
Enhanced Intrusion Detection in Social IoT Environments via Double Deep Q-Learning

Sabah M. Alturfi1* , Nibras Talib Mohammed2 , Nagham Habeeb Shakir3

1 College of Law, University of Kerbala, Kerbala 56001, Iraq
2 Department of Statistics, College of Administration and Economics, University of Kerbala, Kerbala 56001, Iraq

3 College of Computer Science and Information Technology, University of Kerbala, Kerbala 56001, Iraq

Corresponding Author Email: sabah.m@uokerbala.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.151104 ABSTRACT

Received: 27 September 2025

Revised: 10 November 2025

Accepted: 21 November 2025

Available online: 30 November 2025

The growing demand for the Internet of Things (IoT), especially the Social

Internet of Things (SIoT), has introduced a new dimension of technological

challenges. As the use of SIoT expands, it has raised significant concerns about

the security of networks connecting smart devices, particularly against

sophisticated network breaches. Traditional Intrusion Detection Systems (IDS)

struggle to dynamically adapt to the complex, high-dimensional environments of

SIoT. This paper proposes that a more effective Network Intrusion Detection

System (NIDS) can be developed using Double Deep Q-Learning (DDQL). The

reinforcement learning (RL) method overcomes the overestimation bias

commonly found in traditional Q-learning techniques, offering a more accurate

and reliable detection model. The system was trained and tested using the

CICIDS2017 dataset, which includes real-world network traffic and attack

scenarios. By framing intrusion detection as a sequence of decisions, the DDQL

learning-based agent can learn and predict malicious behaviors more accurately

with much fewer false positives. Experiments show that the developed method

provides better results in terms of detection accuracy, precision, and F1-score

than traditional machine learning (ML) classifiers and standard Deep Q-Learning

(DQL) models. These enhancements showcase the system's improvements in

real-time intrusion detection and response capabilities. Moreover, the scalability

and flexibility of the system make it a powerful instrument to identify intrusions

in the dynamic and fast-growing S-IoT environments where attack scenarios

change rapidly, and attack vectors can be very wide.

Keywords:

Social Internet of Things, Intrusion Detection

Systems, Double Deep Q-Learning,

reinforcement learning, network security,

anomaly detection

1. INTRODUCTION

The Social Internet of Things (SIoT) gr16ows from the

conventional Internet of Things (IoT), where smart objects

manage and establish social relations to increase collaboration,

context perceptiveness, and intelligent services provisioning

[1]. This has attracted huge interest, e.g., in health care,

intelligent transportation systems, and industrial automation

[2, 3]. Nonetheless, security issues are becoming even more

relevant as the number of devices that have an IP address

grows and SIoT networks are dynamic, decentralized, and

heterogeneous [4].

Botnet, Denial of Service (DoS), and data tampering stand

as main threats to SIoT environments, taking advantage of the

high communication rate among devices and the node mobility

[5]. Conventional security analogues such as firewalls and

antivirus software are no longer sustainable since they tend to

be resource-exorbitant; they also fail to cater to the current-

day gravity of the threat landscape [6]. In response, there is a

need for new lightweight and innovative Intrusion Detection

Systems (IDSs) within the context of SIoT.

Intrusion detection approaches are typically categorized as

signature-based and anomaly-based detectors. Signature-

based IDSs work well for known attacks, but are not effective

against zero-day attacks and need regular updates [7].

Anomaly-based systems, in comparison, have the potential to

detect new attacks but suffer from less scalability and high

false positives, so in practice they are not as effective as

signature-based systems [8, 9]. Most existing IDSs do not

consider the special social behaviors in SIoT and cannot well

adapt to the networked environment with such social

behaviors, laying insufficiency for detecting attacks

effectively. To overcome these deficiencies, an increasing

number of researchers are adopting adaptive methods that

make use of machine learning (ML) and deep learning (DL)

techniques [10, 11]. Well, these techniques solve the problem

of manual feature engineering but might still lack in

generalization. DL methods, like CNNs and RNNs, show

potential in achieving better efficiency as they can

automatically learn and capture useful characteristics of raw

International Journal of Safety and Security Engineering
Vol. 15, No. 11, November, 2025, pp. 2229-2237

Journal homepage: http://iieta.org/journals/ijsse

2229

https://orcid.org/0000-0002-0826-5594
https://orcid.org/0000-0001-9352-6965
https://orcid.org/0009-0001-2711-4142
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151104&domain=pdf

traffic data [12, 13]. Nevertheless, despite these progressions,

the computation-intensive nature of both ML and DL solutions

continues to present considerable struggles for real-time

systems as they often lack the capacity for a rapid response

against advancing adversarial methodologies.

Reinforcement learning (RL) has recently shown the

potential in facilitating real-time online learning under

dynamic environments, which is an attractive feature,

especially for internet applications. Supervised learning

models depend on massive amounts of labeled information in

dealing with pattern recognition, while RL simply interacts

with the environment and learns through trial and error. In this

setting, an RL agent is given feedback in terms of reward or

penalties based on its actions that directly influence the

environment. The agent gradually learns to take actions in a

way that maximizes the sum of rewards because it is designed

to converge on an optimal policy that reacts to changes in its

environment in the most favorable way [14]. This adaptability

property renders RL particularly well-suited for Network

Intrusion Detection System (NIDS) in highly volatile and

unpredictable systems, such as SIoT environments.

Deep Q-Learning (DQL) is mostly used in an IDS model for

extensive state-action spaces. Nevertheless, the DQL

algorithm is affected by Q-value overestimation that can affect

decision-making. To mitigate the instability in standard DQL,

Double Deep Q-Learning (DDQL) decouples action selection

and evaluation by using two distinct neural networks [15].

DDQL is highly promising, yet it has not been fully developed

for SIoT-IDSs. The purpose of this paper is to address these

gaps via a new DDQL-based IDS for efficient integration and

evolution of social context knowledge, as well as maintaining

a high threat detection rate with low CPU utilization.

2. RELATED WORK

Several studies have explored IDS frameworks in both IoT

and SIoT environments, aiming to enhance detection

capabilities through intelligent learning models. These studies

are categorized below according to their underlying

methodologies.

2.1 Traditional and machine learning-based approaches

In the early works on IoT security, rule-based and

statistical-based approaches for intrusion detection have been

used [7]. To overcome the drawbacks of these techniques, ML

algorithms like Decision Trees (DTs) and Support Vector

Machines (SVMs) were proposed to classify network

anomalies with moderate success [10, 11]. Nevertheless, these

models are trained offline, do not consider the fact that

network conditions may be dynamic, and frequently cannot

generalize to different IoT settings.

2.2 Deep learning-based detection

DL has gained momentum as an approach to IDSs that are

models that can be trained autonomously to form new patterns

and extract signatures on raw traffic data without the

requirement of manual feature engineering. This feature

empowers DL models to efficiently recognize complex

behaviors of attacks that standard tools are not capable of

catching. CNN exhibits remarkable performance for

identifying spatial patterns in the traffic flow [12], and RNN

and LSTM networks are proficient at modeling temporal

dynamics for sequential data [13]. While such models achieve

high accuracy, they tend to need a very large amount of labeled

data and are not deployable on resource-limited IoT devices

(i.e., optimal distributions) [6].

2.3 Reinforcement learning applications

RL is a very good model in dealing with dynamically

evolving environments, and the benefit of online learning is

that systems can continually adapt their performance as they

receive real-time feedback. Q-learning and its improved

version, DQL, have been seen to have been highly successful

in scenarios were used in adaptive intrusion detection of IoT

networks. These approaches allow the systems to learn the best

strategies of detecting and preventing threats autonomously as

they interact with the environment and adapt to the changing

patterns of attacks. Q-learning and DQL are flexible to enable

real-time updates, which makes them very appropriate in the

dynamic and unpredictable environment of IoT networks, the

security issues of which continuously change [14]. As an

example, Junhuai et al. [7] presented an adversarial RL-based

IDS that could dynamically update its detection policy

concerning new attack vectors as they were discovered (via

interactive learning). Nevertheless, the resultant issue with

DQL is found to be overestimation of Q-values, which can

lead to poor policy decisions and a reduction in the accuracy

of detection, especially where the conditions are uncertain or

noisy.

2.4 Double Deep Q-Learning solutions

To overcome the issue of overestimating Q-values with

DQL, van Hasselt et al. [10] introduced DDQL, an enhanced

form of DQL, which improves the robustness of the learning

process by decoupling the action selection and evaluation

stages. DDQL has since been successfully applied in various

areas of network security, including intrusion detection on

edge devices, software-defined networking (SDN) systems,

and threat mitigation. Zhang et al. [14] demonstrated the

significant potential of DDQL in detecting botnet and DoS

attacks on benchmark datasets, while Phan and Bauschert [15]

applied it in SDNs to adapt to changing threat scenarios [6].

On the other hand, despite these achievements, the role of

DDQL in SIoT has yet to be fully developed, particularly with

regard to how it models and leverages social interactions and

device-level relationships that are common in SIoT systems.

To overcome this limitation, in this work, we propose to

incorporate DDQL on a socially aware IDS. This will help in

developing a more accurate and computationally efficient

intrusion detection, which can be deployed in real-time in

dynamic SIoT soil environments.

3. METHODOLOGY

3.1 System architecture overview

The IDS is specifically designed for use in the SIoT

environment, where smart devices, machines, sensors,

smartphones, and household appliances autonomously

establish social connections based on their properties, such as

ownership, co-location, and co-usage. These relationships

facilitate data sharing and enable the provision of innovative

services. The system is comprised of five main components

2230

which collaborate in the following way: The Pre-processing

Module cleans and standardizes raw data; the Feature

Extractor identifies and chooses features for analysis; using

DDQL method, the DDQL Agent learns threat detection by

interacting with its environment; To classify incoming traffic

and take necessary mitigation actions when malicious traffic

is detected we apply an Action Executor; Finally, collecting

network packets on-the-fly via PCAP format file provided as

input to this component, the Data Collector captures all types

of threats.

3.2 Dataset and pre-processing

The CICIDS2017 dataset includes highly diverse network

traffic scenarios, making it ideal for examination and training

in two phases. It encompasses a wide range of benign activities

as well as various attack types, such as DoS, Distributed

Denial of Service (DDoS), and botnet attacks, providing a

robust benchmark for IDSs [2].

A few pre-processing procedures were carried out to make

the data reliable and ready for efficient model training.

Missing and partially missing records were handled first by

emptying them into the filled dataset with proper entries to

avoid bias or errors during training. Finally, the categorical

variables with text labels were transformed into numerical, so

that the total dataset can pass through ML algorithms without

resistance in a smoother manner. The Min–Max normalization

technique was employed in order to standardize the features

and help the model perform well, where all feature values are

scaled with a range of (0,1). This increases the speed of

convergence, stabilizes the model, and prevents any feature

from dominating the learning process since all features

contribute with equal weights. Furthermore, SMOTE

(Synthetic Minority Over-sampling Technique) was also

applied to deal with the class imbalance problem, where some

attack types have fewer samples than benign traffic in most

cases. SMOTE creates synthetic examples of the minority

class while interpolating between existing samples, thereby

balancing the data. This enables the model to experience a

more realistic distribution of attack forms, thereby resulting in

better identification of both uncommon and possibly more

advanced attack patterns [3].

3.3 Feature engineering

The recommended system performs feature engineering

based on the combination of mutual information analysis,

recursive feature elimination (RFE), and domain-specific

heuristics that are limited to the SIoT environments [4]. This

has the advantage of selecting only features that are

statistically significant and semantically meaningful. The

chosen features comprise both typical network-level metrics

and traffic profiles, and social-context related variables such

as device trustworthiness scores, network roles, and inter-

device communication rates. Together, these characteristics

improve the model’s capability of discriminating between

benign and malicious from SIoT networks.

3.4 Double Deep Q-Learning for Intrusion Detection

System

DDQL is just an extended version of DQL, which improves

upon the standard DQL by providing a better learning

algorithm and helps in training a more robust model. DDQL,

in contrast to DQL, which uses a single Deep Neural Network

(DNN) for learning action selection and Q approximations,

DDQL employs two separate DNNs. Such a two-network

architecture attempts to mitigate the overestimation of Q-

values that tends to occur with standard DQL [5, 6]. In

particular, one network (called the online network) is used for

selecting actions based on the current policy, while the other

network (referred to as the target network) estimates Q-values

of such actions. As a result, due to decoupling action selection

as well as estimation, the learned policy of DDQL is both more

stable and accurate. This decoupling could alleviate the

positive bias often found in standard DQL, which thus learns

more reliably and consistently. These enhancements are

especially interesting in uncertain and complex domains, such

as SIoT networks, with the fact that accurate and flexible

intrusion detection is mandatory.

3.4.1 Markov Decision Process formulation

The intrusion detection problem in the SIoT domain is

modeled as a Markov Decision Process (MDP) to have the

possibility of RL. The state variable ss, used in this

formulation, will be a vector consisting of network-level and

social-context features derived from incoming traffic data. The

space of actions aa is binary, such that a = 0 is benign traffic

and a = 1 represents malicious activity.

The reward function r is meant to direct the learning process

by rewarding the correct classifications with a response of +1

and incorrect classifications with -1, and hence, strengthening

the correct detection behavior. The state transition function TT

simulates the development of one traffic observation to the

following one regarding the action and dynamics of the

environment chosen. Lastly, the policy 00, a mapping between

the observed states and corresponding actions, is updated by

the DDQL framework iteratively [7].

3.4.2 Network design

The proposed architecture of the DDQL model consists of

two separate neural networks: the Q-network (online) and the

Q2n (target). Both networks are trained as multilayer

perceptrons (MLPs), typically with two to three hidden layers

of neurons, configured with 128 and 64 neurons, respectively.

The final layer contains two neurons, corresponding to the

binary labels output by the network: benign and malicious.

To enhance the robustness of the training process and

facilitate easier convergence, the model employs experience

replay. This technique involves storing data from previous

interactions and randomly sampling from it during training.

Experience replay helps mitigate the temporal correlations

between successive observations, thus promoting more

efficient policy learning [8].

3.4.3 Loss function

Under the DDQL training rule, the model aims to minimize

the difference between (i) Q-values calculated by the online

Q-network and (ii) target Q-values generated by a temporally

distinct target network. The distance is usually measured by

using the Mean Squared Error (MSE) loss, which computes

the average of squared differences between predicted values

and their targets. DDQL calculates the target using a 2

collaborative process: action selection by the online is

answered by target evaluation. In particular, the next action a′

is the one which maximizes Q, where we use, and the value of

that chosen action is evaluated using. By dividing these two

roles, DDQL mitigates overestimation bias common in

2231

classical DQL, which has a single estimator for both action

selection and evaluation. This architecture results in a stronger

form of training as well as safer policy learning, especially in

dynamic and uncertain environments like SIoT intrusion

detection.

A standard DDQL target and loss formulation can be written

as:

L(θ) = E[(r + γ*Q'(s',argmaxₐQ(s',a;θ);θ̅)-Q(s,a;θ))²] (1)

where,

θ represents the parameters of the current (online) Q-

network.

𝜃̅ represents the parameters of the target Q-network, which

is updated periodically.

γ = 0.99 is the discount factor used to weigh future rewards.

Q is the action-value function estimating the expected

return.

R is the immediate reward.

s and s' are the current and following states.

a is the action taken.

It is easier and more reliable to estimate the Q-value, which

can, in turn, enhance the learning performance and accuracy

of the IDS.

3.4.4 Training strategy

The learning algorithm not only achieves well in stabilizing

the DDQL agent, but also contributes to an efficient training

of the agent in dynamic network scenarios. In the replay

buffer, experienced transitions are maintained, and during

training, they are randomly sampled, thereby destroying

temporal correlations and facilitating generalization. Mini-

batch updates also aid in regularizing gradient descent, thereby

ensuring faster convergence. This has the effect of both

driving the agent to explore new behaviors as well as

credentialing previously learned actions. Moreover, the target

network is periodically updated, which also serves to stabilize

the learning process by eliminating fluctuations in Q-value

targets throughout training [11].

3.5 Social-aware context integration

In the proposed model, social awareness is integrated into

RL for improving decision-making in the SIoT system. The

state vector stores crucial social parameters such as the trust of

communicating devices, history, and the rate of

communications. Such contextual information will enable the

DDQL agent to produce more personalized and focused

decisions on intrusion detection based upon those dynamic

relationships between devices in SIoT [12, 13].

3.6 Evaluation metrics

The proposed model's efficiency and reliability in detecting

intrusions against SIoT networks are comprehensively

evaluated using the performance measures. The model is

compared in terms of common performance scores, Accuracy,

Precision, Recall, and F1-score for distinguishing boundaries

between malicious and benign activities. These metrics give a

summary of performance by targeting the model’s

classification ability and its capability to detect offenses with

high accuracy without too many false alarms. To further

evaluate the model performance, the ROC-AUC is used. The

ROC-AUC analysis shows the compromise between true

positives and false detections, being preferred higher value for

this area under both curves tested. This comparison contributes

to improving the ability of the model to discriminate between

legitimate and malicious events, considering some equilibrium

between sensitivity and specificity. And, the detection latency

(in seconds) is employed to assess the real-time response

capability of the system.

The efficiency of the proposed DDQL solution is compared

to various baseline models [14] for effectiveness. Such

analysis can show the gain by using DDQL solutions in terms

of accuracy, robustness, and computation for IDS

comparisons.

4. SIMULATION SETUP

This section offers a thorough analysis of a MATLAB-

based simulation environment to check and experiment with

the suggested improvement of the IDS. DDQL helps with the

SIoT. The simulation reproduces the operation of the IDS

dynamically by combining the real-world network traffic

measures and the DDQL algorithm settings. altering

circumstances typical of the SIoT ecosystem. The construction

uses several common MATLAB toolboxes to simplify model

creation and to perform and evaluate the model. Furthermore,

the simulation allows for immediate comparison of the

DDQL-enhanced IDS and the baseline models, therefore

producing a thorough study of the superiority. Regarding

detection accuracy, flexibility, responsiveness to many forms

of network traffic, and possible intrusion, the suggested

method is superior to the traditional ones.

4.1 Environment specifications

The efficiency testing of the proposed DDQL-based IDS

was conducted through experiments under the simulation

environment setup of MATLAB. Specific requirements of the

hardware, software, and datasets that are required in order to

reproduce results, as well as scale, are depicted in Table 1 [15].

Table 1. Environment specifications for simulation and

evaluation

Component Specification / Tool

Software MATLAB R2023b

Toolboxes

Reinforcement learning (RL) Toolbox, deep

learning (DL) Toolbox, Statistics, and machine

learning (ML) Toolbox [3]

Operating

System
Windows 11 / Ubuntu 22.04

Hardware
Intel Core i7/i9, 16–32 GB RAM, optional

NVIDIA GPU

Dataset CICIDS2017 (converted to .mat format) [15]

4.2 Dataset: CICIDS2017

This study utilizes the CICIDS2017 dataset, which provides

a comprehensive representation of both benign network traffic

and a wide variety of cyber-attacks in real-world network

environments. The dataset contains 78 traffic flow features and

includes various malicious attack types, such as DDoS, Botnet,

PortScan, and BruteForce attacks [16]. A data preprocessing

pipeline using numerous preprocessing steps is used to

maximize the quality of the input used during the training of

the models. This includes reading the information through the

2232

MATLAB readtable command or loading files directly in .mat

format. Functions like normalise or mapminmax are used to

normalize the features such that similar scaling is provided

across variables. SMOTE [17] is modeled, or undersampling

is employed based on the particular case, and an attempt is

made to fix the imbalance in the data in classes. This makes

the model be trained in a balanced representation of the

minority class and the majority class. In order to make the

model even more efficient and less complex, dimensionality

reduction methods are utilized. To be more specific, PCA is

applied to decrease the number of features and maintain the

greatest amount of variance in the data. Also, sequential

feature selection (sequentialfs) is used, which involves the

selection of the features in a sequential manner, with less

significant features being eliminated. All of these methods can

be used to make the model simpler, decrease overfitting, and

enhance the accuracy and computation speed of the system.

4.3 Reinforcement environment modelling

In this respect, the RL problem for intrusion detection is cast

as a detection problem. In this setting, the observation space is

a normalized feature space built on top of the network-based

features and social-context features from traffic. These

features are obtained as a function of consideration over

various aspects related to the technical characterization of the

network traffic, including contextual issues pertinent to the

SIoT environment. The motivation for normalization is to

scale all features equally so as to ease the learning and improve

the model's capability for detecting intrusions. This

phenomenological combination allows the RL model to be

trained with general detection strategies that are most effective

given the wider social environment in which devices exist.

This makes the model more robust and realistic, oriented to

field applications.

The action space is binary, where an action of 0 represents

benign traffic and an action of 1 represents malicious traffic.

The reward function is designed to be very specific: correct

detection of an attack is rewarded with +1, while incorrect

predictions are penalized with -1. In cases of false negatives

(i.e., when an attack goes undetected), a stronger penalty of -2

is applied, reflecting the increased risk to network security.

Rather than simulating agent-environment interactions in

predefined environments during training, custom RL

environments are created using the (rlFunctionEnv) or

(rlSimulinkEnv) interfaces in MATLAB, allowing for flexible

definition of the RL environment [3, 18].

4.4 Double Deep Q-Learning agent configuration

Better than the standard DQL algorithm, the DDQL agent

uses two neural networks to reduce the problem of over-

estimating the Q-values [10]. This architecture is applied in the

MATLAB convenient structure, defining custom layers with

the help of the structure layerGraph and dlnetwork to provide

flexible implementation and integration with an RL

environment. The most essential hyperparameters pre-trained

on the DDQL agent are listed in Table 2.

4.5 Simulating Social Internet of Things context

To emulate SIoT behavior, the following synthetic features

were included [2, 19]:

• Trust score

• Communication frequency

• Friend-of-friend (FoF) interaction metrics

• Role-based device categorization

These contextual attributes were injected into the state

vector to enable socially-aware detection policies.

Table 2. Double Deep Q-Learning (DDQL) agent

hyperparameter configuration

Parameter Value

Learning rate 1e−4

Discount factor (γ) 0.99

Mini-batch size 64

Replay buffer length 1e6

Epsilon (initial→final) 1.0 → 0.01

Target update method Soft updates (τ = 0.01)

Max episodes 500

Steps per episode 200

Optimizer Adam

4.6 Baseline models for comparison

To compare the performance of the proposed DDQL-based

IDS with baseline models, several baseline models were

developed using the MATLAB Classification Learner and DL

Toolbox [3, 12]. For a comprehensive evaluation, the baseline

models include a mix of classical ML approaches and

traditional DL models. SVMs are employed in the ML

category, particularly useful for high-dimensional

classification, as they can identify the optimal hyperplane for

data classification. Additionally, a Random Forest (RF)

model, implemented through TreeBagger, is used, as it

combines the outputs of multiple DTs to make more robust and

accurate decisions.

Convolutional Neural Networks (CNNs) are used in the DL

category due to the capability of extracting spatial patterns of

data, which are most appropriate in analyzing network traffic

because local spatial patterns can be used to reveal underlying

trends. Moreover, the use of Long Short-Term Memory

(LSTM) networks is aimed at summarizing sequential

dependence and time-related patterns in the past network

traffic records. LSTMs are also efficient in sequence learning

and best suited to modeling the sequence and temporal

variation of network data. The traditional ML techniques are

combined with the latest DL techniques to test a wide variety

of models, which will guarantee a detailed performance

evaluation of the suggested system. Also, the traditional Deep

Q-Network (DQN) RL algorithm is taken into account, which

also improves the results when included in the DDQL

framework [8]. This far-reaching comparison points out the

enormous benefits of the suggested strategy, especially with

regard to the detection accuracy, stability, and flexibility.

4.7 Evaluation metrics

The proposed IDS is tested against a set of comprehensive

measures that determine the ability of the system to classify

data as well as its feasibility in practice. The most important

metrics include Accuracy, Precision, Recall, and F1-score that

give specific information about how the IDS reacts to

intrusions and where it is likely to make errors. It will be

specifically in Accuracy that provides a general measure of

correct classifications, and Precision that provides the ability

of the system to identify malicious traffic correctly. Recall is

2233

used to indicate how well the system can identify every attack

of interest, and the F1- score is used to bring both Precision

and Recall together, which provides a trade-off between the

two [20].

Also, the False Positive Rate (FPR) is evaluated to

comprehend the system to reduce false alarms, which is

essential to real-life deployment. The excessive FPR might

result in unjustified alarms that compromise the reliability and

effectiveness of the system in practice. With these factors in

mind, the analysis will make sure that not only is the proposed

IDS effective in intrusion detection, but that it is also

applicable to be implemented in a dynamic and hostile

environment. The discriminative capability of the model is

also determined by the Receiver Operating Characteristic Area

Under the Curve (ROC-AUC), which determines the model in

terms of different decision levels.

Detection latency is also taken to enable real-time

applications. All metric computations and related graphical

displays, such as confusion matrices, precision-recall curve,

and classification report, were created by MATLAB tools and

custom-scripting functions.

5. RESULTS AND DISCUSSION

It is an IDS designed as a DDQL-based method and is

widely tested against published standards, such as classical

classifiers like SVM, RF, and DT. An evaluation metric set

was applied to allow conducting the comprehensive

performance comparison of the two paradigms. These are

Accuracy, which is the total classification accuracy of the

model, Precision, which is the percentage of correctly

identified intrusions among all the identified instances as

compared to the actual intrusion that was correctly identified

by the model, Recall, which is the percentage of the actual

intrusion identified by the model, and finally the F1-score, a

combined measure that balances between Precision and

Recall.

Also, FPR is a metric that indicates how much non-

malicious traffic is incorrectly treated as malicious, and the

Detection Rate (DR) is a percentage of how many actual

attacks are successfully detected. All these measures give a

wide-angle evaluation, including the strong and the weak sides

of the DDQL-based IDS compared to more traditional

methods.

5.1 Classification performance metrics

Table 3. Comparison of classification performance metrics

across models

Metric DDQL SVM DT RF

Accuracy (%) 98.72 92.15 93.56 95.84

Precision (%) 98.31 89.02 90.45 94.00

Recall (%) 98.94 91.76 92.22 95.40

F1-score (%) 98.62 90.36 91.32 94.69

FPR (%) 1.18 5.47 4.89 3.12

DR (%) 98.94 91.76 92.22 95.40
Notes: FPR = False Positive Rate; DR = Detection Rate; DDQL = Double

Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree;

RF = Random Forest.

The performance of the proposed DDQL-based IDS was

compared to the conventional supervised learning algorithms

(SVM, DT, and RF) in terms of the results of this study. Table

3 shows the findings after the trained models were tested on

the CICIDS2017 test dataset, which is balanced in terms of

both attack and standard traffic samples. The results indicate

that the DDQL model is superior to any other model of

supervised learning and traditional methods in all normal

evaluation measures. The DDQL agent has an outstanding

learning capability and adaptability to dynamic partially

observable SIoT settings, with an accuracy of 98.72 and a DR

of 98.94. The model has a low FPR at 1.18 and is therefore

competent in reducing the occurrence of false alerts, which is

critical in instilling trust in autonomous and distributed IoT

systems. A score of 98.62% indicated in the F1 score further

stresses the excellent balance the model has in terms of

precision and recall, and its capacity to be able to detect attacks

and reduce the effect of misclassifications. The DDQL model

is more flexible and effective over time than your SVM and

DT models, since RL is used to update the policy of the model

with regard to evolving types of attacks.

The mean reward per episode was monitored throughout the

training process to evaluate the DDQL agent's learning

stability. The positive trend of the expected average reward is

steady in the first training phase, which is depicted in Figure

1. The trend shows that the agent is learning and adapting well

in the environment. Interestingly, the reward curve levels off

at an episode of around 800, indicating that the agent has

reached an optimal or close to optimal policy. This

convergence pattern is a good sign of the training effectiveness

and the stability of policy in dynamic SIoT ecosystems.

Figure 1. Average reward growth tends to stabilize alongside

policy after episode 800

5.2 Metric comparison chart

As Figure 2 indicates, the DDQL model has always

performed better than conventional models in the most

important evaluation parameters such as accuracy, precision,

recall, and F1-score. The chart indicates that DDQL performs

better and is more stable even in strenuous traffic patterns that

are common to SIoT settings. This graphical analogy ends up

emphasizing the capabilities of DDQL to have high detection

rates and low false positives, which means that it can be used

in real-time, adaptive security organizations. The flexibility of

the proposed DDQL model in adapting to dynamic intrusion

behaviors is notable, requiring minimal retraining. This feature

is particularly beneficial for dynamic, resource-constrained

SIoT networks, where the ability to learn online and efficiently

utilize memory is crucial. These characteristics make DDQL

ideal for deployment in real-time applications, where speed

2234

and scalability are essential. Furthermore, the model can be

easily extended to support real-time intrusion detection in edge

computing systems with minimal modifications, enhancing its

relevance in modern cybersecurity environments.

Figure 2. Performance comparison of the classification of several models (DDQL, SVM, DT, RF) according to the main

assessment criteria
Notes: DDQL = Double Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree; RF = Random Forest.

Figure 3. Double Deep Q-Learning (DDQL) performance summary: Reward convergence, loss reduction, confusion matrix, and

model comparison

Figure 3 illustrates several diagnostic plots to prove the

learning efficiency and the accuracy of the detection of the

proposed DDQL-based IDS. The left subplot at the top

displays rapid learning and convergence at episode 400, which

means speedy policy stabilization. The subplot in the upper

right shows that the DDQL loss curve has a gradual reduction,

which supports stable training. The subplot at the lower-left

shows a confusion matrix with high values of true positive,

true negative, and low values of misclassification. Finally, the

subplot on the bottom-right side is a performance comparison

of classification, where DDQL achieved high accuracy and

F1-score compared to traditional techniques such as SVM, RF,

and CNN, which indicates its efficiency in SIoT settings.

5.3 Double Deep Q-Learning model evaluation

An experimental system to test the DDQL-based IDS was

developed in MATLAB 2022a to use the CICIDS2017 dataset.

There were several evaluation criteria analysed to identify the

suitability of the model in detecting and classifying network

attacks within an SIoT environment. Figure 3 presents the

mean reward per episode, which stabilizes at episode 800,

which means that the agent has learned. The DDQL loss curve

shows a continuous and gradual reduction, which proves that

2235

the training process is running in the right direction. The

confusion matrix shows high true positive and true negative

rates, and it emphasizes the fact that the model performed

highly in classifying the data. Also, the performance

comparison chart shows that the DDQL model performs better

in comparison with traditional algorithms that include SVM,

RF, and CNN, with higher accuracy and F1-score.

5.3.1 Average reward over episodes

The average reward per episode plot indicates that there is

a steep increase in the first stage of training, which means that

the agent slowly increases policy learning. The rewards started

to stabilize on episode 800, indicating that the agent had

successfully stabilized to an optimal policy. This convergence

is a major signifier that the model has now learnt to

differentiate between normal and abnormal network behavior

within a period of time, which also boosts its plausibility as a

model of dynamic SIoT environments.

5.3.2 Double Deep Q-Learning loss curve

According to the loss function curve, there was an

increasing downwards trend over the training process, which

showed that the Q-value function approximator, which is

based on a DNN, was learning. This steady downward trend is

an affirmation of the convergence of the learning algorithm.

Moreover, experience replay and the use of a target network

played a significant role in the minimization of learning

oscillations, which led to making the training more stable and

consistent.

5.3.3. Confusion matrix analysis

The confusion matrix analysis results of the proposed

DDQL model have high True Positive Rates (TPR) in the

different kinds of attacks, such as DDoS, Ports can, and

Botnets. The low misclassification rates have been

consistently high, thus proving the accuracy and reliability of

the model in separating benign and malicious traffic. Table 4

shows that the model is effective in intrusion classification.

Table 4. Class-wise precision, recall, and F1-score

Class Precision Recall F1-Score

Normal 98.4% 97.8% 98.1%

Denial of Service 96.7% 95.2% 95.9%

PortScan 97.1% 96.5% 96.8%

Botnet 95.8% 94.0% 94.9%

5.3.4 Model comparison

Recently developed algorithm DDQL has shown to be much

more performance-based than the traditional baseline

classifiers. The advanced results of the DDQL model are

reflected in all the main assessment criteria, such as accuracy,

precision, recall, and F1-score, in comparison to other

approaches. This advantage is driven in the first place by the

fact that the model provides greater balance between

exploration and exploitation as well as optimization of long-

term cumulative reward, which are two hallmarks of RL. The

comparative results are provided in Table 5, and there are

differences in performance.

Results from simulations verify that the DDQL is robust in

an SIoT context with diverse nodes and time-varying data

flow. The adaptive RL properties of the system make it

appropriate for intelligent, online threat detection. Also,

sublinear time representation growth in relation to network

size indicates scalability of the system.

Table 5. Model-wise performance metrics

Model Accuracy Precision Recall F1-Score

SVM 90.3% 89.8% 90.1% 89.9%

RF 93.5% 93.0% 93.2% 93.1%

CNN 95.1% 94.8% 94.6% 94.7%

DDQL 98.3% 98.1% 97.9% 98.0%
Notes: SVM = Support Vector Machine; RF = Random Forest; CNN =

Convolutional Neural Network; DDQL = Double Deep Q-Learning.

6. CONCLUSIONS

In this study, a novel intrusion detection framework based

on DDQL was proposed, specifically designed for SIoT

environments. The key contributions and findings are

summarized as follows:

• A DDQL-based IDS was introduced, leveraging deep RL

to dynamically adapt to the complex and high-

dimensional tasks of SIoT networks.

• The proposed system outperforms traditional ML and DL

methods (e.g., SVM, RF, CNN) in terms of accuracy,

recall, and F1-score, thanks to its optimization objective

that minimizes punitive behavior in the learning process.

• The DDQL agent demonstrated smooth convergence in

learning, as evidenced by the average reward curve,

robust loss minimization, and low FPR. This indicates a

stable policy learning process even under uncertain traffic

conditions.

• The architecture supports online learning and experience

replay, making it well-suited for deployment on resource-

constrained edge devices while also scalable to large SIoT

installations.

• The model integrates social context features (e.g., trust

level, communication frequency) and adjusts its policy

accordingly, considering device relationships and

contextual behavior—an aspect often overlooked by

traditional models.

7. FUTURE WORK

To further enhance the existing framework, the following

avenues of opportunity are proposed:

• Federated RL will be utilized to minimize the transfer of

sensitive data between expanding IoT nodes while still

allowing for the sharing of knowledge across devices.

• To make the architecture adaptable to various

applications, support for a range of IoT-specific protocols

(such as MQTT, CoAP, Zigbee, etc.) will be incorporated,

broadening its applicability across different fields.

• The model could be deployed in live traffic monitoring

systems, enabling adaptive intrusion detection within

production-level SIoT networks.

REFERENCES

[1] Atzori, L., Iera, A., Morabito, G. (2014). From" smart

objects" to" social objects": The next evolutionary step

of the Internet of Things. IEEE Communications

Magazine, 52(1): 97-105.

https://doi.org/10.1109/MCOM.2014.6710070

[2] Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.

(2015). Security, privacy, and trust in Internet of Things:

2236

The road ahead. Computer Networks, 76: 146-164.

https://doi.org/10.1016/j.comnet.2014.11.008

[3] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández,

G., Vázquez, E. (2009). Anomaly-based network

intrusion detection: Techniques, systems, and

challenges. Computers & Security, 28(1-2), 18-28.

https://doi.org/10.1016/j.cose.2008.08.003

[4] Sommer, R., Paxson, V. (2010). Outside the closed

world: On using machine learning for network intrusion

detection. In 2010 IEEE Symposium on Security and

Privacy, Oakland, CA, USA, pp. 305-316.

https://doi.org/10.1109/SP.2010.25

[5] Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M.,

Tippenhauer, N.O., Guarnizo, J.D., Elovici, Y. (2017).

Detection of unauthorized IoT devices using machine

learning techniques. arXiv preprint arXiv:1709.04647.

https://doi.org/10.48550/arXiv.1709.04647

[6] Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q. (2018). A

deep learning approach to network intrusion detection.

IEEE Transactions on Emerging Topics in

Computational Intelligence, 2(1): 41-50.

https://doi.org/10.1109/TETCI.2017.2772792

[7] Junhuai, L., Yunwen, W., Huaijun, W., Jiang, X. (2023).

Fault detection method based on adversarial

reinforcement learning. Frontiers in Computer Science,

4: 1007665.

https://doi.org/10.3389/fcomp.2022.1007665

[8] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al.

(2015). Human-level control through deep reinforcement

learning. Nature, 518(7540): 529-533.

https://doi.org/10.1038/nature14236

[9] Alturfi, S.M., Al-Musawi, B., Marhoon, H.A. (2020). An

advanced classification of cloud computing security

techniques: A survey. AIP Conference Proceedings,

2290(1): 040017. https://doi.org/10.1063/5.0027355

[10] Van Hasselt, H., Guez, A., Silver, D. (2016). Deep

reinforcement learning with double Q-learning. Thirtieth

AAAI Conference on Artificial Intelligence, 30(1):

2094-2100. https://doi.org/10.1609/aaai.v30i1.10295

[11] Kaushik, K. (2024). Leveraging deep learning techniques

for securing the Internet of Things in the age of big data.

In Applying Artificial Intelligence in Cybersecurity

Analytics and Cyber Threat Detection, pp. 311-325.

https://doi.org/10.1002/9781394196470.ch15

[12] Yin, C., Zhu, Y., Fei, J., He, X. (2017). A deep learning

approach for intrusion detection using recurrent neural

networks. IEEE Access, 5: 21954-21961.

https://doi.org/10.1109/ACCESS.2017.2762418

[13] Kheddar, H., Dawoud, D.W., Awad, A.I., Himeur, Y.,

Khan, M.K. (2024). Reinforcement-learning-based

intrusion detection in communication networks: A

review. IEEE Communications Surveys & Tutorials,

27(4):2420-2469.

https://doi.org/10.1109/COMST.2024.3484491

[14] Zhang, D., Yu, F.R., Yang, R. (2019). Blockchain-based

distributed software-defined vehicular networks: A

dueling Deep Q-learning approach. IEEE Transactions

on Cognitive Communications and Networking, 5(4):

1086-1100.

https://doi.org/10.1109/TCCN.2019.2944399

[15] Phan, T.V., Bauschert, T. (2022). DeepAir: Deep

reinforcement learning for adaptive intrusion response in

software-defined networks. IEEE Transactions on

Network and Service Management, 19(3): 2207-2218.

https://doi.org/10.1109/TNSM.2022.3158468

[16] Intrusion Detection Evaluation Dataset (ISCXIDS2012).

https://www.unb.ca/cic/datasets/ids.html.

[17] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer,

W.P. (2002). SMOTE: synthetic minority over-sampling

technique. Journal of Artificial Intelligence Research, 16:

321-357. https://doi.org/10.1613/jair.953

[18] Mary, D.R.K., Ko, E., Kim, S.G., Yum, S.H., Shin, S.Y.,

Park, S.H. (2021). A systematic review on recent trends,

challenges, privacy and security issues of underwater

Internet of Things. Sensors, 21(24): 8262.

https://doi.org/10.3390/s21248262

[19] Ortiz, A.M., Hussein, D., Park, S., Han, S.N., Crespi, N.

(2014). The cluster between Internet of Things and social

networks: Review and research challenges. IEEE

Internet of Things Journal, 1(3): 206-215.

https://doi.org/10.1109/JIOT.2014.2318835

[20] Bejan, A. (2016). Constructal thermodynamics.

International Journal of Heat and Technology,

34(Special Issue 1): S1-S8.

https://doi.org/10.18280/ijht.34S101

2237

