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The growing demand for the Internet of Things (IoT), especially the Social
Internet of Things (SIoT), has introduced a new dimension of technological
challenges. As the use of SIoT expands, it has raised significant concerns about
the security of networks connecting smart devices, particularly against
sophisticated network breaches. Traditional Intrusion Detection Systems (IDS)
struggle to dynamically adapt to the complex, high-dimensional environments of
SIoT. This paper proposes that a more effective Network Intrusion Detection
System (NIDS) can be developed using Double Deep Q-Learning (DDQL). The
reinforcement learning (RL) method overcomes the overestimation bias
commonly found in traditional Q-learning techniques, offering a more accurate
and reliable detection model. The system was trained and tested using the
CICIDS2017 dataset, which includes real-world network traffic and attack
scenarios. By framing intrusion detection as a sequence of decisions, the DDQL
learning-based agent can learn and predict malicious behaviors more accurately
with much fewer false positives. Experiments show that the developed method
provides better results in terms of detection accuracy, precision, and F1-score
than traditional machine learning (ML) classifiers and standard Deep Q-Learning
(DQL) models. These enhancements showcase the system's improvements in
real-time intrusion detection and response capabilities. Moreover, the scalability
and flexibility of the system make it a powerful instrument to identify intrusions
in the dynamic and fast-growing S-IoT environments where attack scenarios
change rapidly, and attack vectors can be very wide.

1. INTRODUCTION

Systems (IDSs) within the context of SIoT.
Intrusion detection approaches are typically categorized as

The Social Internet of Things (SIoT) grl6ows from the
conventional Internet of Things (IoT), where smart objects
manage and establish social relations to increase collaboration,
context perceptiveness, and intelligent services provisioning
[1]. This has attracted huge interest, e.g., in health care,
intelligent transportation systems, and industrial automation
[2, 3]. Nonetheless, security issues are becoming even more
relevant as the number of devices that have an IP address
grows and SIoT networks are dynamic, decentralized, and
heterogeneous [4].

Botnet, Denial of Service (DoS), and data tampering stand
as main threats to SIoT environments, taking advantage of the
high communication rate among devices and the node mobility
[5]. Conventional security analogues such as firewalls and
antivirus software are no longer sustainable since they tend to
be resource-exorbitant; they also fail to cater to the current-
day gravity of the threat landscape [6]. In response, there is a
need for new lightweight and innovative Intrusion Detection
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signature-based and anomaly-based detectors. Signature-
based IDSs work well for known attacks, but are not effective
against zero-day attacks and need regular updates [7].
Anomaly-based systems, in comparison, have the potential to
detect new attacks but suffer from less scalability and high
false positives, so in practice they are not as effective as
signature-based systems [8, 9]. Most existing IDSs do not
consider the special social behaviors in SIoT and cannot well
adapt to the networked environment with such social
behaviors, laying insufficiency for detecting attacks
effectively. To overcome these deficiencies, an increasing
number of researchers are adopting adaptive methods that
make use of machine learning (ML) and deep learning (DL)
techniques [10, 11]. Well, these techniques solve the problem
of manual feature engineering but might still lack in
generalization. DL methods, like CNNs and RNNs, show
potential in achieving better efficiency as they can
automatically learn and capture useful characteristics of raw
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traffic data [12, 13]. Nevertheless, despite these progressions,
the computation-intensive nature of both ML and DL solutions
continues to present considerable struggles for real-time
systems as they often lack the capacity for a rapid response
against advancing adversarial methodologies.

Reinforcement learning (RL) has recently shown the
potential in facilitating real-time online learning under
dynamic environments, which is an attractive feature,
especially for internet applications. Supervised learning
models depend on massive amounts of labeled information in
dealing with pattern recognition, while RL simply interacts
with the environment and learns through trial and error. In this
setting, an RL agent is given feedback in terms of reward or
penalties based on its actions that directly influence the
environment. The agent gradually learns to take actions in a
way that maximizes the sum of rewards because it is designed
to converge on an optimal policy that reacts to changes in its
environment in the most favorable way [14]. This adaptability
property renders RL particularly well-suited for Network
Intrusion Detection System (NIDS) in highly volatile and
unpredictable systems, such as SIoT environments.

Deep Q-Learning (DQL) is mostly used in an IDS model for
extensive state-action spaces. Nevertheless, the DQL
algorithm is affected by Q-value overestimation that can affect
decision-making. To mitigate the instability in standard DQL,
Double Deep Q-Learning (DDQL) decouples action selection
and evaluation by using two distinct neural networks [15].
DDQL is highly promising, yet it has not been fully developed
for SIoT-IDSs. The purpose of this paper is to address these
gaps via a new DDQL-based IDS for efficient integration and
evolution of social context knowledge, as well as maintaining
a high threat detection rate with low CPU utilization.

2. RELATED WORK

Several studies have explored IDS frameworks in both IoT
and SIoT environments, aiming to enhance detection
capabilities through intelligent learning models. These studies
are categorized below according to their underlying
methodologies.

2.1 Traditional and machine learning-based approaches

In the early works on IoT security, rule-based and
statistical-based approaches for intrusion detection have been
used [7]. To overcome the drawbacks of these techniques, ML
algorithms like Decision Trees (DTs) and Support Vector
Machines (SVMs) were proposed to classify network
anomalies with moderate success [10, 11]. Nevertheless, these
models are trained offline, do not consider the fact that
network conditions may be dynamic, and frequently cannot
generalize to different IoT settings.

2.2 Deep learning-based detection

DL has gained momentum as an approach to IDSs that are
models that can be trained autonomously to form new patterns
and extract signatures on raw traffic data without the
requirement of manual feature engineering. This feature
empowers DL models to efficiently recognize complex
behaviors of attacks that standard tools are not capable of
catching. CNN exhibits remarkable performance for
identifying spatial patterns in the traffic flow [12], and RNN
and LSTM networks are proficient at modeling temporal
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dynamics for sequential data [13]. While such models achieve
high accuracy, they tend to need a very large amount of labeled
data and are not deployable on resource-limited IoT devices
(i.e., optimal distributions) [6].

2.3 Reinforcement learning applications

RL is a very good model in dealing with dynamically
evolving environments, and the benefit of online learning is
that systems can continually adapt their performance as they
receive real-time feedback. Q-learning and its improved
version, DQL, have been seen to have been highly successful
in scenarios were used in adaptive intrusion detection of IoT
networks. These approaches allow the systems to learn the best
strategies of detecting and preventing threats autonomously as
they interact with the environment and adapt to the changing
patterns of attacks. Q-learning and DQL are flexible to enable
real-time updates, which makes them very appropriate in the
dynamic and unpredictable environment of IoT networks, the
security issues of which continuously change [14]. As an
example, Junhuai et al. [7] presented an adversarial RL-based
IDS that could dynamically update its detection policy
concerning new attack vectors as they were discovered (via
interactive learning). Nevertheless, the resultant issue with
DQL is found to be overestimation of Q-values, which can
lead to poor policy decisions and a reduction in the accuracy
of detection, especially where the conditions are uncertain or
noisy.

2.4 Double Deep Q-Learning solutions

To overcome the issue of overestimating Q-values with
DQL, van Hasselt et al. [10] introduced DDQL, an enhanced
form of DQL, which improves the robustness of the learning
process by decoupling the action selection and evaluation
stages. DDQL has since been successfully applied in various
areas of network security, including intrusion detection on
edge devices, software-defined networking (SDN) systems,
and threat mitigation. Zhang et al. [14] demonstrated the
significant potential of DDQL in detecting botnet and DoS
attacks on benchmark datasets, while Phan and Bauschert [15]
applied it in SDNs to adapt to changing threat scenarios [6].

On the other hand, despite these achievements, the role of
DDQL in SIoT has yet to be fully developed, particularly with
regard to how it models and leverages social interactions and
device-level relationships that are common in SIoT systems.
To overcome this limitation, in this work, we propose to
incorporate DDQL on a socially aware IDS. This will help in
developing a more accurate and computationally efficient
intrusion detection, which can be deployed in real-time in
dynamic SIoT soil environments.

3. METHODOLOGY
3.1 System architecture overview

The IDS is specifically designed for use in the SIoT
environment, where smart devices, machines, sensors,
smartphones, and household appliances autonomously
establish social connections based on their properties, such as
ownership, co-location, and co-usage. These relationships
facilitate data sharing and enable the provision of innovative
services. The system is comprised of five main components



which collaborate in the following way: The Pre-processing
Module cleans and standardizes raw data; the Feature
Extractor identifies and chooses features for analysis; using
DDQL method, the DDQL Agent learns threat detection by
interacting with its environment; To classify incoming traffic
and take necessary mitigation actions when malicious traffic
is detected we apply an Action Executor; Finally, collecting
network packets on-the-fly via PCAP format file provided as
input to this component, the Data Collector captures all types
of threats.

3.2 Dataset and pre-processing

The CICIDS2017 dataset includes highly diverse network
traffic scenarios, making it ideal for examination and training
in two phases. It encompasses a wide range of benign activities
as well as various attack types, such as DoS, Distributed
Denial of Service (DDoS), and botnet attacks, providing a
robust benchmark for IDSs [2].

A few pre-processing procedures were carried out to make
the data reliable and ready for efficient model training.
Missing and partially missing records were handled first by
emptying them into the filled dataset with proper entries to
avoid bias or errors during training. Finally, the categorical
variables with text labels were transformed into numerical, so
that the total dataset can pass through ML algorithms without
resistance in a smoother manner. The Min—Max normalization
technique was employed in order to standardize the features
and help the model perform well, where all feature values are
scaled with a range of (0,1). This increases the speed of
convergence, stabilizes the model, and prevents any feature
from dominating the learning process since all features
contribute with equal weights. Furthermore, SMOTE
(Synthetic Minority Over-sampling Technique) was also
applied to deal with the class imbalance problem, where some
attack types have fewer samples than benign traffic in most
cases. SMOTE creates synthetic examples of the minority
class while interpolating between existing samples, thereby
balancing the data. This enables the model to experience a
more realistic distribution of attack forms, thereby resulting in
better identification of both uncommon and possibly more
advanced attack patterns [3].

3.3 Feature engineering

The recommended system performs feature engineering
based on the combination of mutual information analysis,
recursive feature elimination (RFE), and domain-specific
heuristics that are limited to the SIoT environments [4]. This
has the advantage of selecting only features that are
statistically significant and semantically meaningful. The
chosen features comprise both typical network-level metrics
and traffic profiles, and social-context related variables such
as device trustworthiness scores, network roles, and inter-
device communication rates. Together, these characteristics
improve the model’s capability of discriminating between
benign and malicious from SIoT networks.

3.4 Double Deep Q-Learning for Intrusion Detection
System

DDQL is just an extended version of DQL, which improves
upon the standard DQL by providing a better learning
algorithm and helps in training a more robust model. DDQL,
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in contrast to DQL, which uses a single Deep Neural Network
(DNN) for learning action selection and Q approximations,
DDQL employs two separate DNNs. Such a two-network
architecture attempts to mitigate the overestimation of Q-
values that tends to occur with standard DQL [5, 6]. In
particular, one network (called the online network) is used for
selecting actions based on the current policy, while the other
network (referred to as the target network) estimates Q-values
of such actions. As a result, due to decoupling action selection
as well as estimation, the learned policy of DDQL is both more
stable and accurate. This decoupling could alleviate the
positive bias often found in standard DQL, which thus learns
more reliably and consistently. These enhancements are
especially interesting in uncertain and complex domains, such
as SIoT networks, with the fact that accurate and flexible
intrusion detection is mandatory.

3.4.1 Markov Decision Process formulation

The intrusion detection problem in the SIoT domain is
modeled as a Markov Decision Process (MDP) to have the
possibility of RL. The state variable ss, used in this
formulation, will be a vector consisting of network-level and
social-context features derived from incoming traffic data. The
space of actions aa is binary, such that a = 0 is benign traffic
and a = 1 represents malicious activity.

The reward function r is meant to direct the learning process
by rewarding the correct classifications with a response of +1
and incorrect classifications with -1, and hence, strengthening
the correct detection behavior. The state transition function TT
simulates the development of one traffic observation to the
following one regarding the action and dynamics of the
environment chosen. Lastly, the policy 00, a mapping between
the observed states and corresponding actions, is updated by
the DDQL framework iteratively [7].

3.4.2 Network design

The proposed architecture of the DDQL model consists of
two separate neural networks: the Q-network (online) and the
Q2n (target). Both networks are trained as multilayer
perceptrons (MLPs), typically with two to three hidden layers
of neurons, configured with 128 and 64 neurons, respectively.
The final layer contains two neurons, corresponding to the
binary labels output by the network: benign and malicious.

To enhance the robustness of the training process and
facilitate easier convergence, the model employs experience
replay. This technique involves storing data from previous
interactions and randomly sampling from it during training.
Experience replay helps mitigate the temporal correlations
between successive observations, thus promoting more
efficient policy learning [8].

3.4.3 Loss function

Under the DDQL training rule, the model aims to minimize
the difference between (i) Q-values calculated by the online
Q-network and (ii) target Q-values generated by a temporally
distinct target network. The distance is usually measured by
using the Mean Squared Error (MSE) loss, which computes
the average of squared differences between predicted values
and their targets. DDQL calculates the target using a 2
collaborative process: action selection by the online is
answered by target evaluation. In particular, the next action a’
is the one which maximizes Q, where we use, and the value of
that chosen action is evaluated using. By dividing these two
roles, DDQL mitigates overestimation bias common in



classical DQL, which has a single estimator for both action
selection and evaluation. This architecture results in a stronger
form of training as well as safer policy learning, especially in
dynamic and uncertain environments like SIoT intrusion
detection.

A standard DDQL target and loss formulation can be written
as:

L(6) = E[(r + v*Q(s\argmax.Q(s,2;0):8)-Q(s,4:0)2] (1)
where,

6 represents the parameters of the current (online) Q-
network.

6 represents the parameters of the target Q-network, which
is updated periodically.

y=0.99 is the discount factor used to weigh future rewards.

QO is the action-value function estimating the expected
return.

R is the immediate reward.

s and s’ are the current and following states.

a is the action taken.

It is easier and more reliable to estimate the Q-value, which

can, in turn, enhance the learning performance and accuracy
of the IDS.

3.4.4 Training strategy

The learning algorithm not only achieves well in stabilizing
the DDQL agent, but also contributes to an efficient training
of the agent in dynamic network scenarios. In the replay
buffer, experienced transitions are maintained, and during
training, they are randomly sampled, thereby destroying
temporal correlations and facilitating generalization. Mini-
batch updates also aid in regularizing gradient descent, thereby
ensuring faster convergence. This has the effect of both
driving the agent to explore new behaviors as well as
credentialing previously learned actions. Moreover, the target
network is periodically updated, which also serves to stabilize
the learning process by eliminating fluctuations in Q-value
targets throughout training [11].

3.5 Social-aware context integration

In the proposed model, social awareness is integrated into
RL for improving decision-making in the SIoT system. The
state vector stores crucial social parameters such as the trust of
communicating devices, history, and the rate of
communications. Such contextual information will enable the
DDQL agent to produce more personalized and focused
decisions on intrusion detection based upon those dynamic
relationships between devices in SIoT [12, 13].

3.6 Evaluation metrics

The proposed model's efficiency and reliability in detecting
intrusions against SIoT networks are comprehensively
evaluated using the performance measures. The model is
compared in terms of common performance scores, Accuracy,
Precision, Recall, and F1-score for distinguishing boundaries
between malicious and benign activities. These metrics give a
summary of performance by targeting the model’s
classification ability and its capability to detect offenses with
high accuracy without too many false alarms. To further
evaluate the model performance, the ROC-AUC is used. The
ROC-AUC analysis shows the compromise between true
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positives and false detections, being preferred higher value for
this area under both curves tested. This comparison contributes
to improving the ability of the model to discriminate between
legitimate and malicious events, considering some equilibrium
between sensitivity and specificity. And, the detection latency
(in seconds) is employed to assess the real-time response
capability of the system.

The efficiency of the proposed DDQL solution is compared
to various baseline models [14] for effectiveness. Such
analysis can show the gain by using DDQL solutions in terms
of accuracy, robustness, and computation for IDS
comparisons.

4. SIMULATION SETUP

This section offers a thorough analysis of a MATLAB-
based simulation environment to check and experiment with
the suggested improvement of the IDS. DDQL helps with the
SIoT. The simulation reproduces the operation of the IDS
dynamically by combining the real-world network traffic
measures and the DDQL algorithm settings. altering
circumstances typical of the SIoT ecosystem. The construction
uses several common MATLAB toolboxes to simplify model
creation and to perform and evaluate the model. Furthermore,
the simulation allows for immediate comparison of the
DDQL-enhanced IDS and the baseline models, therefore
producing a thorough study of the superiority. Regarding
detection accuracy, flexibility, responsiveness to many forms
of network traffic, and possible intrusion, the suggested
method is superior to the traditional ones.

4.1 Environment specifications

The efficiency testing of the proposed DDQL-based IDS
was conducted through experiments under the simulation
environment setup of MATLAB. Specific requirements of the
hardware, software, and datasets that are required in order to
reproduce results, as well as scale, are depicted in Table 1 [15].

Table 1. Environment specifications for simulation and

evaluation
Component Specification / Tool
Software MATLAB R2023b
Reinforcement learning (RL) Toolbox, deep
Toolboxes learning (DL) Toolbox, Statistics, and machine
learning (ML) Toolbox [3]
Operating Windows 11 / Ubuntu 22.04
System
Hardware Intel Core i17/19, 16-32 GB RAM, optional
W NVIDIA GPU
Dataset CICIDS2017 (converted to .mat format) [15]

4.2 Dataset: CICIDS2017

This study utilizes the CICIDS2017 dataset, which provides
a comprehensive representation of both benign network traffic
and a wide variety of cyber-attacks in real-world network
environments. The dataset contains 78 traffic flow features and
includes various malicious attack types, such as DDoS, Botnet,
PortScan, and BruteForce attacks [16]. A data preprocessing
pipeline using numerous preprocessing steps is used to
maximize the quality of the input used during the training of
the models. This includes reading the information through the



MATLAB readtable command or loading files directly in .mat
format. Functions like normalise or mapminmax are used to
normalize the features such that similar scaling is provided
across variables. SMOTE [17] is modeled, or undersampling
is employed based on the particular case, and an attempt is
made to fix the imbalance in the data in classes. This makes
the model be trained in a balanced representation of the
minority class and the majority class. In order to make the
model even more efficient and less complex, dimensionality
reduction methods are utilized. To be more specific, PCA is
applied to decrease the number of features and maintain the
greatest amount of variance in the data. Also, sequential
feature selection (sequentialfs) is used, which involves the
selection of the features in a sequential manner, with less
significant features being eliminated. All of these methods can
be used to make the model simpler, decrease overfitting, and
enhance the accuracy and computation speed of the system.

4.3 Reinforcement environment modelling

In this respect, the RL problem for intrusion detection is cast
as a detection problem. In this setting, the observation space is
a normalized feature space built on top of the network-based
features and social-context features from traffic. These
features are obtained as a function of consideration over
various aspects related to the technical characterization of the
network traffic, including contextual issues pertinent to the
SIoT environment. The motivation for normalization is to
scale all features equally so as to ease the learning and improve
the model's capability for detecting intrusions. This
phenomenological combination allows the RL model to be
trained with general detection strategies that are most effective
given the wider social environment in which devices exist.
This makes the model more robust and realistic, oriented to
field applications.

The action space is binary, where an action of 0 represents
benign traffic and an action of 1 represents malicious traffic.
The reward function is designed to be very specific: correct
detection of an attack is rewarded with +1, while incorrect
predictions are penalized with -1. In cases of false negatives
(i.e., when an attack goes undetected), a stronger penalty of -2
is applied, reflecting the increased risk to network security.
Rather than simulating agent-environment interactions in
predefined environments during training, custom RL
environments are created using the (rlFunctionEnv) or
(rISimulinkEnv) interfaces in MATLAB, allowing for flexible
definition of the RL environment [3, 18].

4.4 Double Deep Q-Learning agent configuration

Better than the standard DQL algorithm, the DDQL agent
uses two neural networks to reduce the problem of over-
estimating the Q-values [10]. This architecture is applied in the
MATLAB convenient structure, defining custom layers with
the help of the structure layerGraph and dInetwork to provide
flexible implementation and integration with an RL
environment. The most essential hyperparameters pre-trained
on the DDQL agent are listed in Table 2.

4.5 Simulating Social Internet of Things context

To emulate SIoT behavior, the following synthetic features
were included [2, 19]:

* Trust score

» Communication frequency
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* Friend-of-friend (FoF) interaction metrics

* Role-based device categorization

These contextual attributes were injected into the state
vector to enable socially-aware detection policies.

Table 2. Double Deep Q-Learning (DDQL) agent
hyperparameter configuration

Parameter Value
Learning rate le—4
Discount factor (y) 0.99
Mini-batch size 64
Replay buffer length le6
Epsilon (initial—final) 1.0 - 0.01
Target update method  Soft updates (z = 0.01)
Max episodes 500
Steps per episode 200
Optimizer Adam

4.6 Baseline models for comparison

To compare the performance of the proposed DDQL-based
IDS with baseline models, several baseline models were
developed using the MATLAB Classification Learner and DL
Toolbox [3, 12]. For a comprehensive evaluation, the baseline
models include a mix of classical ML approaches and
traditional DL models. SVMs are employed in the ML
category, particularly useful for  high-dimensional
classification, as they can identify the optimal hyperplane for
data classification. Additionally, a Random Forest (RF)
model, implemented through TreeBagger, is used, as it
combines the outputs of multiple DTs to make more robust and
accurate decisions.

Convolutional Neural Networks (CNNs) are used in the DL
category due to the capability of extracting spatial patterns of
data, which are most appropriate in analyzing network traffic
because local spatial patterns can be used to reveal underlying
trends. Moreover, the use of Long Short-Term Memory
(LSTM) networks is aimed at summarizing sequential
dependence and time-related patterns in the past network
traffic records. LSTMs are also efficient in sequence learning
and best suited to modeling the sequence and temporal
variation of network data. The traditional ML techniques are
combined with the latest DL techniques to test a wide variety
of models, which will guarantee a detailed performance
evaluation of the suggested system. Also, the traditional Deep
Q-Network (DQN) RL algorithm is taken into account, which
also improves the results when included in the DDQL
framework [8]. This far-reaching comparison points out the
enormous benefits of the suggested strategy, especially with
regard to the detection accuracy, stability, and flexibility.

4.7 Evaluation metrics

The proposed IDS is tested against a set of comprehensive
measures that determine the ability of the system to classify
data as well as its feasibility in practice. The most important
metrics include Accuracy, Precision, Recall, and F1-score that
give specific information about how the IDS reacts to
intrusions and where it is likely to make errors. It will be
specifically in Accuracy that provides a general measure of
correct classifications, and Precision that provides the ability
of the system to identify malicious traffic correctly. Recall is



used to indicate how well the system can identify every attack
of interest, and the F1- score is used to bring both Precision
and Recall together, which provides a trade-off between the
two [20].

Also, the False Positive Rate (FPR) is evaluated to
comprehend the system to reduce false alarms, which is
essential to real-life deployment. The excessive FPR might
result in unjustified alarms that compromise the reliability and
effectiveness of the system in practice. With these factors in
mind, the analysis will make sure that not only is the proposed
IDS effective in intrusion detection, but that it is also
applicable to be implemented in a dynamic and hostile
environment. The discriminative capability of the model is
also determined by the Receiver Operating Characteristic Area
Under the Curve (ROC-AUC), which determines the model in
terms of different decision levels.

Detection latency is also taken to enable real-time
applications. All metric computations and related graphical
displays, such as confusion matrices, precision-recall curve,
and classification report, were created by MATLAB tools and
custom-scripting functions.

5. RESULTS AND DISCUSSION

It is an IDS designed as a DDQL-based method and is
widely tested against published standards, such as classical
classifiers like SVM, RF, and DT. An evaluation metric set
was applied to allow conducting the comprehensive
performance comparison of the two paradigms. These are
Accuracy, which is the total classification accuracy of the
model, Precision, which is the percentage of correctly
identified intrusions among all the identified instances as
compared to the actual intrusion that was correctly identified
by the model, Recall, which is the percentage of the actual
intrusion identified by the model, and finally the F1-score, a
combined measure that balances between Precision and
Recall.

Also, FPR is a metric that indicates how much non-
malicious traffic is incorrectly treated as malicious, and the
Detection Rate (DR) is a percentage of how many actual
attacks are successfully detected. All these measures give a
wide-angle evaluation, including the strong and the weak sides
of the DDQL-based IDS compared to more traditional
methods.

5.1 Classification performance metrics

Table 3. Comparison of classification performance metrics
across models

Metric DDQL SVM DT RF
Accuracy (%) 9872 92.15 93.56 95.84
Precision (%)  98.31  89.02 90.45 94.00
Recall (%)  98.94 9176 9222 95.40
Fl-score (%)  98.62 9036 9132 94.69
FPR (%) 118 547 489 3.12
DR (%) 98.94 9176 9222  95.40

Notes: FPR = False Positive Rate; DR = Detection Rate; DDQL = Double
Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree;
RF = Random Forest.

The performance of the proposed DDQL-based IDS was
compared to the conventional supervised learning algorithms
(SVM, DT, and RF) in terms of the results of this study. Table
3 shows the findings after the trained models were tested on
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the CICIDS2017 test dataset, which is balanced in terms of
both attack and standard traffic samples. The results indicate
that the DDQL model is superior to any other model of
supervised learning and traditional methods in all normal
evaluation measures. The DDQL agent has an outstanding
learning capability and adaptability to dynamic partially
observable SIoT settings, with an accuracy of 98.72 and a DR
of 98.94. The model has a low FPR at 1.18 and is therefore
competent in reducing the occurrence of false alerts, which is
critical in instilling trust in autonomous and distributed IoT
systems. A score of 98.62% indicated in the F1 score further
stresses the excellent balance the model has in terms of
precision and recall, and its capacity to be able to detect attacks
and reduce the effect of misclassifications. The DDQL model
is more flexible and effective over time than your SVM and
DT models, since RL is used to update the policy of the model
with regard to evolving types of attacks.

The mean reward per episode was monitored throughout the
training process to evaluate the DDQL agent's learning
stability. The positive trend of the expected average reward is
steady in the first training phase, which is depicted in Figure
1. The trend shows that the agent is learning and adapting well
in the environment. Interestingly, the reward curve levels off
at an episode of around 800, indicating that the agent has
reached an optimal or close to optimal policy. This
convergence pattern is a good sign of the training effectiveness
and the stability of policy in dynamic SIoT ecosystems.

DDQL Agent Training Progress
T T T

'
+ Convergence Around Episode 800
'

Average Reward

500 600 700
Episode Number

400

Figure 1. Average reward growth tends to stabilize alongside
policy after episode 800

5.2 Metric comparison chart

As Figure 2 indicates, the DDQL model has always
performed better than conventional models in the most
important evaluation parameters such as accuracy, precision,
recall, and F1-score. The chart indicates that DDQL performs
better and is more stable even in strenuous traffic patterns that
are common to SIoT settings. This graphical analogy ends up
emphasizing the capabilities of DDQL to have high detection
rates and low false positives, which means that it can be used
in real-time, adaptive security organizations. The flexibility of
the proposed DDQL model in adapting to dynamic intrusion
behaviors is notable, requiring minimal retraining. This feature
is particularly beneficial for dynamic, resource-constrained
SIoT networks, where the ability to learn online and efficiently
utilize memory is crucial. These characteristics make DDQL
ideal for deployment in real-time applications, where speed



and scalability are essential. Furthermore, the model can be
easily extended to support real-time intrusion detection in edge

computing systems with minimal modifications, enhancing its
relevance in modern cybersecurity environments.
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Figure 2. Performance comparison of the classification of several models (DDQL, SVM, DT, RF) according to the main

assessment criteria
Notes: DDQL = Double Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree; RF = Random Forest.
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Figure 3. Double Deep Q-Learning (DDQL) performance summary: Reward convergence, loss reduction, confusion matrix, and
model comparison

Figure 3 illustrates several diagnostic plots to prove the
learning efficiency and the accuracy of the detection of the
proposed DDQL-based IDS. The left subplot at the top
displays rapid learning and convergence at episode 400, which
means speedy policy stabilization. The subplot in the upper
right shows that the DDQL loss curve has a gradual reduction,
which supports stable training. The subplot at the lower-left
shows a confusion matrix with high values of true positive,
true negative, and low values of misclassification. Finally, the
subplot on the bottom-right side is a performance comparison
of classification, where DDQL achieved high accuracy and
F1-score compared to traditional techniques such as SVM, RF,

and CNN, which indicates its efficiency in SloT settings.
5.3 Double Deep Q-Learning model evaluation

An experimental system to test the DDQL-based IDS was
developed in MATLAB 2022a to use the CICIDS2017 dataset.
There were several evaluation criteria analysed to identify the
suitability of the model in detecting and classifying network
attacks within an SIoT environment. Figure 3 presents the
mean reward per episode, which stabilizes at episode 800,
which means that the agent has learned. The DDQL loss curve
shows a continuous and gradual reduction, which proves that
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the training process is running in the right direction. The
confusion matrix shows high true positive and true negative
rates, and it emphasizes the fact that the model performed
highly in classifying the data. Also, the performance
comparison chart shows that the DDQL model performs better
in comparison with traditional algorithms that include SVM,
RF, and CNN, with higher accuracy and F1-score.

5.3.1 Average reward over episodes

The average reward per episode plot indicates that there is
a steep increase in the first stage of training, which means that
the agent slowly increases policy learning. The rewards started
to stabilize on episode 800, indicating that the agent had
successfully stabilized to an optimal policy. This convergence
is a major signifier that the model has now learnt to
differentiate between normal and abnormal network behavior
within a period of time, which also boosts its plausibility as a
model of dynamic SIoT environments.

5.3.2 Double Deep Q-Learning loss curve

According to the loss function curve, there was an
increasing downwards trend over the training process, which
showed that the Q-value function approximator, which is
based on a DNN, was learning. This steady downward trend is
an affirmation of the convergence of the learning algorithm.
Moreover, experience replay and the use of a target network
played a significant role in the minimization of learning
oscillations, which led to making the training more stable and
consistent.

5.3.3. Confusion matrix analysis

The confusion matrix analysis results of the proposed
DDQL model have high True Positive Rates (TPR) in the
different kinds of attacks, such as DDoS, Ports can, and
Botnets. The low misclassification rates have been
consistently high, thus proving the accuracy and reliability of
the model in separating benign and malicious traffic. Table 4
shows that the model is effective in intrusion classification.

Table 4. Class-wise precision, recall, and F1-score

Class Precision Recall F1-Score
Normal 98.4% 97.8% 98.1%
Denial of Service 96.7% 95.2% 95.9%
PortScan 97.1% 96.5% 96.8%
Botnet 95.8% 94.0% 94.9%

5.3.4 Model comparison

Recently developed algorithm DDQL has shown to be much
more performance-based than the traditional baseline
classifiers. The advanced results of the DDQL model are
reflected in all the main assessment criteria, such as accuracy,
precision, recall, and Fl-score, in comparison to other
approaches. This advantage is driven in the first place by the
fact that the model provides greater balance between
exploration and exploitation as well as optimization of long-
term cumulative reward, which are two hallmarks of RL. The
comparative results are provided in Table 5, and there are
differences in performance.

Results from simulations verify that the DDQL is robust in
an SloT context with diverse nodes and time-varying data
flow. The adaptive RL properties of the system make it
appropriate for intelligent, online threat detection. Also,
sublinear time representation growth in relation to network
size indicates scalability of the system.
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Table 5. Model-wise performance metrics

Model Accuracy Precision Recall F1-Score
SVM 90.3% 89.8% 90.1% 89.9%
RF 93.5% 93.0% 93.2% 93.1%
CNN 95.1% 94.8% 94.6% 94.7%
DDQL 98.3% 98.1% 97.9% 98.0%

Notes: SVM = Support Vector Machine; RF = Random Forest; CNN =
Convolutional Neural Network; DDQL = Double Deep Q-Learning.

6. CONCLUSIONS

In this study, a novel intrusion detection framework based
on DDQL was proposed, specifically designed for SloT
environments. The key contributions and findings are
summarized as follows:

A DDQL-based IDS was introduced, leveraging deep RL
to dynamically adapt to the complex and high-
dimensional tasks of SIoT networks.

The proposed system outperforms traditional ML and DL
methods (e.g., SVM, RF, CNN) in terms of accuracy,
recall, and F1-score, thanks to its optimization objective
that minimizes punitive behavior in the learning process.
The DDQL agent demonstrated smooth convergence in
learning, as evidenced by the average reward curve,
robust loss minimization, and low FPR. This indicates a
stable policy learning process even under uncertain traffic
conditions.

The architecture supports online learning and experience
replay, making it well-suited for deployment on resource-
constrained edge devices while also scalable to large SIoT
installations.

The model integrates social context features (e.g., trust
level, communication frequency) and adjusts its policy
accordingly, considering device relationships and
contextual behavior—an aspect often overlooked by
traditional models.

7. FUTURE WORK

To further enhance the existing framework, the following
avenues of opportunity are proposed:
o Federated RL will be utilized to minimize the transfer of
sensitive data between expanding IoT nodes while still
allowing for the sharing of knowledge across devices.
To make the architecture adaptable to various
applications, support for a range of loT-specific protocols
(such as MQTT, CoAP, Zigbee, etc.) will be incorporated,
broadening its applicability across different fields.
The model could be deployed in live traffic monitoring
systems, enabling adaptive intrusion detection within
production-level SIoT networks.
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