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The growing demand for the Internet of Things (IoT), especially the Social 

Internet of Things (SIoT), has introduced a new dimension of technological 

challenges. As the use of SIoT expands, it has raised significant concerns about 

the security of networks connecting smart devices, particularly against 

sophisticated network breaches. Traditional Intrusion Detection Systems (IDS) 

struggle to dynamically adapt to the complex, high-dimensional environments of 

SIoT. This paper proposes that a more effective Network Intrusion Detection 

System (NIDS) can be developed using Double Deep Q-Learning (DDQL). The 

reinforcement learning (RL) method overcomes the overestimation bias 

commonly found in traditional Q-learning techniques, offering a more accurate 

and reliable detection model. The system was trained and tested using the 

CICIDS2017 dataset, which includes real-world network traffic and attack 

scenarios. By framing intrusion detection as a sequence of decisions, the DDQL 

learning-based agent can learn and predict malicious behaviors more accurately 

with much fewer false positives. Experiments show that the developed method 

provides better results in terms of detection accuracy, precision, and F1-score 

than traditional machine learning (ML) classifiers and standard Deep Q-Learning 

(DQL) models. These enhancements showcase the system's improvements in 

real-time intrusion detection and response capabilities. Moreover, the scalability 

and flexibility of the system make it a powerful instrument to identify intrusions 

in the dynamic and fast-growing S-IoT environments where attack scenarios 

change rapidly, and attack vectors can be very wide. 
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1. INTRODUCTION

The Social Internet of Things (SIoT) gr16ows from the 

conventional Internet of Things (IoT), where smart objects 

manage and establish social relations to increase collaboration, 

context perceptiveness, and intelligent services provisioning 

[1]. This has attracted huge interest, e.g., in health care, 

intelligent transportation systems, and industrial automation 

[2, 3]. Nonetheless, security issues are becoming even more 

relevant as the number of devices that have an IP address 

grows and SIoT networks are dynamic, decentralized, and 

heterogeneous [4]. 

Botnet, Denial of Service (DoS), and data tampering stand 

as main threats to SIoT environments, taking advantage of the 

high communication rate among devices and the node mobility 

[5]. Conventional security analogues such as firewalls and 

antivirus software are no longer sustainable since they tend to 

be resource-exorbitant; they also fail to cater to the current-

day gravity of the threat landscape [6]. In response, there is a 

need for new lightweight and innovative Intrusion Detection 

Systems (IDSs) within the context of SIoT. 

Intrusion detection approaches are typically categorized as 

signature-based and anomaly-based detectors. Signature-

based IDSs work well for known attacks, but are not effective 

against zero-day attacks and need regular updates [7]. 

Anomaly-based systems, in comparison, have the potential to 

detect new attacks but suffer from less scalability and high 

false positives, so in practice they are not as effective as 

signature-based systems [8, 9]. Most existing IDSs do not 

consider the special social behaviors in SIoT and cannot well 

adapt to the networked environment with such social 

behaviors, laying insufficiency for detecting attacks 

effectively. To overcome these deficiencies, an increasing 

number of researchers are adopting adaptive methods that 

make use of machine learning (ML) and deep learning (DL) 

techniques [10, 11]. Well, these techniques solve the problem 

of manual feature engineering but might still lack in 

generalization. DL methods, like CNNs and RNNs, show 

potential in achieving better efficiency as they can 

automatically learn and capture useful characteristics of raw 
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traffic data [12, 13]. Nevertheless, despite these progressions, 

the computation-intensive nature of both ML and DL solutions 

continues to present considerable struggles for real-time 

systems as they often lack the capacity for a rapid response 

against advancing adversarial methodologies. 

Reinforcement learning (RL) has recently shown the 

potential in facilitating real-time online learning under 

dynamic environments, which is an attractive feature, 

especially for internet applications. Supervised learning 

models depend on massive amounts of labeled information in 

dealing with pattern recognition, while RL simply interacts 

with the environment and learns through trial and error. In this 

setting, an RL agent is given feedback in terms of reward or 

penalties based on its actions that directly influence the 

environment. The agent gradually learns to take actions in a 

way that maximizes the sum of rewards because it is designed 

to converge on an optimal policy that reacts to changes in its 

environment in the most favorable way [14]. This adaptability 

property renders RL particularly well-suited for Network 

Intrusion Detection System (NIDS) in highly volatile and 

unpredictable systems, such as SIoT environments. 

Deep Q-Learning (DQL) is mostly used in an IDS model for 

extensive state-action spaces. Nevertheless, the DQL 

algorithm is affected by Q-value overestimation that can affect 

decision-making. To mitigate the instability in standard DQL, 

Double Deep Q-Learning (DDQL) decouples action selection 

and evaluation by using two distinct neural networks [15]. 

DDQL is highly promising, yet it has not been fully developed 

for SIoT-IDSs. The purpose of this paper is to address these 

gaps via a new DDQL-based IDS for efficient integration and 

evolution of social context knowledge, as well as maintaining 

a high threat detection rate with low CPU utilization. 

 

 

2. RELATED WORK 

 

Several studies have explored IDS frameworks in both IoT 

and SIoT environments, aiming to enhance detection 

capabilities through intelligent learning models. These studies 

are categorized below according to their underlying 

methodologies. 

 

2.1 Traditional and machine learning-based approaches 

 

In the early works on IoT security, rule-based and 

statistical-based approaches for intrusion detection have been 

used [7]. To overcome the drawbacks of these techniques, ML 

algorithms like Decision Trees (DTs) and Support Vector 

Machines (SVMs) were proposed to classify network 

anomalies with moderate success [10, 11]. Nevertheless, these 

models are trained offline, do not consider the fact that 

network conditions may be dynamic, and frequently cannot 

generalize to different IoT settings. 
 

2.2 Deep learning-based detection 

 

DL has gained momentum as an approach to IDSs that are 

models that can be trained autonomously to form new patterns 

and extract signatures on raw traffic data without the 

requirement of manual feature engineering. This feature 

empowers DL models to efficiently recognize complex 

behaviors of attacks that standard tools are not capable of 

catching. CNN exhibits remarkable performance for 

identifying spatial patterns in the traffic flow [12], and RNN 

and LSTM networks are proficient at modeling temporal 

dynamics for sequential data [13]. While such models achieve 

high accuracy, they tend to need a very large amount of labeled 

data and are not deployable on resource-limited IoT devices 

(i.e., optimal distributions) [6]. 

 

2.3 Reinforcement learning applications 

 

RL is a very good model in dealing with dynamically 

evolving environments, and the benefit of online learning is 

that systems can continually adapt their performance as they 

receive real-time feedback. Q-learning and its improved 

version, DQL, have been seen to have been highly successful 

in scenarios were used in adaptive intrusion detection of IoT 

networks. These approaches allow the systems to learn the best 

strategies of detecting and preventing threats autonomously as 

they interact with the environment and adapt to the changing 

patterns of attacks. Q-learning and DQL are flexible to enable 

real-time updates, which makes them very appropriate in the 

dynamic and unpredictable environment of IoT networks, the 

security issues of which continuously change [14]. As an 

example, Junhuai et al. [7] presented an adversarial RL-based 

IDS that could dynamically update its detection policy 

concerning new attack vectors as they were discovered (via 

interactive learning). Nevertheless, the resultant issue with 

DQL is found to be overestimation of Q-values, which can 

lead to poor policy decisions and a reduction in the accuracy 

of detection, especially where the conditions are uncertain or 

noisy. 

 

2.4 Double Deep Q-Learning solutions 

 

To overcome the issue of overestimating Q-values with 

DQL, van Hasselt et al. [10] introduced DDQL, an enhanced 

form of DQL, which improves the robustness of the learning 

process by decoupling the action selection and evaluation 

stages. DDQL has since been successfully applied in various 

areas of network security, including intrusion detection on 

edge devices, software-defined networking (SDN) systems, 

and threat mitigation. Zhang et al. [14] demonstrated the 

significant potential of DDQL in detecting botnet and DoS 

attacks on benchmark datasets, while Phan and Bauschert [15] 

applied it in SDNs to adapt to changing threat scenarios [6]. 

On the other hand, despite these achievements, the role of 

DDQL in SIoT has yet to be fully developed, particularly with 

regard to how it models and leverages social interactions and 

device-level relationships that are common in SIoT systems. 

To overcome this limitation, in this work, we propose to 

incorporate DDQL on a socially aware IDS. This will help in 

developing a more accurate and computationally efficient 

intrusion detection, which can be deployed in real-time in 

dynamic SIoT soil environments. 

 

 

3. METHODOLOGY 

 

3.1 System architecture overview 

 

The IDS is specifically designed for use in the SIoT 

environment, where smart devices, machines, sensors, 

smartphones, and household appliances autonomously 

establish social connections based on their properties, such as 

ownership, co-location, and co-usage. These relationships 

facilitate data sharing and enable the provision of innovative 

services. The system is comprised of five main components 
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which collaborate in the following way: The Pre-processing 

Module cleans and standardizes raw data; the Feature 

Extractor identifies and chooses features for analysis; using 

DDQL method, the DDQL Agent learns threat detection by 

interacting with its environment; To classify incoming traffic 

and take necessary mitigation actions when malicious traffic 

is detected we apply an Action Executor; Finally, collecting 

network packets on-the-fly via PCAP format file provided as 

input to this component, the Data Collector captures all types 

of threats. 

 

3.2 Dataset and pre-processing 

 

The CICIDS2017 dataset includes highly diverse network 

traffic scenarios, making it ideal for examination and training 

in two phases. It encompasses a wide range of benign activities 

as well as various attack types, such as DoS, Distributed 

Denial of Service (DDoS), and botnet attacks, providing a 

robust benchmark for IDSs [2]. 

A few pre-processing procedures were carried out to make 

the data reliable and ready for efficient model training. 

Missing and partially missing records were handled first by 

emptying them into the filled dataset with proper entries to 

avoid bias or errors during training. Finally, the categorical 

variables with text labels were transformed into numerical, so 

that the total dataset can pass through ML algorithms without 

resistance in a smoother manner. The Min–Max normalization 

technique was employed in order to standardize the features 

and help the model perform well, where all feature values are 

scaled with a range of (0,1). This increases the speed of 

convergence, stabilizes the model, and prevents any feature 

from dominating the learning process since all features 

contribute with equal weights. Furthermore, SMOTE 

(Synthetic Minority Over-sampling Technique) was also 

applied to deal with the class imbalance problem, where some 

attack types have fewer samples than benign traffic in most 

cases. SMOTE creates synthetic examples of the minority 

class while interpolating between existing samples, thereby 

balancing the data. This enables the model to experience a 

more realistic distribution of attack forms, thereby resulting in 

better identification of both uncommon and possibly more 

advanced attack patterns [3]. 

 

3.3 Feature engineering 

 

The recommended system performs feature engineering 

based on the combination of mutual information analysis, 

recursive feature elimination (RFE), and domain-specific 

heuristics that are limited to the SIoT environments [4]. This 

has the advantage of selecting only features that are 

statistically significant and semantically meaningful. The 

chosen features comprise both typical network-level metrics 

and traffic profiles, and social-context related variables such 

as device trustworthiness scores, network roles, and inter-

device communication rates. Together, these characteristics 

improve the model’s capability of discriminating between 

benign and malicious from SIoT networks. 

 

3.4 Double Deep Q-Learning for Intrusion Detection 

System 

 

DDQL is just an extended version of DQL, which improves 

upon the standard DQL by providing a better learning 

algorithm and helps in training a more robust model. DDQL, 

in contrast to DQL, which uses a single Deep Neural Network 

(DNN) for learning action selection and Q approximations, 

DDQL employs two separate DNNs. Such a two-network 

architecture attempts to mitigate the overestimation of Q-

values that tends to occur with standard DQL [5, 6]. In 

particular, one network (called the online network) is used for 

selecting actions based on the current policy, while the other 

network (referred to as the target network) estimates Q-values 

of such actions. As a result, due to decoupling action selection 

as well as estimation, the learned policy of DDQL is both more 

stable and accurate. This decoupling could alleviate the 

positive bias often found in standard DQL, which thus learns 

more reliably and consistently. These enhancements are 

especially interesting in uncertain and complex domains, such 

as SIoT networks, with the fact that accurate and flexible 

intrusion detection is mandatory. 

 

3.4.1 Markov Decision Process formulation 

The intrusion detection problem in the SIoT domain is 

modeled as a Markov Decision Process (MDP) to have the 

possibility of RL. The state variable ss, used in this 

formulation, will be a vector consisting of network-level and 

social-context features derived from incoming traffic data. The 

space of actions aa is binary, such that a = 0 is benign traffic 

and a = 1 represents malicious activity. 

The reward function r is meant to direct the learning process 

by rewarding the correct classifications with a response of +1 

and incorrect classifications with -1, and hence, strengthening 

the correct detection behavior. The state transition function TT 

simulates the development of one traffic observation to the 

following one regarding the action and dynamics of the 

environment chosen. Lastly, the policy 00, a mapping between 

the observed states and corresponding actions, is updated by 

the DDQL framework iteratively [7]. 

 

3.4.2 Network design 

The proposed architecture of the DDQL model consists of 

two separate neural networks: the Q-network (online) and the 

Q2n (target). Both networks are trained as multilayer 

perceptrons (MLPs), typically with two to three hidden layers 

of neurons, configured with 128 and 64 neurons, respectively. 

The final layer contains two neurons, corresponding to the 

binary labels output by the network: benign and malicious. 

To enhance the robustness of the training process and 

facilitate easier convergence, the model employs experience 

replay. This technique involves storing data from previous 

interactions and randomly sampling from it during training. 

Experience replay helps mitigate the temporal correlations 

between successive observations, thus promoting more 

efficient policy learning [8]. 

 

3.4.3 Loss function 

Under the DDQL training rule, the model aims to minimize 

the difference between (i) Q-values calculated by the online 

Q-network and (ii) target Q-values generated by a temporally 

distinct target network. The distance is usually measured by 

using the Mean Squared Error (MSE) loss, which computes 

the average of squared differences between predicted values 

and their targets. DDQL calculates the target using a 2 

collaborative process: action selection by the online is 

answered by target evaluation. In particular, the next action a′ 

is the one which maximizes Q, where we use, and the value of 

that chosen action is evaluated using. By dividing these two 

roles, DDQL mitigates overestimation bias common in 
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classical DQL, which has a single estimator for both action 

selection and evaluation. This architecture results in a stronger 

form of training as well as safer policy learning, especially in 

dynamic and uncertain environments like SIoT intrusion 

detection. 

A standard DDQL target and loss formulation can be written 

as: 
 

L(θ) = E[(r + γ*Q'(s',argmaxₐQ(s',a;θ);θ̅)-Q(s,a;θ))²] (1) 

 

where, 

θ represents the parameters of the current (online) Q-

network. 

𝜃̅ represents the parameters of the target Q-network, which 

is updated periodically. 

γ = 0.99 is the discount factor used to weigh future rewards. 

Q is the action-value function estimating the expected 

return. 

R is the immediate reward. 

s and s' are the current and following states. 

a is the action taken. 

It is easier and more reliable to estimate the Q-value, which 

can, in turn, enhance the learning performance and accuracy 

of the IDS. 

 

3.4.4 Training strategy 

The learning algorithm not only achieves well in stabilizing 

the DDQL agent, but also contributes to an efficient training 

of the agent in dynamic network scenarios. In the replay 

buffer, experienced transitions are maintained, and during 

training, they are randomly sampled, thereby destroying 

temporal correlations and facilitating generalization. Mini-

batch updates also aid in regularizing gradient descent, thereby 

ensuring faster convergence. This has the effect of both 

driving the agent to explore new behaviors as well as 

credentialing previously learned actions. Moreover, the target 

network is periodically updated, which also serves to stabilize 

the learning process by eliminating fluctuations in Q-value 

targets throughout training [11]. 

 

3.5 Social-aware context integration 

 

In the proposed model, social awareness is integrated into 

RL for improving decision-making in the SIoT system. The 

state vector stores crucial social parameters such as the trust of 

communicating devices, history, and the rate of 

communications. Such contextual information will enable the 

DDQL agent to produce more personalized and focused 

decisions on intrusion detection based upon those dynamic 

relationships between devices in SIoT [12, 13]. 

 

3.6 Evaluation metrics 

 

The proposed model's efficiency and reliability in detecting 

intrusions against SIoT networks are comprehensively 

evaluated using the performance measures. The model is 

compared in terms of common performance scores, Accuracy, 

Precision, Recall, and F1-score for distinguishing boundaries 

between malicious and benign activities. These metrics give a 

summary of performance by targeting the model’s 

classification ability and its capability to detect offenses with 

high accuracy without too many false alarms. To further 

evaluate the model performance, the ROC-AUC is used. The 

ROC-AUC analysis shows the compromise between true 

positives and false detections, being preferred higher value for 

this area under both curves tested. This comparison contributes 

to improving the ability of the model to discriminate between 

legitimate and malicious events, considering some equilibrium 

between sensitivity and specificity. And, the detection latency 

(in seconds) is employed to assess the real-time response 

capability of the system. 

The efficiency of the proposed DDQL solution is compared 

to various baseline models [14] for effectiveness. Such 

analysis can show the gain by using DDQL solutions in terms 

of accuracy, robustness, and computation for IDS 

comparisons. 

 

 

4. SIMULATION SETUP 

 

This section offers a thorough analysis of a MATLAB-

based simulation environment to check and experiment with 

the suggested improvement of the IDS. DDQL helps with the 

SIoT. The simulation reproduces the operation of the IDS 

dynamically by combining the real-world network traffic 

measures and the DDQL algorithm settings. altering 

circumstances typical of the SIoT ecosystem. The construction 

uses several common MATLAB toolboxes to simplify model 

creation and to perform and evaluate the model. Furthermore, 

the simulation allows for immediate comparison of the 

DDQL-enhanced IDS and the baseline models, therefore 

producing a thorough study of the superiority. Regarding 

detection accuracy, flexibility, responsiveness to many forms 

of network traffic, and possible intrusion, the suggested 

method is superior to the traditional ones. 

 

4.1 Environment specifications 

 

The efficiency testing of the proposed DDQL-based IDS 

was conducted through experiments under the simulation 

environment setup of MATLAB. Specific requirements of the 

hardware, software, and datasets that are required in order to 

reproduce results, as well as scale, are depicted in Table 1 [15]. 

 

Table 1. Environment specifications for simulation and 

evaluation 

 

Component Specification / Tool 

Software MATLAB R2023b 

Toolboxes 

Reinforcement learning (RL) Toolbox, deep 

learning (DL) Toolbox, Statistics, and machine 

learning (ML) Toolbox [3] 

Operating 

System 
Windows 11 / Ubuntu 22.04 

Hardware 
Intel Core i7/i9, 16–32 GB RAM, optional 

NVIDIA GPU 

Dataset CICIDS2017 (converted to .mat format) [15] 

 

4.2 Dataset: CICIDS2017 

 

This study utilizes the CICIDS2017 dataset, which provides 

a comprehensive representation of both benign network traffic 

and a wide variety of cyber-attacks in real-world network 

environments. The dataset contains 78 traffic flow features and 

includes various malicious attack types, such as DDoS, Botnet, 

PortScan, and BruteForce attacks [16]. A data preprocessing 

pipeline using numerous preprocessing steps is used to 

maximize the quality of the input used during the training of 

the models. This includes reading the information through the 
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MATLAB readtable command or loading files directly in .mat 

format. Functions like normalise or mapminmax are used to 

normalize the features such that similar scaling is provided 

across variables. SMOTE [17] is modeled, or undersampling 

is employed based on the particular case, and an attempt is 

made to fix the imbalance in the data in classes. This makes 

the model be trained in a balanced representation of the 

minority class and the majority class. In order to make the 

model even more efficient and less complex, dimensionality 

reduction methods are utilized. To be more specific, PCA is 

applied to decrease the number of features and maintain the 

greatest amount of variance in the data. Also, sequential 

feature selection (sequentialfs) is used, which involves the 

selection of the features in a sequential manner, with less 

significant features being eliminated. All of these methods can 

be used to make the model simpler, decrease overfitting, and 

enhance the accuracy and computation speed of the system. 

 

4.3 Reinforcement environment modelling 

 

In this respect, the RL problem for intrusion detection is cast 

as a detection problem. In this setting, the observation space is 

a normalized feature space built on top of the network-based 

features and social-context features from traffic. These 

features are obtained as a function of consideration over 

various aspects related to the technical characterization of the 

network traffic, including contextual issues pertinent to the 

SIoT environment. The motivation for normalization is to 

scale all features equally so as to ease the learning and improve 

the model's capability for detecting intrusions. This 

phenomenological combination allows the RL model to be 

trained with general detection strategies that are most effective 

given the wider social environment in which devices exist. 

This makes the model more robust and realistic, oriented to 

field applications. 

The action space is binary, where an action of 0 represents 

benign traffic and an action of 1 represents malicious traffic. 

The reward function is designed to be very specific: correct 

detection of an attack is rewarded with +1, while incorrect 

predictions are penalized with -1. In cases of false negatives 

(i.e., when an attack goes undetected), a stronger penalty of -2 

is applied, reflecting the increased risk to network security. 

Rather than simulating agent-environment interactions in 

predefined environments during training, custom RL 

environments are created using the (rlFunctionEnv) or 

(rlSimulinkEnv) interfaces in MATLAB, allowing for flexible 

definition of the RL environment [3, 18]. 
 

4.4 Double Deep Q-Learning agent configuration 
 

Better than the standard DQL algorithm, the DDQL agent 

uses two neural networks to reduce the problem of over-

estimating the Q-values [10]. This architecture is applied in the 

MATLAB convenient structure, defining custom layers with 

the help of the structure layerGraph and dlnetwork to provide 

flexible implementation and integration with an RL 

environment. The most essential hyperparameters pre-trained 

on the DDQL agent are listed in Table 2. 

 

4.5 Simulating Social Internet of Things context 

 

To emulate SIoT behavior, the following synthetic features 

were included [2, 19]: 

• Trust score 

• Communication frequency 

• Friend-of-friend (FoF) interaction metrics 

• Role-based device categorization 

These contextual attributes were injected into the state 

vector to enable socially-aware detection policies. 

 

Table 2. Double Deep Q-Learning (DDQL) agent 

hyperparameter configuration 

 
Parameter Value 

Learning rate 1e−4 

Discount factor (γ) 0.99 

Mini-batch size 64 

Replay buffer length 1e6 

Epsilon (initial→final) 1.0 → 0.01 

Target update method Soft updates (τ = 0.01) 

Max episodes 500 

Steps per episode 200 

Optimizer Adam 

 

4.6 Baseline models for comparison 

 

To compare the performance of the proposed DDQL-based 

IDS with baseline models, several baseline models were 

developed using the MATLAB Classification Learner and DL 

Toolbox [3, 12]. For a comprehensive evaluation, the baseline 

models include a mix of classical ML approaches and 

traditional DL models. SVMs are employed in the ML 

category, particularly useful for high-dimensional 

classification, as they can identify the optimal hyperplane for 

data classification. Additionally, a Random Forest (RF) 

model, implemented through TreeBagger, is used, as it 

combines the outputs of multiple DTs to make more robust and 

accurate decisions. 

Convolutional Neural Networks (CNNs) are used in the DL 

category due to the capability of extracting spatial patterns of 

data, which are most appropriate in analyzing network traffic 

because local spatial patterns can be used to reveal underlying 

trends. Moreover, the use of Long Short-Term Memory 

(LSTM) networks is aimed at summarizing sequential 

dependence and time-related patterns in the past network 

traffic records. LSTMs are also efficient in sequence learning 

and best suited to modeling the sequence and temporal 

variation of network data. The traditional ML techniques are 

combined with the latest DL techniques to test a wide variety 

of models, which will guarantee a detailed performance 

evaluation of the suggested system. Also, the traditional Deep 

Q-Network (DQN) RL algorithm is taken into account, which 

also improves the results when included in the DDQL 

framework [8]. This far-reaching comparison points out the 

enormous benefits of the suggested strategy, especially with 

regard to the detection accuracy, stability, and flexibility. 

 

4.7 Evaluation metrics 

 

The proposed IDS is tested against a set of comprehensive 

measures that determine the ability of the system to classify 

data as well as its feasibility in practice. The most important 

metrics include Accuracy, Precision, Recall, and F1-score that 

give specific information about how the IDS reacts to 

intrusions and where it is likely to make errors. It will be 

specifically in Accuracy that provides a general measure of 

correct classifications, and Precision that provides the ability 

of the system to identify malicious traffic correctly. Recall is 
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used to indicate how well the system can identify every attack 

of interest, and the F1- score is used to bring both Precision 

and Recall together, which provides a trade-off between the 

two [20]. 

Also, the False Positive Rate (FPR) is evaluated to 

comprehend the system to reduce false alarms, which is 

essential to real-life deployment. The excessive FPR might 

result in unjustified alarms that compromise the reliability and 

effectiveness of the system in practice. With these factors in 

mind, the analysis will make sure that not only is the proposed 

IDS effective in intrusion detection, but that it is also 

applicable to be implemented in a dynamic and hostile 

environment. The discriminative capability of the model is 

also determined by the Receiver Operating Characteristic Area 

Under the Curve (ROC-AUC), which determines the model in 

terms of different decision levels. 

Detection latency is also taken to enable real-time 

applications. All metric computations and related graphical 

displays, such as confusion matrices, precision-recall curve, 

and classification report, were created by MATLAB tools and 

custom-scripting functions. 

 

 

5. RESULTS AND DISCUSSION  
 

It is an IDS designed as a DDQL-based method and is 

widely tested against published standards, such as classical 

classifiers like SVM, RF, and DT. An evaluation metric set 

was applied to allow conducting the comprehensive 

performance comparison of the two paradigms. These are 

Accuracy, which is the total classification accuracy of the 

model, Precision, which is the percentage of correctly 

identified intrusions among all the identified instances as 

compared to the actual intrusion that was correctly identified 

by the model, Recall, which is the percentage of the actual 

intrusion identified by the model, and finally the F1-score, a 

combined measure that balances between Precision and 

Recall. 

Also, FPR is a metric that indicates how much non-

malicious traffic is incorrectly treated as malicious, and the 

Detection Rate (DR) is a percentage of how many actual 

attacks are successfully detected. All these measures give a 

wide-angle evaluation, including the strong and the weak sides 

of the DDQL-based IDS compared to more traditional 

methods. 

 

5.1 Classification performance metrics 

 

Table 3. Comparison of classification performance metrics 

across models 

 
Metric DDQL SVM DT RF 

Accuracy (%) 98.72 92.15 93.56 95.84 

Precision (%) 98.31 89.02 90.45 94.00 

Recall (%) 98.94 91.76 92.22 95.40 

F1-score (%) 98.62 90.36 91.32 94.69 

FPR (%) 1.18 5.47 4.89 3.12 

DR (%) 98.94 91.76 92.22 95.40 
Notes: FPR = False Positive Rate; DR = Detection Rate; DDQL = Double 

Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree; 

RF = Random Forest. 

 

The performance of the proposed DDQL-based IDS was 

compared to the conventional supervised learning algorithms 

(SVM, DT, and RF) in terms of the results of this study. Table 

3 shows the findings after the trained models were tested on 

the CICIDS2017 test dataset, which is balanced in terms of 

both attack and standard traffic samples. The results indicate 

that the DDQL model is superior to any other model of 

supervised learning and traditional methods in all normal 

evaluation measures. The DDQL agent has an outstanding 

learning capability and adaptability to dynamic partially 

observable SIoT settings, with an accuracy of 98.72 and a DR 

of 98.94. The model has a low FPR at 1.18 and is therefore 

competent in reducing the occurrence of false alerts, which is 

critical in instilling trust in autonomous and distributed IoT 

systems. A score of 98.62% indicated in the F1 score further 

stresses the excellent balance the model has in terms of 

precision and recall, and its capacity to be able to detect attacks 

and reduce the effect of misclassifications. The DDQL model 

is more flexible and effective over time than your SVM and 

DT models, since RL is used to update the policy of the model 

with regard to evolving types of attacks. 

The mean reward per episode was monitored throughout the 

training process to evaluate the DDQL agent's learning 

stability. The positive trend of the expected average reward is 

steady in the first training phase, which is depicted in Figure 

1. The trend shows that the agent is learning and adapting well 

in the environment. Interestingly, the reward curve levels off 

at an episode of around 800, indicating that the agent has 

reached an optimal or close to optimal policy. This 

convergence pattern is a good sign of the training effectiveness 

and the stability of policy in dynamic SIoT ecosystems. 

 

 
 

Figure 1. Average reward growth tends to stabilize alongside 

policy after episode 800 

 

5.2 Metric comparison chart 

 

As Figure 2 indicates, the DDQL model has always 

performed better than conventional models in the most 

important evaluation parameters such as accuracy, precision, 

recall, and F1-score. The chart indicates that DDQL performs 

better and is more stable even in strenuous traffic patterns that 

are common to SIoT settings. This graphical analogy ends up 

emphasizing the capabilities of DDQL to have high detection 

rates and low false positives, which means that it can be used 

in real-time, adaptive security organizations. The flexibility of 

the proposed DDQL model in adapting to dynamic intrusion 

behaviors is notable, requiring minimal retraining. This feature 

is particularly beneficial for dynamic, resource-constrained 

SIoT networks, where the ability to learn online and efficiently 

utilize memory is crucial. These characteristics make DDQL 

ideal for deployment in real-time applications, where speed 
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and scalability are essential. Furthermore, the model can be 

easily extended to support real-time intrusion detection in edge 

computing systems with minimal modifications, enhancing its 

relevance in modern cybersecurity environments.

 

 
 

Figure 2. Performance comparison of the classification of several models (DDQL, SVM, DT, RF) according to the main 

assessment criteria 
Notes: DDQL = Double Deep Q-Learning; SVM = Support Vector Machine; DT = Decision Tree; RF = Random Forest. 

 

 
 

Figure 3. Double Deep Q-Learning (DDQL) performance summary: Reward convergence, loss reduction, confusion matrix, and 

model comparison 

 

Figure 3 illustrates several diagnostic plots to prove the 

learning efficiency and the accuracy of the detection of the 

proposed DDQL-based IDS. The left subplot at the top 

displays rapid learning and convergence at episode 400, which 

means speedy policy stabilization. The subplot in the upper 

right shows that the DDQL loss curve has a gradual reduction, 

which supports stable training. The subplot at the lower-left 

shows a confusion matrix with high values of true positive, 

true negative, and low values of misclassification. Finally, the 

subplot on the bottom-right side is a performance comparison 

of classification, where DDQL achieved high accuracy and 

F1-score compared to traditional techniques such as SVM, RF, 

and CNN, which indicates its efficiency in SIoT settings. 

 

5.3 Double Deep Q-Learning model evaluation 

 

An experimental system to test the DDQL-based IDS was 

developed in MATLAB 2022a to use the CICIDS2017 dataset. 

There were several evaluation criteria analysed to identify the 

suitability of the model in detecting and classifying network 

attacks within an SIoT environment. Figure 3 presents the 

mean reward per episode, which stabilizes at episode 800, 

which means that the agent has learned. The DDQL loss curve 

shows a continuous and gradual reduction, which proves that 
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the training process is running in the right direction. The 

confusion matrix shows high true positive and true negative 

rates, and it emphasizes the fact that the model performed 

highly in classifying the data. Also, the performance 

comparison chart shows that the DDQL model performs better 

in comparison with traditional algorithms that include SVM, 

RF, and CNN, with higher accuracy and F1-score. 

 

5.3.1 Average reward over episodes 

The average reward per episode plot indicates that there is 

a steep increase in the first stage of training, which means that 

the agent slowly increases policy learning. The rewards started 

to stabilize on episode 800, indicating that the agent had 

successfully stabilized to an optimal policy. This convergence 

is a major signifier that the model has now learnt to 

differentiate between normal and abnormal network behavior 

within a period of time, which also boosts its plausibility as a 

model of dynamic SIoT environments. 

 

5.3.2 Double Deep Q-Learning loss curve 

According to the loss function curve, there was an 

increasing downwards trend over the training process, which 

showed that the Q-value function approximator, which is 

based on a DNN, was learning. This steady downward trend is 

an affirmation of the convergence of the learning algorithm. 

Moreover, experience replay and the use of a target network 

played a significant role in the minimization of learning 

oscillations, which led to making the training more stable and 

consistent. 

 

5.3.3. Confusion matrix analysis 

The confusion matrix analysis results of the proposed 

DDQL model have high True Positive Rates (TPR) in the 

different kinds of attacks, such as DDoS, Ports can, and 

Botnets. The low misclassification rates have been 

consistently high, thus proving the accuracy and reliability of 

the model in separating benign and malicious traffic. Table 4 

shows that the model is effective in intrusion classification. 

 

Table 4. Class-wise precision, recall, and F1-score 

 
Class Precision Recall F1-Score 

Normal 98.4% 97.8% 98.1% 

Denial of Service 96.7% 95.2% 95.9% 

PortScan 97.1% 96.5% 96.8% 

Botnet 95.8% 94.0% 94.9% 

 

5.3.4 Model comparison 

Recently developed algorithm DDQL has shown to be much 

more performance-based than the traditional baseline 

classifiers. The advanced results of the DDQL model are 

reflected in all the main assessment criteria, such as accuracy, 

precision, recall, and F1-score, in comparison to other 

approaches. This advantage is driven in the first place by the 

fact that the model provides greater balance between 

exploration and exploitation as well as optimization of long-

term cumulative reward, which are two hallmarks of RL. The 

comparative results are provided in Table 5, and there are 

differences in performance. 

Results from simulations verify that the DDQL is robust in 

an SIoT context with diverse nodes and time-varying data 

flow. The adaptive RL properties of the system make it 

appropriate for intelligent, online threat detection. Also, 

sublinear time representation growth in relation to network 

size indicates scalability of the system. 

Table 5. Model-wise performance metrics 

 
Model Accuracy Precision Recall F1-Score 

SVM 90.3% 89.8% 90.1% 89.9% 

RF 93.5% 93.0% 93.2% 93.1% 

CNN 95.1% 94.8% 94.6% 94.7% 

DDQL 98.3% 98.1% 97.9% 98.0% 
Notes: SVM = Support Vector Machine; RF = Random Forest; CNN = 

Convolutional Neural Network; DDQL = Double Deep Q-Learning. 

 

 

6. CONCLUSIONS 

 

In this study, a novel intrusion detection framework based 

on DDQL was proposed, specifically designed for SIoT 

environments. The key contributions and findings are 

summarized as follows: 

• A DDQL-based IDS was introduced, leveraging deep RL 

to dynamically adapt to the complex and high-

dimensional tasks of SIoT networks. 

• The proposed system outperforms traditional ML and DL 

methods (e.g., SVM, RF, CNN) in terms of accuracy, 

recall, and F1-score, thanks to its optimization objective 

that minimizes punitive behavior in the learning process. 

• The DDQL agent demonstrated smooth convergence in 

learning, as evidenced by the average reward curve, 

robust loss minimization, and low FPR. This indicates a 

stable policy learning process even under uncertain traffic 

conditions. 

• The architecture supports online learning and experience 

replay, making it well-suited for deployment on resource-

constrained edge devices while also scalable to large SIoT 

installations. 

• The model integrates social context features (e.g., trust 

level, communication frequency) and adjusts its policy 

accordingly, considering device relationships and 

contextual behavior—an aspect often overlooked by 

traditional models. 

 

 

7. FUTURE WORK 

 

To further enhance the existing framework, the following 

avenues of opportunity are proposed: 

• Federated RL will be utilized to minimize the transfer of 

sensitive data between expanding IoT nodes while still 

allowing for the sharing of knowledge across devices. 

• To make the architecture adaptable to various 

applications, support for a range of IoT-specific protocols 

(such as MQTT, CoAP, Zigbee, etc.) will be incorporated, 

broadening its applicability across different fields. 

• The model could be deployed in live traffic monitoring 

systems, enabling adaptive intrusion detection within 

production-level SIoT networks. 
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