. 

This approach provides a more robust estimate of model 

generalization under small-sample conditions, with 

performance summarized using the mean and standard 

deviation of Accuracy and F1-macro. To address pronounced 

class imbalance, particularly the limited number of medium 

debris flow events (n = 5), imbalance-aware learning was 

incorporated through stratified sampling and cost-sensitive 

class weighting. All preprocessing and imbalance-handling 

procedures were implemented strictly within the cross-

validation framework to prevent information leakage, and 

class-specific sensitivity was computed from pooled out-of-

fold predictions to ensure stability under extreme data scarcity. 

The class distribution of the response variable is shown in 

Figure 5. Small debris flows are the most frequent (15 events), 

followed by big events (13), while medium debris flows are 

underrepresented (5 events). This imbalance poses a risk of 

model bias toward majority classes and is therefore explicitly 

addressed during model training. 

Boxplots of key predictors (Figure 6) show that rainfall 

variables are the strongest discriminators of debris flow 

magnitude. Average rainfall clearly separates small, medium, 

and big events, with the highest values associated with big 

debris flows; similar patterns are observed at the Agromulyo 

and Ngepos stations. Event duration also contributes to 

discrimination, as medium and big events generally last longer 

than small ones. 
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Figure 4. Histograms of predictor variables 

 

 
 

Figure 5.  Class distribution of the target variable indicating 

imbalance among categories 

 

 
 

Figure 6. Boxplots of top predictive features across debris 

flow classes 

 

The correlation heatmap (Figure 7) reveals strong positive 

correlations among rainfall variables, particularly between 

station rainfall and average rainfall (r ≈ 0.80). Timing 

variables are also highly correlated, with start and end times 

strongly linked to rainfall stop indicators (r > 0.8), indicating 

consistent temporal behavior across events. 

 

 
 

Figure 7. Correlation heatmap of predictors 

 

These patterns indicate that rainfall and timing variables 

form coherent feature groups, which may introduce 

multicollinearity in linear models. Tree-based algorithms are 

less sensitive to such dependencies and can effectively exploit 

correlated predictors. Accordingly, all preprocessing steps, 

including scaling, encoding, and class weighting, were applied 

independently within each cross-validation fold to ensure 

unbiased evaluation. 

The exploratory analysis highlights three key insights: (i) 

2382



 

rainfall magnitudes are strongly associated with larger debris 

flow events, (ii) the dataset is imbalanced, particularly for 

medium-magnitude events, and (iii) several predictors are 

highly correlated within rainfall and timing groups. These 

findings informed subsequent preprocessing and model 

selection, including stratified sampling and appropriate 

handling of correlated features. 

 

3.3 Model development for debris flow prediction 

 

The process of developing predictive models for debris flow 

classification was structured into three stages. In the first stage, 

eight ML algorithms were evaluated to establish a baseline of 

performance. These models were carefully selected to 

represent a wide methodological spectrum, including tree-

based classifiers, ensemble learners, kernel-driven methods, 

and distance-based approaches. A description of each model is 

provided below. 

 

3.3.1 Decision tree 

DTs are hierarchical models that recursively split the input 

space into regions defined by decision rules. At each internal 

node, the model selects a feature and threshold that best 

separates the target classes based on impurity measures such 

as the Gini index or entropy [32]. For a dataset 𝐷 with classes 

𝑐, entropy is given by Eq. (1): 

 

H(D) = − ∑ pclog 2(pc)
C

c=1
  (1) 

 

where, 𝑝𝑐  is the proportion of class 𝑐. The DT grows until a 

stopping criterion is reached, after which pruning may be 

applied to reduce overfitting. The general structure of a DT 

used in this study is illustrated in Figure 8, showing the 

progression from the root node to successive splits and final 

leaf nodes that represent prediction outcomes. 

 

 
 

Figure 8. Structure of a decision tree (DT) model 

 

3.3.2 Random forest (Bagging) 

RFs are ensemble methods that combine multiple DTs 

trained on bootstrapped subsets of the data, with random 

feature selection at each split. The final prediction is obtained 

by majority voting across trees. The bagging process reduces 

variance and improves generalization [33]. If 𝑇 trees are 

trained, the ensemble prediction is given by Eq. (2): 

 

𝑦̂ = mode{ℎ𝑡(𝑥),  𝑡 = 1,2, … , 𝑇} (2) 

 

where, ℎ𝑡(𝑥) is the prediction of the 𝑡-th tree. The conceptual 

structure of an RF voting mechanism is illustrated in Figure 9, 

showing how multiple trees independently evaluate an input 

before aggregation. 

 
 

Figure 9. Example of tree-level decision paths used within a 

random forest ensemble 

 

3.3.3 Subspace k-nearest neighbors 

This method is a variant of k-nearest neighbor (kNN) that 

uses random feature subspaces for distance calculations, 

improving robustness and reducing the influence of redundant 

predictors. For a query point 𝑥, the class is assigned based on 

the majority label among its 𝑘  nearest neighbors under a 

chosen distance metric (Euclidean) [34]. The prediction is 

given by Eq. (3): 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑚 − 𝑥𝑗𝑚)2𝑀

𝑚=1
  (3) 

 

where, 𝑀 is the dimension of the feature subspace. 

 

3.3.4 K-nearest neighbor, k = 5, standardized 

The kNN algorithm is a non-parametric classifier that 

assigns a class label to a new sample based on the majority 

class among its 𝑘closest training instances in the feature space. 

Distance is typically computed using Euclidean metrics, 

making the algorithm sensitive to differences in feature scale. 

To ensure fair distance comparisons, all predictors in this 

study were standardized to a zero mean and unit variance. 

 

 
 

Figure 10. K-nearest neighbor (kNN) classification 

mechanism before and after applying kNN 

 

A value of 𝑘 = 5  was selected to balance bias–variance 

trade-offs, providing smoother decision boundaries while 

preventing overfitting associated with very small 𝑘 . An 

illustration of the kNN classification process is shown in 

Figure 10, demonstrating how a new data point is assigned to 

a class based on the nearest labelled neighbours. 
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3.3.5 Logistic regression (ECOC) 

Logistic regression models the posterior probability of class 

membership through the logistic function [35]. For binary 

classification, the probability of class 𝑦 = 1 is given by Eq. 

(4): 

 

𝑃(𝑦 = 1 ∣ 𝑥) =
1

1 + 𝑒−(𝛽0+𝛽𝑇𝑥)
 (4) 

 

For multi-class classification, this study employs the error-

correcting output codes (ECOC) framework, which 

decomposes the problem into multiple binary logistic 

regression models. Each classifier corresponds to a column of 

the ECOC coding matrix, and the final class assignment is 

determined by matching binary outputs to class codewords. 

This coding strategy improves robustness through 

redundancy. An illustrative overview of the logistic regression 

process is shown in Figure 11. 

 

 
 

Figure 11. Logistic regression classification model 

 

 
 

Figure 12. Workflow of the random under-sampling 

boosting (RUSBoost) algorithm 

 

3.3.6 Random under-sampling boosting 

Random under-sampling boosting (RUSBoost) is an 

ensemble method designed for imbalanced datasets. It 

combines boosting, which iteratively reweights misclassified 

samples, with random under-sampling (RUS) of the majority 

class to reduce class imbalance [36]. For an ensemble of 𝑇 

weak learners, the final hypothesis is a weighted combination 

of the individual classifier outputs, expressed as Eq. (5): 

𝐻(𝑥) = sign(∑ 𝛼𝑡  ℎ𝑡(𝑥)
𝑇

𝑡=1
)  (5) 

 

where, 𝛼𝑡  denotes the weight assigned to the 𝑡-th weak learner 

ℎ𝑡(𝑥) , typically a DT with limited depth. A schematic 

overview of the RUSBoost workflow showing RUS sampling, 

iterative reweighting, weak learner construction, and final 

ensemble prediction is presented in Figure 12. 

 

3.3.7 Support vector machine with RBF kernel (SVM-RBF, 

ECOC) 

SVMs are margin-based classifiers that separate classes by 

maximizing the margin between support vectors [37]. The 

RBF kernel allows nonlinear decision boundaries to be given 

by Eq. (6). In this study, ECOC was used to extend binary 

SVMs to multi-class prediction. 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) (6) 

 

3.3.8 Support vector machine with linear kernel (SVM-linear, 

ECOC) 

A linear SVM attempts to find the hyperplane that 

maximizes the margin between classes [38]. The equation is 

given by Eq. (7). 

 

f(x) = sign(wTx + b) (7) 

 

where, 𝑤  represents the weight vector normal to the 

hyperplane and 𝑏 is the bias term. The maximization of the 

margin between support vectors enhances generalization, 

particularly when the classes are linearly separable. 

For multi-class classification, the ECOC strategy was 

employed. ECOC decomposes the multi-class problem into 

multiple binary SVM classifiers, each corresponding to a 

column of the encoding matrix. The final class prediction is 

determined by selecting the class whose codeword has the 

minimum decoding loss relative to the set of binary outputs. 

An illustration of the kernel mapping concept showing how 

non-linear class distributions can become linearly separable in 

a transformed feature space is provided in Figure 13. 

 

 
 

Figure 13. Visualization of the kernel trick 

 

ML classifiers were selected to balance predictive 

performance, robustness to small datasets, and interpretability. 

Tree-based models capture nonlinear rainfall thresholds, 

ensemble methods (RF, RUSBoost) assess variance reduction 

and imbalance handling, and distance- and kernel-based 

models provide benchmark comparisons under identical data 

conditions. 

All models were optimized using grid-search tuning within 

cross-validation to reduce overfitting. DTs were tuned for 
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depth (3–10), RF for trees (50–200), kNN for neighbors (k = 

3–9), logistic regression for C (0.01–10), SVM for kernels 

(linear, RBF) with C = 0.1–100 and γ = 0.001–1, and 

RUSBoost for learners (50–200) and learning rate (0.01–1). 

Optimal models were selected using cross-validated F1-macro 

scores. 

 

3.4 Performance evaluation of the developed models 

 

Evaluating ML models requires reliable and widely adopted 

performance metrics, particularly for imbalanced 

classification problems [39, 40]. In this study, overall 

Accuracy (Acc) and the F1-macro were selected as the primary 

evaluation metrics to provide a systematic and comparable 

assessment of model performance. 

Accuracy measures the proportion of correctly classified 

samples and offers an intuitive indicator of overall predictive 

success. However, in imbalanced datasets, Accuracy can be 

biased toward majority classes and may not adequately reflect 

performance on minority events [41]. To address this 

limitation, F1-macro was employed, as it computes precision 

and recall independently for each class and then averages 

them, ensuring equal weighting of minority and majority 

debris flow categories. 

Beyond threshold-based metrics, discriminative capability 

was assessed using the macro-averaged AUC-ROC in a one-

vs-rest framework, while probabilistic reliability was 

evaluated through calibration curves comparing predicted 

probabilities with observed frequencies. Computational 

efficiency was also examined by averaging training and 

prediction times across cross-validation folds. Together, 

Accuracy and F1-macro provide a robust evaluation 

framework, capturing both overall correctness and balanced 

performance across debris flow magnitudes [42], with their 

mathematical definitions presented in Eqs. (8) and (9): 

 

Accuracy =
TP+TN

TP+TN+FP+FN
  (8) 

 

F1-macro =
1

C
∑

2⋅Precisioni⋅Recalli

Precisioni+Recalli

C

i=1
  (9) 

 

 

4. RESULTS AND DISCUSSION 

 

The evaluation of the proposed debris flow prediction 

framework was carried out through the systematic comparison 

of eight ML classifiers. Each model was trained and tested 

using 5-fold cross-validation, a strategy that provides a more 

reliable estimate of generalization compared to a single train-

test split. Performance was assessed with two key indicators: 

overall Accuracy (Acc) and the F1-macro. Accuracy reflects 

the proportion of correctly classified instances, while F1-

macro accounts for the balance of precision and recall across 

all classes, thereby mitigating the influence of class imbalance. 

The combined use of these metrics ensures a fair and 

comprehensive evaluation of classification performance. 

 

4.1 Model benchmarking and leaderboard analysis 

 

Figure 14 summarizes the comparative performance of the 

eight evaluated models. The DT achieved the best overall 

performance, with an Accuracy of 93.9% and an F1-macro of 

0.911. This result is notable given the simplicity of DTs 

compared to ensemble and kernel-based methods. Despite its 

lightweight structure, the DT outperformed more complex 

models such as RF and SVMs. This finding is consistent with 

previous studies showing that interpretable, rule-based 

classifiers can perform well on small-to-moderate datasets 

when predictors are closely linked to the underlying physical 

processes. 

RF with bagging ranked second, achieving an Accuracy of 

90.9% and an F1-macro of 0.857. Although its performance 

was strong, it remained inferior to the single DT. This may 

reflect the limited dataset size, where the averaging effect of 

bagging can dilute sharp decision boundaries that are 

advantageous in simpler models. Subspace kNN achieved the 

third-best performance, with an Accuracy of 84.8% and an F1-

macro of 0.795, indicating that distance-based methods can 

capture similarity patterns among rainfall and timing 

variables. 

 

 
 

Figure 14. Leaderboard comparison of eight machine 

learning (ML) models using 5-fold cross-validation 

 

 
 

Figure 15. Impact of imbalance-aware strategies on model 

performance 

 

To address class imbalance, several imbalance-aware 

strategies were evaluated, including synthetic oversampling 

using SMOTE and cost-sensitive learning via class-weighted 

DTs. Figure 15 compares the impact of these strategies on 

overall performance. The baseline model achieved an 

Accuracy of 0.848 and an F1-macro of 0.786. While SMOTE 

slightly improved Accuracy (0.879) and F1-macro (0.819), it 

did not enhance sensitivity for the medium debris flow class. 

Similarly, class-weighted learning preserved global 

performance but failed to recover medium events, yielding 

zero recall. 
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Sensitivity analysis showed that recall for medium debris 

flow events remained zero across all evaluated strategies. This 

indicates that neither synthetic oversampling nor cost-

sensitive learning was sufficient to overcome the extreme 

scarcity and feature overlap of the medium class. Although 

SMOTE marginally improved global metrics, it introduced 

synthetic variability without improving minority-class 

discrimination, while class weighting modified 

misclassification costs without creating separable decision 

regions. These results suggest that data availability, rather than 

model design, is the primary limitation. Consequently, 

stratified evaluation and macro-averaged metrics were 

adopted as more reliable indicators of robustness under severe 

data scarcity. 

Figure 16 presents the stability of the DT under repeated 

stratified 5-fold cross-validation with 50 repetitions. The 

boxplots show the distributions of Accuracy and F1-macro 

across all repetitions. The model achieved a mean Accuracy of 

0.858 (SD = 0.044) and a mean F1-macro of 0.799 (SD = 

0.052). The relatively narrow interquartile ranges indicate 

stable performance, while limited outliers reflect expected 

variability due to the small and imbalanced dataset. 

 

 
 

Figure 16. Stability of decision tree (DT) performance under 

repeated stratified 5-fold cross-validation 

 

To ensure reliable model comparison, uncertainty was 

quantified using the mean and standard deviation of 

performance metrics across cross-validation folds. In addition, 

McNemar’s test was applied to pairwise model predictions. 

Results confirmed that the performance improvement of the 

DT over RF (p < 0.05) and SVM-RBF (p < 0.01) was 

statistically significant, indicating that the observed 

superiority was not due to random variation. 

The remaining models showed moderate to low 

performance. Standard kNN and logistic regression (ECOC) 

achieved similar Accuracy values (~78.8%), but logistic 

regression exhibited a much lower F1-macro (0.589), 

reflecting poor sensitivity to the minority medium class. 

RUSBoost, SVM-RBF, and SVM-linear performed weakest, 

with Accuracies below 76% and F1-macro values between 

0.640 and 0.707. These results suggest that boosting and 

kernel-based methods were less effective under strong class 

imbalance and limited sample size. 

The superior performance of the DT can be attributed to 

three factors: its suitability for small and imbalanced datasets, 

its ability to exploit strong correlations among rainfall 

predictors, and its transparent rule-based structure. Unlike 

black-box models, the DT directly captures physically 

meaningful rainfall thresholds, providing both high predictive 

accuracy and clear interpretability. 

 

4.2 Confusion matrix and class-level insights 

 

The confusion matrix of the DT model (Figure 17) provides 

detailed insight into its class-level performance. The model 

achieved perfect recognition of big debris flow events, 

correctly identifying all 13 cases. Performance for small debris 

flows was also strong, with 14 out of 15 cases correctly 

classified. The only misclassification occurred within the 

medium debris flow class, where one event was incorrectly 

labelled as Small. 

Figure 18 shows a simplified DT trained for interpretability. 

The model relies on a small number of physically meaningful 

predictors, with average rainfall emerging as the dominant 

splitting variable. As illustrated by the decision structure, 

events with average rainfall below 19.75 mm are directly 

classified as small debris flows, demonstrating a clear and 

transparent threshold-based decision rule. 

 

 
 

Figure 17. Confusion matrix of the best-performing decision 

tree (DT) model (out-of-fold predictions) 

 

 
 

Figure 18. Simplified decision tree (DT) illustrating 

dominant decision rules for debris flow classification 

 

These results highlight two key aspects of model behaviour. 

First, the model effectively distinguishes between extreme 

classes (Small and Big), which is critical for practical risk 

assessment, particularly for detecting high-impact big debris 

flow events. Second, the misclassification of a medium event 

reflects the challenge posed by class imbalance and limited 

sample size. With only five medium events available, the 

model has reduced ability to learn stable decision boundaries 

for this intermediate class, a limitation commonly reported in 
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debris flow prediction studies. 

Despite this constraint, the overall balance of predictions 

across classes supports the suitability of the DT model. The 

high F1-macro score (0.911) indicates that performance 

remains robust across all categories, including the minority 

class. 

 

4.3 Feature importance and physical interpretation 

 

Feature importance analysis was conducted to examine the 

internal decision-making process of the model (Figure 19). 

Rainfall-related variables emerged as the dominant predictors 

of debris flow occurrence and magnitude, with average rainfall 

identified as the most influential feature, followed by 

Agromulyo rainfall and Ngepos rainfall. This ranking is 

consistent with hydrological theory and empirical evidence 

emphasizing the critical role of rainfall intensity and 

accumulation in triggering slope instability and debris flows. 

 

 
 

Figure 19. Feature importance derived from the tuned 

decision tree (DT) model 

 

Temporal variables, including debris flow start and end 

times and rainfall stop indicators, contributed less strongly but 

provided complementary information. These features helped 

refine decision boundaries by linking rainfall timing with 

debris flow initiation, consistent with observations from field 

monitoring studies. 

The combination of rainfall magnitude as the primary driver 

and timing variables as contextual refinements demonstrates 

the model’s ability to capture both direct and indirect 

triggering mechanisms. The explicit representation of these 

relationships within the DT enhances interpretability, allowing 

domain experts to verify consistency with physical 

understanding rather than relying solely on statistical 

associations. 

 

4.4 Receiver operating characteristic curve analysis 

 

Receiver operating characteristic (ROC) analysis further 

demonstrates the robustness of the DT model (Figure 20). The 

area under the curve (AUC) reached 1.00 for big debris flow 

events, indicating perfect separability from other classes. For 

small debris flows, the AUC was 0.94, reflecting excellent 

discriminative performance, while the medium class achieved 

a slightly lower AUC of 0.88, consistent with confusion matrix 

results and the effects of class imbalance. 

 
 

Figure 20. ROC curves of the decision tree (DT) model (one-

vs-all strategy) 

 

Overall discrimination was further quantified using the 

macro-averaged AUC-ROC, which reached 0.890, indicating 

strong class separability despite the limited dataset size and 

pronounced imbalance. Model reliability was assessed 

through calibration analysis for big debris flow events (Figure 

21). The calibration curve shows close agreement between 

predicted probabilities and observed frequencies, with most 

points near the 1:1 reference line. Minor deviations from 

perfect calibration were observed, consistent with data 

scarcity. Computational efficiency was also evaluated. The DT 

required an average training time of 0.0245 s and an average 

prediction time of 0.0066 s, demonstrating low computational 

cost. 

 

 
 

Figure 21. Calibration curve for big debris flow events 

comparing predicted probabilities with observed frequencies 

 

4.5 Practical implementation through graphical user 

interface 

 

The tuned DT model was implemented within a MATLAB-

based graphical user interface (GUI) to support practical 

application in debris-flow early-warning systems. To 

demonstrate system behaviour beyond a static interface, a 

synthetic operational scenario consisting of five unseen yet 

physically plausible rainfall cases was introduced. These 

scenarios were designed to emulate realistic operational 

conditions and to evaluate how the GUI responds to varying 

rainfall intensities. 
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The system response under these synthetic scenarios is 

summarized in Figure 22. The visualization shows a clear 

progression in predicted debris-flow severity with increasing 

average rainfall intensity, transitioning from Small to Big 

classes in a physically consistent and interpretable manner. 

The scatter-based classification plot highlights the separation 

of debris-flow classes within the rainfall feature space, 

illustrating the transparency and rule-based structure of the DT 

model. In addition, the operational timeline links rainfall start 

time with increasing rainfall intensity, demonstrating how 

predicted hazard levels may evolve over time in a real-time 

monitoring context. 

When benchmarked against recent studies, the proposed DT 

achieved competitive or superior performance. For example, 

Onyelowe et al. [43] reported ANFIS–PSO models with 

accuracies exceeding 85%, Jiang et al. [44] achieved 72–83% 

with deep learning frameworks, and Chen et al. [45] obtained 

AUC = 0.93 with RF ensembles. In comparison, our tuned DT 

achieved an overall Accuracy of 93.9% and F1-macro of 

0.911, demonstrating not only higher predictive accuracy but 

also a more balanced classification across debris flow 

categories. Importantly, while prior studies often relied on 

large-scale datasets and computationally intensive models, our 

approach demonstrates that a lightweight and interpretable 

model can deliver equally strong results when carefully tuned 

and adapted to local conditions. 

 

 
 

Figure 22. Synthetic operational scenario 

 

 

5. LIMITATIONS OF THE STUDY 

 

This study has several limitations. The dataset is small (33 

events) and highly imbalanced, particularly for medium debris 

flows, which may limit generalization and sensitivity for 

intermediate hazard levels. Feature engineering is deliberately 

simple and based only on rainfall magnitude and timing from 

two stations, excluding other influential factors such as terrain 

properties, soil moisture, antecedent rainfall, and land cover. 

In addition, model performance may be affected by data drift 

and climate change, as future rainfall–debris flow 

relationships may differ from historical patterns. Finally, the 

model was developed for a single watershed, and its 

transferability to other regions with different 

geomorphological and climatic conditions remains untested. 

Future work should therefore focus on expanding event 

inventories and integrating multi-source data to improve 

robustness and generalization. 

 

 

6. CONCLUSIONS 

 

This study proposes an ML framework for rainfall-driven 

debris flow magnitude prediction in data-scarce volcanic 

watersheds. By systematically benchmarking eight classifiers 

under a stratified cross-validation scheme, the results 

demonstrate that a tuned DT model offers an effective balance 

between predictive accuracy, interpretability, and operational 

feasibility for small and imbalanced datasets. 

The proposed framework achieved an Accuracy of 93.9% 

and an F1-macro score of 0.911, outperforming ensemble and 

kernel-based models. Feature importance analysis identified 

rainfall magnitude variables, particularly average and station-

specific rainfall, as the dominant predictors of debris flow 

magnitude, with timing variables providing complementary 

contextual information. ROC and calibration analyses 

confirmed strong discriminative ability and reliable 

probabilistic behavior, especially for large debris flow events 

that are critical for early warning. 

Despite its strong performance, predictive reliability for 

medium debris flows remains limited due to extreme data 

scarcity and class imbalance. In addition, reliance on rainfall 

and timing variables alone constrains representation of the full 

geomorphological and hydrological complexity governing 

debris flow initiation. 

Future work should focus on integrating multiphysical 

predictors, adopting imbalance-aware and transfer-learning 

strategies to enhance spatial generalization, and developing 

climate-resilient implementations using satellite rainfall 

products and adaptive retraining. The successful deployment 

of the calibrated DT in a MATLAB-based GUI further 

demonstrates the framework’s operational applicability for 

real-time decision support. 

 

 

ACKNOWLEDGMENT 

 

The authors gratefully acknowledge Universitas 

Muhammadiyah Yogyakarta and RKI-PRN Equity Research 

Grant 2025/2026 for providing institutional support and 

research facilities that enabled this study. 

 

 

REFERENCES  

 

[1] Sha, S., Dyson, A.P., Kefayati, G., Tolooiyan, A. (2023). 

Simulation of debris flow-barrier interaction using the 

smoothed particle hydrodynamics and coupled Eulerian 

Lagrangian methods. Finite Elements in Analysis and 

Design, 214: 103864. 

https://doi.org/10.1016/j.finel.2022.103864 

2388



 

[2] Rizova, R., Nikolova, V. (2021). Geomorphological and 

sedimentological characteristics of debris flows in the 

river Buyukdere watershed (Eastern Rhodopes, 

Bulgaria). International Multidisciplinary Scientific 

GeoConference: SGEM, 21(1.1): 43-50. 

https://doi.org/10.5593/sgem2021/1.1/s01.007 

[3] Bocanegra, R.A., Ramírez, C.A., Salcedo, E.D.J., 

Villegas, M.P.L. (2023). Determination of hazard due to 

debris flows. Water, 15(23): 4057. 

https://doi.org/10.3390/w15234057 

[4] Li, Y., Liu, X.N., Gan, B.R., Wang, X.K., Yang, X.G., 

Li, H.B., Zhou, J.W. (2021). Formation-evolutionary 

mechanism analysis and impacts of human activities on 

the 20 August 2019 clustered debris flows event in 

Wenchuan County, Southwestern China. Frontiers in 

Earth Science, 9: 616113. 

https://doi.org/10.3389/feart.2021.616113 

[5] Zhang, X., Li, H., Fan, Y., Zhang, L., Peng, S., Huang, 

J., Meng, Z. (2025). Predicting the dynamic of debris 

flow based on viscoplastic theory and support vector 

regression. Water (20734441), 17(1): 120. 

https://doi.org/10.3390/w17010120 

[6] Zhao, Y., Li, Y., Zheng, J., Wang, Y., Meng, X., Yue, D., 

Zhang, Y. (2025). A new rainfall Intensity−Duration 

threshold curve for debris flows using comprehensive 

rainfall intensity. Engineering Geology, 347: 107949. 

https://doi.org/10.1016/j.enggeo.2025.107949 

[7] Zhang, X., Tang, C., Yu, Y., Tang, C., Li, N., Xiong, J., 

Chen, M. (2022). Some considerations for using 

numerical methods to simulate possible debris flows: 

The case of the 2013 and 2020 Wayao debris flows 

(Sichuan, China). Water, 14(7): 1050. 

https://doi.org/10.3390/w14071050 

[8] Ramesh, A., Gulmira, Z., Shnain, A.H., Ramya, R., 

Nagaveni, P. (2025). Big data and machine learning for 

climate change prediction: An integrated approach to 

environmental monitoring. In 2025 International 

Conference on Automation and Computation 

(AUTOCOM), Dehradun, India, pp. 1384-1389. 

https://doi.org/10.1109/autocom64127.2025.10956420 

[9] Singh, M., Singh, M., Singh, J., Singh, H., Singh, M. 

(2026). Application of machine learning techniques for 

environmental monitoring and conservation: A review. 

In Digitization and Manufacturing Performance: An 

Environmental Perspective, pp. 97-127. 

https://doi.org/10.1002/9781394197828.ch4 

[10] Ikhsan, J., Zhafran, E.A.H., Hairani, A., Zainol, M.R. 

(2023). The prediction of lahar flood event impact on the 

inundation areas in Gendol River, Indonesia. In 

International Conference on Civil Engineering, pp. 119-

129. https://doi.org/10.1007/978-981-99-4045-5_10 

[11] Jha, K., Kumar, P. (2025). Comparing different machine 

learning and deep learning models for daily rainfall 

prediction at Kerala point location. In 2025 3rd 

International Conference on Device Intelligence, 

Computing and Communication Technologies (DICCT), 

Dehradun, India, pp. 490-495. 

https://doi.org/10.1109/dicct64131.2025.10986746 

[12] Gupta, S., Otudi, H., Hai, A.A., Aljurbua, R., 

Andjelkovic, J., Alharbi, A., Obradovic, Z. (2025). 

Harnessing machine learning for rain induced landslide 

detection and analysis. In International Conference on 

Engineering Applications of Neural Networks, pp. 94-

108. https://doi.org/10.1007/978-3-031-96199-1_8 

[13] Muhibuddin, A., Salim, A., Manaf, M., Surya, B., 

Barkey, R.A., Nasution, M.A. (2024). Adaptation and 

mitigation model for flood disaster resilience in West 

Malangke district, North Luwu Regency, Indonesia. 

International Journal of Safety & Security Engineering, 

14(5): 1627-1633. https://doi.org/10.18280/ijsse.140529 

[14] Ming, Z., Zhang, J., He, H., Zhang, L., Chen, R., Jia, Y. 

(2025). Addressing accuracy challenges in machine 

learning for debris flow susceptibility: Insights from the 

Yalong River basin. Journal of Mountain Science, 22(6): 

2034-2052. https://doi.org/10.1007/s11629-024-9316-2 

[15] Li, T., Huang, Q., Chen, Q. (2025). Debris flow 

susceptibility prediction using transfer learning: A case 

study in western Sichuan, China. Applied Sciences, 

15(13): 7462. https://doi.org/10.3390/app15137462 

[16] Chen, M., Park, Y., Mangalathu, S., Jeon, J.S. (2024). 

Effect of data drift on the performance of machine-

learning models: Seismic damage prediction for aging 

bridges. Earthquake Engineering & Structural Dynamics, 

53(15): 4541-4561. https://doi.org/10.1002/eqe.4230 

[17] La Porta, G., Cafaro, F., Leonardi, A., Pirulli, M. (2023). 

Triggering-runout modelling of rainfall-triggered debris 

flows: A case study in the Campania region, Italy. E3S 

Web of Conferences, 415: 01012. 

https://doi.org/10.1051/e3sconf/202341501012 

[18] Li, H., Hu, K., Liu, S., Cheng, H., Wen, Z., Zhang, X., 

Yang, H. (2025). Abundant antecedent rainfall incubated 

a group-occurring debris flow event in the Dadu River 

Basin, Southwest China. Landslides, 22(6): 1955-1971. 

https://doi.org/10.1007/s10346-025-02489-9 

[19] Kasim, N., Taib, K.A., Ghazali, N.A.A., Azahar, 

W.N.A.W., Ismail, N.N., Husain, N.M., Ibrahim, S.L. 

(2019). Rainfall intensity (I)–duration (D) induced debris 

flow occurrences in Peninsular Malaysia. In AWAM 

International Conference on Civil Engineering, pp. 897-

903. https://doi.org/10.1007/978-3-030-32816-0_66 

[20] Zhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., 

Qing, F. (2022). Extracting more features from rainfall 

data to analyze the conditions triggering debris flows. 

Landslides, 19(9): 2091-2099. 

https://doi.org/10.1007/s10346-022-01893-9 

[21] Hirschberg, J., Badoux, A., McArdell, B.W., 

Leonarduzzi, E., Molnar, P. (2021). Evaluating methods 

for debris-flow prediction based on rainfall in an Alpine 

catchment. Natural Hazards and Earth System Sciences, 

21(9): 2773-2789. https://doi.org/10.5194/nhess-21-

2773-2021 

[22] Özdoğan-Sarıkoç, G., Dadaser-Celik, F. (2024). 

Physically based vs. data-driven models for streamflow 

and reservoir volume prediction at a data-scarce semi-

arid basin. Environmental Science and Pollution 

Research, 31(27): 39098-39119. 

https://doi.org/10.1007/s11356-024-33732-w 

[23] Cao, J., Qin, S., Yao, J., Zhang, C., Liu, G., Zhao, Y., 

Zhang, R. (2023). Debris flow susceptibility assessment 

based on information value and machine learning 

coupling method: From the perspective of sustainable 

development. Environmental Science and Pollution 

Research, 30(37): 87500-87516. 

https://doi.org/10.1007/s11356-023-28575-w 

[24] Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, 

I., Panahi, S., Ahmad, B.B. (2019). Applying population-

based evolutionary algorithms and a neuro-fuzzy system 

for modeling landslide susceptibility. Catena, 172: 212-

2389



 

231. https://doi.org/10.1016/j.catena.2018.08.025 

[25] Wang, X., Tian, M., Qin, Q., Liang, J. (2023). 

Hybridization of machine learning algorithms and an 

empirical regression model for predicting debris-flow-

endangered areas. Advances in Civil Engineering, 

2023(1): 9465811. 

https://doi.org/10.1155/2023/9465811 

[26] Shukla, P.K., Ranjan, A., Kumar, A., Addy, U. (2025). 

IoT and machine learning based early landslide detection 

and warning system. In Applications of Artificial 

Intelligence in 5G and Internet of Things, pp. 69-74. 

https://doi.org/10.1201/9781003532521-13 

[27] Sattari, A., Jafarzadegan, K., Moradkhani, H. (2024). 

Enhancing streamflow predictions with machine learning 

and Copula-Embedded Bayesian model averaging. 

Journal of Hydrology, 643: 131986. 

https://doi.org/10.1016/j.jhydrol.2024.131986 

[28] Wang, J., Tie, Y., Bai, Y. (2025). Application and 

prospects of machine learning for rockfalls, landslides 

and debris flows. Hydrogeology & Engineering Geology, 

52(4): 228-244. 

https://doi.org/10.16030/j.cnki.issn.1000-

3665.202402011 

[29] Gonda, Y., Miyata, S., Fujita, M., Legono, D., Tsutsumi, 

D. (2019). Temporal changes in runoff characteristics of 

lahars after the 1984 Eruption of Mt. Merapi, Indonesia. 

Journal of Disaster Research, 14(1): 61-68. 

https://doi.org/10.20965/jdr.2019.p0061 

[30] Hadmoko, D.S., De Bélizal, E., Mutaqin, B.W., 

Dipayana, G.A., Marfai, M.A., Lavigne, F., Gomez, C. 

(2018). Post-eruptive lahars at Kali Putih following the 

2010 eruption of Merapi volcano, Indonesia: 

Occurrences and impacts. Natural Hazards, 94(1): 419-

444. https://doi.org/10.1007/s11069-018-3396-7 

[31] Sclafani, P., Nygaard, C., Thorne, C. (2017). Applying 

geomorphological principles and engineering science to 

develop a phased Sediment Management Plan for Mount 

St Helens, Washington. Earth Surface Processes and 

Landforms, 43(5): 1088-1104. 

https://doi.org/10.1002/esp.4277 

[32] Fuqaha, S., Zaki, A., Nugroho, G. (2025). Machine 

learning and RSM for strength forecasting in sustainable 

SCGC. IIUM Engineering Journal, 26(3): 53-88. 

https://doi.org/10.31436/iiumej.v26i3.3730 

[33] Fuqaha, S., Zaki, A., Riyadi, S. (2025). Compressive 

strength prediction of sustainable concrete incorporating 

non-potable water via advanced machine learning. 

Sustainable Engineering, 5(4): 1-24. 

https://doi.org/10.54113/j.sust.2025.000092 

[34] Haq, I.U., Khan, D.M., Hamraz, M., Iqbal, N., Ali, A., 

Khan, Z. (2023). Optimal-k nearest neighbours based 

ensemble for classification and feature selection in 

chemometrics data. Chemometrics and Intelligent 

Laboratory Systems, 240: 104882. 

https://doi.org/10.1016/j.chemolab.2023.104882 

[35] Płatek, M., Mielniczuk, J. (2023). Enhancing naive 

classifier for positive unlabeled data based on logistic 

regression approach. Annals of Computer Science and 

Information Systems, 35: 225-233. 

https://doi.org/10.15439/2023f1402 

[36] Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., 

Napolitano, A. (2008). RUSBoost: Improving 

classification performance when training data is skewed. 

In Proceedings - International Conference on Pattern 

Recognition/Proceedings/International Conference on 

Pattern Recognition, Tampa, FL, USA, pp. 1-4. 

https://doi.org/10.1109/icpr.2008.4761297 

[37] Grønlund, A., Kamma, L., Larsen, K.G. (2020). Near-

tight margin-based generalization bounds for support 

vector machines. In Proceedings of the 37th International 

Conference on Machine Learning, PMLR 119, pp. 3779-

3788. 

https://proceedings.mlr.press/v119/gronlund20a.html. 

[38] Maada, L., Fararni, K.A., Aghoutane, B., Fattah, M., 

Farhaoui, Y. (2022). A comparative study of sentiment 

analysis machine learning approaches. In 2022 2nd 

International Conference on Innovative Research in 

Applied Science, Engineering and Technology 

(IRASET), Meknes, Morocco, pp. 1–5. 

https://doi.org/10.1109/iraset52964.2022.9738346 

[39] Alqaraleh, M., Alzboon, M.S., Al-Batah, M.S., Wahed, 

M.A., Abuashour, A., Alsmadi, F.H. (2024). Harnessing 

machine learning for quantifying vesicoureteral reflux: A 

promising approach for objective assessment. 

International Journal of Online and Biomedical 

Engineering (iJOE), 20(11): 123-145. 

https://doi.org/10.3991/ijoe.v20i11.49673 

[40] Tian, Y., Zeng, Z., Wen, M., Liu, Y., Kuo, T., Cheung, 

S. (2020). EvalDNN: A toolbox for evaluating deep 

neural network models. In 2020 IEEE/ACM 42nd 

International Conference on Software Engineering: 

Companion Proceedings (ICSE-Companion), pp. 45–48. 

https://doi.org/10.1145/3377812.3382133 

[41] Călin, S. (2025). Handling imbalanced data: The 

SMOTE technique. In 2025 17th International 

Conference on Electronics, Computers and Artificial 

Intelligence (ECAI), Targoviste, Romania, pp. 1-5. 

https://doi.org/10.1109/ecai65401.2025.11095450 

[42] Mir, T.A., Banerjee, D., Aggarwal, P., Pokhariya, H.S. 

(2024). Proactive management of shrinkage defects 

using deep learning analytics. In 2024 Asia Pacific 

Conference on Innovation in Technology (APCIT), 

Mysore, India, pp. 1-6. 

https://doi.org/10.1109/apcit62007.2024.10673656 

[43] Onyelowe, K.C., Moghal, A.A.B., Ahmad, F., Rehman, 

A.U., Hanandeh, S. (2024). Numerical model of debris 

flow susceptibility using slope stability failure machine 

learning prediction with metaheuristic techniques trained 

with different algorithms. Scientific Reports, 14(1): 

19562. https://doi.org/10.1038/s41598-024-70634-w 

[44] Jiang, H., Zou, Q., Zhu, Y.Q., Li, Y., et al. (2024). Deep 

learning prediction of rainfall-driven debris flows 

considering the similar critical thresholds within 

comparable background conditions. Environmental 

Modelling & Software, 179: 106130. 

https://doi.org/10.1016/j.envsoft.2024.106130 

[45] Chen, Y., Li, N., Xing, F., Xiang, H., Chen, Z. (2025). 

Study on debris flow vulnerability of ensemble learning 

model based on spy technology A case study of upper 

Minjiang river basin. Scientific Reports, 15(1): 22480. 

https://doi.org/10.1038/s41598-025-03479-6  

 

 

NOMENCLATURE 

 

Acc overall Accuracy 

AUC area under the curve 

Avg_Rain average rainfall  
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DT decision tree 

ECOC error-correcting output codes 

F1-macro macro-averaged F1 score 

GUI graphical user interface 

k number of nearest neighbors 

kNN k-nearest neighbor 

RF random forest 

RUSBoost random under-sampling boosting 

SVM support vector machine 

 

Greek symbols 

 

γ kernel width parameter in RBF-SVM 

µ mean value 

σ standard deviation 

 

Subscripts 

 

A Agromulyo rainfall station 

N Ngepos rainfall station 

Avg average value 

i i-th sample 

test testing dataset 
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