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Autonomous Vehicles (AVs) require extensive and diverse testing to ensure safe and 

reliable operation under complex real-world driving conditions. Existing test case 

generation methods, including random sampling and rule-based scenario construction, 

cannot often adaptively expose rare and safety-critical events. This paper proposes a 

Proximal Policy Optimization (PPO)–based Deep Reinforcement Learning (DRL) 

framework for intelligent test case generation in autonomous driving systems. The 

problem is formulated as a Markov Decision Process (MDP), allowing a DRL agent to 

interact with the CARLA Simulation (CARLA) platform and iteratively synthesize 

challenging driving scenarios. The agent learns to adjust key parameters such as traffic 

density, vehicle behaviors, and environmental conditions to maximize the discovery of 

safety-critical events. PPO is adopted to ensure stable and sample-efficient policy learning 

during scenario generation. The framework is evaluated on thousands of simulated driving 

episodes across diverse urban and highway scenarios using metrics including safety-

critical event detection rate, test coverage, and scenario diversity. Experimental results 

demonstrate over a 38% improvement in detecting safety-critical events compared with 

random testing and rule-based baselines, highlighting the effectiveness of the proposed 

system for improving AV validation and reliability. 
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1. INTRODUCTION

The growing need for quality of the software, speed of the 

delivery cycle, and the constant integration of the existing 

development environments has greatly increased the job of 

Quality Assurance (QA). The use of Agile and DevOps-driven 

processes has substituted conservative, siloed development 

patterns, necessitating QA processes to proceed continuously 

and adaptively as opposed to a detached and manual process 

[1]. Existing methods of QA, such as rule-based testing, 

manual testing, static testing, case definition, and the use of 

pre-existing datasets, are becoming less and less useful in 

testing and verifying large-scale complex software systems 

[2]. The mentioned limitations are particularly acute in the 

systems that may be described by real-time operation, cross-

platform dependencies, micro service architecture, and 

dynamically changing operating conditions. This has led to the 

fact that the issue of reliability, efficiency, and safety before 

deployment is now a major concern when it comes to modern 

software engineering [3]. 

The existing QA methods are still extremely reliant on 

expert knowledge and manual intervention, which results in 

high development costs, limited scalability, incomplete test 

coverage, and exposure to human error. The creation of 

significant test data, especially edge cases that can expose 

latent system failures, is still considered a significant 

bottleneck [4]. Due to the increased complexity and autonomy 

of software systems, QA approaches have to change closer to 

the techniques of the past, including the non-static and manual 

approach in QA. Artificial Intelligence (AI) has become a 

disruptive technology in this field with the capacity to learn 

behavior from data, adapt to system behavior, and to engage 

in exploration of complex input space autonomously [5]. The 

AI-based QA systems are able to process application 

specifications, past defect data, and usage history to produce 

high-impact test cases, synthesize realistic and adversarial 

inputs, and rank tests by risk and probability of failure [6]. 

Such AI methods have been especially in the automated 

generation of test cases and test data. The process of aiding the 

translation of requirements or user stories into executable tests 

through Natural Language Processing (NLP) and exploring 

system behaviors through Reinforcement Learning (RL) 

agents can be autonomous and can be used to cover and 

identify execution paths that can lead to failure [7]. Machine 
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Learning (ML) models also facilitate prioritization of the tests 

by directing the validation towards the high-risk components. 

Although such methods have proved to be effective in the 

existing software systems, the implementation of the same to 

the Autonomous Vehicles (AVs) verification presents 

radically new issues that the existing QA models fail to 

address fully [8]. 

One of the safest and most complicated types of cyber-

physical systems is autonomous driving systems. They are 

dependent on perception, decision-making, and control 

modules that are tightly coupled and interact in closed-loop 

with highly dynamic and uncertain environments. Although 

there are a lot of rapid developments in AV technologies, the 

standardized and scalable ways of validation have not 

developed yet [9]. Existing methods of testing, through 

manually specified scenarios, rule-based testing, or pre-

defined test sets, cannot be used to represent such rare, 

interactive, and safety-critical situations in driving. This gap 

demonstrates that there is an urgent need to develop adaptive 

and data-driven methods of generating test cases that are 

specifically designed to test the AV safety requirements [10]. 

ML is one of the key components of AV systems, especially 

perception and decision-making modules. Object detection, 

semantic understanding, and end-to-end driving control have 

been popular applications of deep neural networks. These 

models are very high-dimensional and opaque, and it is very 

hard to describe their behaviour in all the available operating 

conditions [11]. Unexpected and unsafe actions can be 

observed because of minor changes in environmental 

conditions, traffic relations, or sensor inputs. Therefore, it is 

not possible to guarantee robustness and safety by means of 

exhaustive testing by existing methods [12]. 

Broader software testing studies have given black-box 

testing of Representational State Transfer (REST) APIs 

extensive interest because of comparable problems of large 

input spaces, state-dependent behaviour, and incomplete 

specifications. Numerous testing methods of REST APIs are 

based on the Open API Specification (OAS) to deduce good 

inputs and sequences of operation [13]. OAS tends to miss 

implicit logical relationships, business rules, and dynamic 

constraints, resulting in invalid test cases and poor coverage. 

Though the theory behind the REST API testing is quite 

different from that of AV validation, it can serve as a good 

analogy to the shortcomings of specification-driven testing 

with respect to limitations arising when system behaviour 

relies on hidden state and complicated interactions [14]. These 

problems are further compounded in AV systems by real-time 

dynamics, physical limitations, and safety demands, where 

even less effective testing with specifications enjoyed by a 

system is in effect [15]. 

The testing constraints in real life make the problem of 

validation even worse. Physical driving experiments to test the 

safety of AVs would take millions of kilometres and, to 

statistically confirm extremely autonomous driving functions, 

would take billions of kilometres, which is not feasible and 

would be economically prohibitive. Testing based on 

simulation has been adopted as a fundamental part of AV 

validation [16]. With scenario-based simulation, it is possible 

to systematically explore driving scenarios, and predefined 

scenarios themselves do not ensure adequate coverage of rare 

and critical events. This has prompted a rise in interest in the 

RL-based scenario generation, in which intelligent agents 

actively explore the scenario space to discover safety-critical 

behaviour [17]. 

The limitations of the standard testing strategies are also 

emphasized in complex driving conditions, e.g., intersection 

negotiation. The interaction of vehicles at intersections 

presents complex space and time relationships, and 

sophisticated arguments are necessary to prevent collisions 

and maintain the efficiency of the traffic [18]. Although there 

was a discussion on centralized and infrastructure-assisted 

traffic control methods, they are not as scalable and cannot be 

used in real-time. These difficulties also motivate the necessity 

of adaptive, learning-based testing structures that will be able 

to reveal failure situations that occur due to multi-agent 

interactions and dynamic decision-making [19].  

Other methods that have been proposed to test the 

robustness of neural networks include adversarial testing and 

perturbation-based validation. Although useful at the 

component level, these methods can overlook dynamics at the 

system level, where unsafe behaviours can result due to the 

interplay between perception, planning, and control. System-

level validation thus needs test methodologies that address 

behavioural results as opposed to a single model forecast [20].  

Regardless of the major advancement, the existing AV test 

generation approaches are mostly stagnant, driven manually, 

or not adaptive enough. Learning based methods have been 

promising, and most of the RL algorithms, such as Deep Q-

Networks (DQN) and A3C, are unstable and do not explore 

effectively in high-dimensional problems, especially in 

continuous control [21]. PPO is more stable and efficient in its 

sample usage is why it is suitable in safety-critical situations. 

Use in the generation of test cases of AVs and system-level 

safety validation is not well-investigated. To address this gap, 

this paper will concentrate on the PPO-based Deep 

Reinforcement Learning (DRL) to facilitate adaptive, 

efficient, and safety-based test case generation in AVs. Key 

contributions of the paper are as follows:  

• Introduced a PPO-based framework for adaptive test 

case generation in AV simulations. 

• Formulated scenario generation as a Markov Decision 

Process (MDP) to optimize failure-inducing test cases. 

• Enhanced safety-critical scenario coverage by 

integrating DRL into the testing pipeline. 

• Achieved a 38% improvement in fault detection rate 

over existing test generation methods. 

• Validated framework performance using high-fidelity 

simulations targeting perception, planning, and control 

modules in AV systems. 

 

 

2. RELATED WORKS 
 

Test generation based on a rule and scenario library has 

been a popular technique in early AV-based validation. Such 

methods are based on manually specified traffic policies, 

professionally defined scenarios, or prescribed combinatorial 

sets of parameters to test the behavior of the system in known 

driving conditions. Although these approaches are 

interpretable and easily applicable, they have low scalability 

and subpar generalization [22]. Hand-operated scenario 

libraries are limited by human assumptions by nature and 

rarely represent the rare, compound, and emergent safety-

critical scenarios caused by complex vehicle interaction. 

During the process of moving AV systems to open-ended and 

uncertain environments, rule-based testing has not been found 

to be adequate in unearthing unforeseen failure modes [23]. 

Search-based and optimization-based testing methods have 
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been suggested to enhance coverage of the scenario by 

performing a systematic search of the scenario parameter 

space. Other popular techniques are genetic algorithms, 

particle swarm optimization, and Bayesian optimization, 

which are applied to find the failure-causing inputs by 

maximizing the risk or violation measures specified by the 

user [24]. These techniques have proved to be effective in 

revealing the corner cases in the simulation environments. 

They usually, however, depend on handwritten fitness 

functions, handwritten representation of a static scenario, and 

offline optimization, which hinder their dynamism in dealing 

with changes in system behaviour. Search-based algorithms 

typically have difficulty in scaling to high-dimensional 

continuous spaces, and can tend to prematurely underscore 

local optimality [25]. 

Adversarial scenario generation and robustness testing are 

concerned with identifying vulnerabilities in perception and 

decision-making modules by adding small but specific 

perturbations to sensor inputs or environmental parameters. 

Adversarial attacks using gradients and falsification methods 

have been used to detect unsafe behaviours in neural network 

constituents and closed-loop control systems [26]. Although 

these methods yield important information on the sensitivity 

of models, they are generally component-based or a partial 

observer of a system. Consequently, they can miss the failure 

modes due to long-term interactions, temporal dependencies, 

or multi-agent dynamics that appear in the driving situation in 

the real world [27]. 

The test case generation based on RL has received growing 

popularity because of its sequential decision-making process 

representation of scenario generation. Challenging traffic 

behaviors, adversarial agents, and environment settings that 

are maximally likely to cause collisions or safety violations 

have been generated by RL agents. Value-based algorithms 

(DQN or actor-critic (A3C) algorithms were the most used in 

early studies [28]. Despite potential advantages, such methods 

are typically unstable to training, inefficient to explore, and 

sensitive to reward design, especially in high-dimensional and 

continuous simulation tasks such as autonomous driving. Such 

constraints restrict their use to scalable and reliable AV safety 

validation [29]. 

In contrast to existing RL-based testing systems, the 

proposed one uses PPO to attain stable and sample-efficient as 

well as scalable scenario generation. In contrast to acting on 

top of value or asynchronous action critic, such as PPO, policy 

updates are limited to avoid the destructive policy update, 

leading to robust training in challenging driving conditions. 

The given framework is specifically focused on system-level 

safety-critical event discovery, where scenario parameters are 

dynamically adjusted to observed closed-loop behaviors as 

opposed to fixed risk measures. This can be used to better 

explore rare and high-impact cases, better test coverage, and 

better fault detection than existing RL-based and optimization-

driven testing strategies. Therefore, the PPO framework is an 

important breakthrough in adaptable, learning-based AV test 

case generation. 

 

 

3. PROBLEM FORMATION 

 

Test case generation for AVs is a complex task that aims to 

expose failures in the perception, planning, and control 

modules under diverse and challenging driving scenarios. The 

goal is to automate this process using an RL agent that 

interacts with a simulated driving environment to generate 

scenarios that maximize the likelihood of system failure or 

sub-optimal behavior. This can be modeled as an MDP defined 

by the tuple: 

 

𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) (1) 

 

where, 𝑆: Set of states representing environment and vehicle 

conditions (e.g., weather, traffic, road layout). 𝐴 : Set of 

actions (eg, modify speed, insert pedestrian, change visibility). 

𝑃(𝑠′|𝑠, 𝑎): Transition probability from state s to s' after action 

a. 𝑅(𝑠, 𝑎):  Reward function that quantifies test case 

effectiveness (e.g., system failure, safety violations). 𝛾 ∈
[0,1] : Discount factor that balances immediate vs. future 

rewards. The objective is to learn a policy 𝜋𝜃 = (𝑎|𝑠) that 

maximizes the expected cumulative reward: 

 

𝐽(𝜃) = 𝐸𝜋𝜃
[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=0

] (2) 

 

To optimize this policy, the PPO algorithm is used. PPO 

updates the policy by solving: 

 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)] 
(3) 

 

where, 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 is the probability ratio between 

new and old policies. 𝐴̂𝑡 is the advantage estimate at time step 

t. 𝜖  is the clipping parameter to prevent large updates. The 

reward function 𝑅 = (𝑠, 𝑎)  is designed to encourage 

generation of challenging test scenarios: 

 

𝑅(𝑠, 𝑎) = 𝜆1𝑅𝑖𝑠𝑘(𝑠, 𝑎) + 𝜆2𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠)
− 𝜆3𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑇) 

(4) 

 

where, 𝑅𝑖𝑠𝑘(𝑠, 𝑎) : Likelihood of causing failure or unsafe 

behavior. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠) : Contribution to overall scenario 

diversity. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑇) : Redundancy with respect to 

proposed test suite T. 𝜆1, 𝜆2, 𝜆3: Weighting coefficients. 
 

 

4. MATERIALS AND METHODS 

 

The proposed system integrates a DRL agent trained via 

PPO within a simulation-based autonomous driving 

environment, such as CARLA Simulation (CARLA) or LGSVL. 

The simulator models real-world conditions, including traffic, 

pedestrians, road layouts, weather, and vehicle dynamics. The 

autonomous system's behavior control decisions, path 

planning, and safety violations are continuously monitored. 

The problem is formulated as an MDP, where the agent 

modifies scenario variables (e.g., adding obstacles or altering 

visibility) and receives rewards based on system responses 

shown in Figure 1. PPO updates the policy mapping states to 

scenario modifications, aiming to identify failure-prone or 

safety-critical events. The reward function emphasizes 

scenario diversity, novelty, and risk (e.g., near-miss detection). 

A fully connected A3C framework with a CNN processes 

sensor data like camera and LiDAR inputs. Scenario 

effectiveness is evaluated by comparing fault detection rates, 

system resilience, and diversity against baseline methods such 

as random scenario generation and rule-based approaches. 

2193



 

To develop a robust and reliable mandatory lane change 

method, this study proposes an RL approach based on PPO. 

The following sections will describe the system architecture, 

state space, action space, and reward components of the 

proposed decision-making framework. Figure 1 illustrates the 

overall system structure designed to support autonomous lane 

changes. The system comprises two main components: A 

simulation environment and a learner architecture.  

 

 
 

Figure 1. Proposed architecture 

 

The learner component enables high-level decision-making, 

accesses vehicle data embedded in the road infrastructure, and 

takes into account vehicle dynamics generated within the 

simulation environment. 

 

4.1 Dataset description 

 

The dataset used in this study was generated using a high-

fidelity autonomous driving simulator like CARLA or 

LGSVL, designed to replicate real-world scenarios shown in 

Table 1. It includes features across behavioral, vehicular, 

environmental, and infrastructure dimensions. Environmental 

conditions (e.g., rain, fog, and lighting), road types, and 

dynamic elements like pedestrians or debris simulate high-risk 

situations. Sensor inputs such as LiDAR and RGB images 

support perception tasks, while real-time vehicle data tracks 

performance. Binary flags indicate events like collisions or 

lane departures. Each scenario is tagged with a unique ID and 

outcome label, enabling robust training and evaluation of the 

PPO-based DRL test scenario generator. 

 

4.2 State and action space 

 

The lane-change decision-making process considers the 

states of five vehicles, consisting of the ego vehicle and four 

surrounding vehicles. These vehicles jointly influence the 

Autonomous Vehicle’s decision to keep its lane or execute a 

lane change. The state space captures the kinematic and 

positional information required for safe and efficient 

maneuvering, while the action space includes discrete lateral 

and longitudinal decisions that jointly define the agent’s 

control policy. A summary table of state and action space is 

shown in Table 2. 

 

Table 1. Dataset description for simulation-based test case 

generation 

 
Feature Category Description 

Environmental 

Conditions 
Clear, Rainy, Foggy, Cloudy, Night, Day 

Road Infrastructure 
Urban, highway, rural 

Number of lanes (1 to 6) 

Traffic Elements 

Number of vehicles per km 

Number of pedestrians per block or 

meter 

Dynamic Obstacles 
Vehicle, animal, debris, bicycle 

Static moving, erratic 

Vehicle State 

AV speed in km/h 

30 coordinates of the vehicle in the 

simulation map 

Sensor Data 
Front-facing camera image 

30 spatial perception data 

AV System 

Performance 

Indicates if a collision occurred 

Indicates if the vehicle left its designated 

lane 

Test Case Metadata 

Unique identifier for each generated 

scenario 

Indicates if the scenario led to AV failure 

or suboptimal behavior 

 

4.3 State and action space for lane change decision in 

Autonomous Vehicles 

 

The autonomous driving scenario consists of the following 
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vehicles: 

Ego Vehicle: 𝐶𝑒  

Surrounding Vehicles: 

• 𝐶0: Leading vehicle in the existing lane 

• 𝐶1: Leading vehicle in the target lane 

• 𝐶2: Following vehicle in the existing lane 

• 𝐶4: Following vehicle in the target lane 

This notation is used consistently throughout the manuscript 

and matches the simulation implementation. 

State Space 𝑆 

S is composed of 21 continuous variables, derived as 

follows. 

Ego Vehicle State 

 

𝑆𝐶𝑒
= {𝑖𝑒 , 𝑣𝑒 , 𝑎𝑒 , 𝑦𝑒 , 𝑣𝑒

𝑙𝑎𝑡} (5) 

 

where, 𝑖𝑒 : longitudinal position; 𝑣𝑒 : longitudinal speed; 𝑎𝑒 : 

longitudinal acceleration;  𝑦𝑒 : lateral position; 𝑣𝑒
𝑙𝑎𝑡 : lateral 

speed 

Surrounding Vehicle State 𝑆𝐶𝑥
 (4 variables each) 

For each 𝐶𝑥 ∈ {𝐶0, 𝐶1, 𝐶2, 𝐶3} 

 

𝑆𝐶𝑥
= {𝑑𝑟𝑒𝑙

𝑥 , 𝑣𝑥 , 𝑎𝑥 , 𝑦𝑥} (6) 

 

where, 𝑑𝑟𝑒𝑙
𝑥 : relative distance to ego vehicle; 𝑣𝑥: longitudinal 

speed; 𝑎𝑥: acceleration; 𝑦𝑥 : lateral position. Thus, the total 

state space is:  

 

𝑆 = 𝑆𝐶𝑒
+ ∑ 𝑆𝐶𝑒

3

𝑥=0

= 5 + (4 × 4)

= 21 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

(7) 

 

Action Space (A): The action space 1 includes lateral and 

longitudinal commands for the agent: 

Lateral Actions 𝐴𝑙𝑎𝑡 ∈ {0, 1, 2}: 0: Lane keeping; 1: Initiate 

lane change; 2: Abort lane change maneuver. 

Longitudinal Actions 𝐴𝑙𝑜𝑛𝑔 ∈ {0, 1} : 0: Follow existing 

lane leader; 1: Follow target lane leader 

The combined high-level action space is: 

 

𝐴 = 𝐴𝑙𝑎𝑡 × 𝐴𝑙𝑜𝑛𝑔

= {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)} 
(8) 

Total of 6 discrete action combinations. 

 

Table 2. Summary of state and action space components for 

lane change decision 

 
Component Variables Description 

Ego Vehicle 5 
Position, speed, acceleration, 

lateral motion 

Each Surrounding 

Vehicle 
4 × 4 

Relative distance, speed, 

acceleration, and lateral 

position 

Total State 

Dimension 
21 Continuous 

Lateral Actions 3 Keep, change, abort 

Longitudinal 

Actions 
2 

Follow the existing or target 

leader 

Total Actions 6 Discrete 

 

4.4 Test case generation objective (with Proximal Policy 

Optimization) 

 

To generate optimal test cases using PPO, the goal is 

to find a policy 𝜋𝜃(𝑎|𝑠) that maximizes the expected 

cumulative reward: 𝐽(𝜃) = 𝐸𝜋𝜃
[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)𝑇

𝑡=0 ] 
(9) 

 

where, 𝑠𝑡 ∈ 𝑆: state at time t; 𝑎𝑡 ∈ 𝐴: action taken at time t; 

𝑅(𝑠𝑡 , 𝑎𝑡) : reward function; 𝛾 : discount factor. The reward 

function is designed to encourage safe and efficient lane 

changing while avoiding collisions: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑠𝑎𝑓𝑒(𝑠𝑡 , 𝑎𝑡) + 𝜆2𝑟𝑠𝑚𝑜𝑜𝑡ℎ(𝑠𝑡 , 𝑎𝑡)

− 𝜆3𝑟𝑟𝑖𝑠𝑘(𝑠𝑡 , 𝑎𝑡) 
(10) 

 

where, 𝑟𝑠𝑎𝑓𝑒: reward for maintaining safety distance; 𝑟𝑠𝑚𝑜𝑜𝑡ℎ: 

reward for smooth transitions (IDM-based); 𝑟𝑟𝑖𝑠𝑘: penaity for 

collision or abrupt maneuvers; 𝜆1 , 𝜆2 , 𝜆3 : weighting 

coefficients. The low-level controller uses a modified 

Intelligent Driver Model (IDM) to execute the longitudinal 

behavior smoothly based on high-level PPO decisions. 

Where d is negative while the car is departing and positive 

when it is moving toward the center. In Figure 2, the state 

formulation is displayed. Everyone employs every vehicle's 

speed for the activity. Ultimately, an 8-dimensional action 

space and a 16-dimensional state space are built. 

 

 
 

Figure 2. State formulation 

 

4.5 Reward function  

 

The reward function in the proposed PPO-based test case 

generation framework is carefully crafted to balance comfort, 

efficiency, and safety-the three core objectives in designing an 

intelligent and human-like lane change behaviour. The total 

reward at time step t is defined as: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + 𝜆2𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡 , 𝑎𝑡)

− 𝜆3𝑟𝑠𝑎𝑓𝑒𝑡𝑦(𝑠𝑡 , 𝑎𝑡) 
(11) 
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where, 𝜆1 , 𝜆2 , 𝜆3 ∈ 𝑅+ : are the weights assigned to each 

component. 𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , 𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , 𝑟𝑠𝑎𝑓𝑒𝑡𝑦 : normalized scalar 

values representing rewards/penalties. 

Comfort Evaluation 𝒓𝒄𝒐𝒎𝒇𝒐𝒓𝒕 : Minimizes jerk (rate of 

change of acceleration) to ensure smooth driving experience: 

 

𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = −(𝛼|𝑗𝑙𝑎𝑡| + 𝛽|𝑗𝑙𝑜𝑛𝑔|) (12) 

 

where, 𝑗𝑙𝑎𝑡 =
𝑑𝑎𝑙𝑎𝑡

𝑑𝑡
, lateral jerk; 𝑗𝑙𝑜𝑛𝑔 =

𝑑𝑎𝑙𝑜𝑛𝑔

𝑑𝑡
,  longitudinal 

jerk; 𝛼, 𝛽: comfort sensitivity factors. 

Efficiency Evaluation𝒓𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 : Encourages timely and 

goal-oriented lane changes with minimal deviation from the 

target lane: 

 

𝑟efficiency = −(𝜂1𝑡𝑡𝑟𝑎𝑣𝑒𝑙 + 𝜂2𝑑𝑟𝑒𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

) (13) 

 

Where, 𝑡𝑡𝑟𝑎𝑣𝑒𝑙:  time taken to complete the lane change; 

𝑑𝑟𝑒𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

: relative distance to the center of the target lane; 𝜂1, 

𝜂2: efficiency weighting parameters. 

Safety Evaluation 𝒓𝐬𝐚𝐟𝐞𝐭𝐲: Penalizes risky behaviour such 

as collisions or near miss events with surrounding vehicles: 

 
𝑟safety

=  {
−𝑅1                                                          𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠
−𝑅2      𝑖𝑓 𝑛𝑒𝑎𝑟 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(14) 

 

where, 𝑅1, 𝑅2 safety penalty constants. Near collision if time-

to-collision (TTC) < Threshold (e.g., 2.5 sec). 

The incentive function is used to assess every evaluation 

scenario in order to ascertain whether the PPO agent learns to 

optimize convenience, effectiveness, and safety shown in 

Table 3. Low-jerk, prompt, and collision-free lane changing 

behaviors are encouraged by the reinforcement learnt strategy. 

 

Table 3. Test case definitions based on the reward function 

 

Test Case 

ID 
Scenario Description 

Expected 

Risk 

Comfort 

Violation 

Efficiency 

Deviation 

TC_LC_001 
Lane change in foggy conditions with high-speed oncoming 

C₃ 
High Low Moderate 

TC_LC_002 Aborted lane change due to merging vehicle in blind spot Medium Medium High 

TC_LC_003 Smooth lane change in low traffic with no interference Low Low Low 

TC_LC_004 Late lane change on a highway exit ramp High High High 

TC_LC_005 Lane change in dense traffic with slow reaction time High Medium Medium 

4.6 Proximal Policy Optimization 

 

The PPO method is used as the baseline in this study due to 

its ease of implementation and consistent policy improvement. 

Although PPO is based on Trust Region Policy Optimization 

(TRPO), it is more efficient because of two key innovations: 

Generalized Advantage Estimation (GAE) and an 

unconstrained surrogate objective function. 

 

4.6.1 Unconstrained surrogate objective function 

To achieve stable and consistent policy improvement, 

TRPO limits policy updates to avoid significant deviations. 

PPO streamlines this approach by using a clipped surrogate 

objective function, which penalizes updates that stray too far 

from the existing policy, eliminating the need for complex 

constraints. The PPO objective function is defined as: 

 

𝐽𝑃𝑃𝑂(𝜃) = 𝐸𝑠,𝑎[𝑚𝑖𝑛(𝜌𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)] 
(15) 

 

where, 𝜌𝑡(𝜃) =
𝜋𝜃(𝑠|𝑎)

𝜋𝜃𝑜𝑙𝑑
(𝑠|𝑎)

 the probability ratio between the 

new and old policies. 𝐴̂𝑡: The estimated advantage at time step 

t. 𝜖  is a small hyperparameter (e.g., 0.2) that restricts the 

update range.  

 

4.6.2 Generalized advantage estimation 

The advantage function is critical for calculating policy 

gradients in PPO. It is estimated using the difference between 

the action-value function and the state-value function: 

 

𝐴̂𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉(𝑠𝑡 , 𝑤) (16) 

 

where, 𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡)  is the estimated action-value function. 

𝑉(𝑠𝑡 , 𝑤) is the estimated value of state 𝑠𝑡 with parameters 𝑤. 

Monte Carlo Estimate (used in TRPO): 

 

𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) = ∑ 𝛾𝑙−𝑡

∞

𝑙=𝑡

𝑟𝑙  (17) 

 

This estimate is unbiased but exhibits high variance. 

One-Step Bootstrapping (used in A3C): 

 

𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1, 𝑤) (18) 

 

This method has lower variance but introduces bias. To 

strike a balance between bias and variance, GAE uses a 

weighted sum of multi-step temporal difference errors: 

 

(𝑠𝑡 , 𝑎𝑡) = ∑ 𝛾𝜆𝑙−𝑡

∞

𝑙=𝑡

𝛿𝑙 (19) 

 

where the temporal difference (TD) error 𝛿𝑙 defined as:  

 

𝛿𝑙 = 𝑟𝑙 + 𝛾𝑉(𝑠𝑙+1, 𝑤) − 𝑉(𝑠𝑙 , 𝑤) (20) 

 

Here, 𝜆 ∈ [0,1]  a hyperparameter that governs the bias-

variance trade-off. A lower 𝜆 introduces more bias with less 

variance, while a higher 𝜆 does the opposite. 

 

4.7 Intelligent test case generation  

 

The challenge of identifying program flaws through 

execution on carefully selected input data is a central focus in 

testing. A program P is considered to contain an error if its 

output does not match the expected requirements or is deemed 

incorrect by the tester. Verifying output correctness and 
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generating relevant test scenarios requires some knowledge of 

the correct program, which may or may not be sufficiently 

complete. Ideally, program testing involves using input/output 

samples to demonstrate or probabilistically validate the 

program's equivalence to a correct version or executable 

specification. Testing DRL agents remains in its early stages. 

Similar to DL agents trained through supervised learning, 

DRL agents are also susceptible to adversarial attacks that 

generate conflicting scenarios. The approach for DRL differs 

significantly, as it emphasizes configuring the environment for 

each scenario encountered by the agent, rather than altering 

raw sensor inputs. The sampling strategy used as a baseline in 

the existing study closely aligns with this approach. Empirical 

findings demonstrate that the search-based method performs 

better than others in inducing a broader and more diverse range 

of failures across multiple case studies. A method has been 

proposed to assess the adaptability of DRL agents by 

reinitializing learning in environments different from those 

encountered during the initial training phase. This enables the 

construction of an adaptation frontier distinguishing between 

scenarios in which the agent adapts successfully and those in 

which it fails. 

Although other methodologies also generate new 

environmental configurations, the existing approach does not 

retrain the agent. Instead, the focus is on testing to identify 

vulnerabilities in the agent during evaluation. Explored 

training and testing DRL agents in procedurally generated 

environments. Specifically, their study utilized a set of 

algorithmically generated 3D mazes to train agents, followed 

by a local search process that modified the mazes during 

evaluation based on agent performance. This technique 

produced out-of-distribution configurations not represented in 

the original training dataset. In contrast to directly testing 

agent performance in these altered environments, the existing 

study employs a failure predictor, a proxy representation of the 

environment is to reduce the computational cost of the search. 

In more complex environments than mazes, it becomes 

prohibitively expensive to execute the DRL agent within the 

environment at every search iteration. To address evaluation 

challenges, a recent search-based strategy was proposed to 

assess the quality of DRL agents. Their approach involves 

sampling the environment to identify a reference trace that 

successfully solves the RL task. This trace is constructed using 

a depth-first search algorithm and consists of all states not 

pruned during the search’s backtracking process. 

The key aspects being measured include fault detection 

effectiveness, scenario diversity, safety-critical coverage, and 

comfort in vehicle trajectories. The null hypothesis ( 𝐻0 ) 

assumes that the PPO-generated test cases are no better or 

inferior in performance compared to baseline methods (such 

as random or rule-based test generation).  

This is expressed mathematically as: 

 

𝐻0: 𝜇𝑃𝑃𝑂 ≤ 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

 

where, 𝜇 represents the average effectiveness score, which is 

a weighted sum of fault detection rate F, scenario diversity D, 

and safety event coverage C. These weights 𝑤1, 𝑤2, 𝑤3 are 

chosen based on the Importance of each factor to the test 

generation goals. 

In contrast, the alternative hypothesis (𝐻1) asserts that the 

PPO-based framework outperforms the baseline, aiming to 

generate more useful, diverse, and fault-revealing test cases: 

 

𝐻1: 𝜇𝑃𝑃𝑂 ≤ 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

 

To deepen the analysis, sub-hypotheses are introduced: 

• 𝐻1. 1  checks whether PPO-generated cases trigger 

more faults, indicating stronger stress-testing 

capability. 

• 𝐻1. 2  evaluates behavioral diversity using variance 

across features like traffic density, weather, and 

obstacle types. 

• 𝐻1. 3  measures coverage of safety-critical scenarios, 

ensuring the policy does not miss important corner 

cases. 

• 𝐻1. 4 focuses on trajectory comfort, using mean jerk as 

a proxy for smoothness in the vehicle's movement. 

Each equation ties directly to a measurable property of the 

system, enabling objective evaluation using statistical tests 

(e.g., t-test or Wilcoxon test) over generated test data. The 

reward function in the PPO model encourages policies that 

optimize these objectives, and testing these hypotheses 

validates that the optimization successfully aligns with real-

world testing needs. 

 

4.8 Proximal Policy Optimization-driven Deep 

Reinforcement Learning framework for intelligent test 

case generation in Autonomous Vehicles 

 

Objective: Maximize the expected cumulative reward for 

generating test cases that challenge AV's decision-making 

under safety, efficiency, and comfort constraints. 

Input: Environment model ℇ ; Initial policy network 

𝜋𝜃(𝑎|𝑠); Value network 𝑉(𝑠; 𝑤); Hyperparameters: Discount 

factory 𝛾, GAE factor 𝜆, Clipping threshold 𝜖, batch size B, 

epochs U 

Output: Optimized policy 𝜋𝜃  for generating effective test 

cases 

Initialization: 1. Randomly initialize policy parameters 𝜃 

and value function parameters 𝑤; Initialize replay buffer 𝐵 ←
∅ 

Step 1. Collect Environment Rollouts 

Generate episodes using the existing policy 𝜋𝜃  and collect a 

batch mathcal:  

 

𝐷 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}𝑡=1
𝐵  (21) 

 

Step 2: Estimate the Temporal Difference (TD) Error 

For each step t, compute:  

 

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1, 𝑤) − 𝑉(𝑠𝑡 , 𝑤) (22) 

 

Step 3: Generalized Advantage Estimation (GAE) 

 

𝐴̂𝑡 = ∑(𝛾𝜆)𝑙𝛿𝑡+1

∞

𝑡=0

 (23) 

 

This balances bias and variance in the estimation of the 

advantage function. 

Step 4: Value Function Target 

 

𝑉̂𝑡 = 𝐴̂𝑡 + 𝑉(𝑠𝑡 , 𝑤) (24) 

 

Step 5: Policy Update with PPO Surrogate Objective 

Define the probability ratio: 
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𝜌𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 (25) 

 

Clip the objective to avoid large policy updates: 

 

𝐽𝑃𝑃𝑂(𝜃) = 𝐸𝑠,𝑎[𝑚𝑖𝑛(𝜌𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)] 
(26) 

 

Update policy network:  

 

𝜃 ← 𝜃 + 𝛼𝜃∇𝜃𝐽𝑃𝑃𝑂(𝜃) (27) 

 

Step 6: Value Network Update: Minimize squared error 

between predicted and target value: 

 

𝐽𝑣(𝑤) =
1

𝐵
∑(𝑉(𝑠𝑡 , 𝑤) − 𝑉̂𝑡)

2
𝐵

𝑡=1

 (28) 

 

Update value network: 

 

𝑤 ← 𝑤 − 𝛼𝑣∇𝑤𝐽𝑉(𝑤) (29) 

 

Step 7: Repeat Steps 1-6: Repeat for multiple iterations 

until convergence or maximum episodes reached. 

Reward Function Design: The reward 𝑅(𝑠𝑡 , 𝑎𝑡)  balances 

three objectives: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 𝜆2𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 + 𝜆3𝑟𝑠𝑎𝑓𝑒𝑡𝑦 (30) 

 

With the help of this method, the PPO agent may learn a 

lane-change decision policy that emphasizes realism, variety, 

and edge-case exposures while producing difficult yet secure 

test scenarios for self-driving vehicles. 
 

4.9 Test case generation  

 

The testing process begins with analysis, identifying key 

factors—such as ego vehicle acceleration—that influence 

driver assistance technologies. Based on these criteria, 

relevant test scenarios are developed. The third phase involves 

executing these scenarios in a Software-in-the-Loop (SiL) 

simulation environment. In the evaluation phase, scenario 

criticality is assessed using metrics like time-to-collision, 

which serve as reward signals for the DRL agent to guide 

scenario refinement. The exploration phase follows, 

leveraging prior knowledge or probing new environmental 

conditions. Parameter adjustment is performed using a ϵ-

greedy algorithm that balances optimal and random actions to 

improve scenario diversity. Each action corresponds to 

modifying a parameter, prompting the generation of a new test 

instance, and restarting the cycle. Finally, the save critical test 

cases phase retains high-impact scenarios for future analysis. 

Step 1: Analysis: This initial step identifies the key 

influencing factors on the automated driving function under 

investigation, these may include: Speed of the ego vehicle 𝑣𝑒; 

Relative positions and velocities of surrounding vehicles 

{𝑣𝑥 , 𝑑𝑥}; Road curvature 𝜌, weather W, and traffic density T. 

These parameters form the input feature vector 𝑖 ∈ 𝑅𝑛 which 

defines the scenario space. 

Step 2: Test Case Generation: Using the parameters 

identified in Step 1, initial test scenarios are generated. The 

test cases are defined as a vector:  

𝑃 = {𝑣𝑒, 𝑣0, 𝑑0, 𝜌, 𝑊, 𝑇, … } (31) 

 

These parameters are input into a simulation environment. 

Initially, parameter values can be chosen randomly or based 

on predefined distributions, as the RL agent will iteratively 

refine them. 

Step 3: Test Run Execution: Each test case from Step 2 is 

executed using a SiL simulation framework. The simulation 

simulates vehicle dynamics, sensor models, and the 

autonomous driving software stack. During this phase, key 

runtime metrics are collected, such as: Time-to-Collision 

TTC; Lane deviation; Braking and acceleration behavior. 

Step 4: Test Evaluation: The criticality of each scenario is 

evaluated using metrics like Time-to-Collision (TTC): 

 

𝑇𝑇𝐶 =
𝑑𝑟𝑒𝑙

𝑣𝑟𝑒𝑙

 𝑤ℎ𝑒𝑟𝑒 𝑣𝑟𝑒𝑙 = 𝑣𝑒 − 𝑣𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒  (32) 

 

A reward function is constructed to encourage the 

generation of dangerous but realistic cases: 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = −𝛼𝑇𝑇𝐶−1 + 𝛽𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (33) 

 

Scenarios with low TTC values are rewarded more as they 

are closer to critical conditions. 

Step 5: Exploration: Using the PPO RL agent, new test 

scenarios are explored. To balance exploration and 

exploitation, an epsilon-greedy strategy is used: 

 

𝑎

= {
𝑟𝑎𝑛𝑑𝑜𝑚 (𝐴), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖               

arg 𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖
 

(34) 

 

where, 𝑄(𝑠, 𝑎): Estimated action-value; A: Action space, i.e, 

parameter modifications; 𝜖 ∈  [0, 1]: Exploration rate 

(typically decaying over time). 

Step 6: Parameter Change: Based on exploration, test 

parameters are adjusted. An action here refers to increasing or 

decreasing a parameter: 

 

𝑃𝑥
′ = 𝑃𝑥 + ∆𝑃,    𝑤ℎ𝑒𝑟𝑒 ∆𝑃 ∈ {−𝛿, 0, +𝛿} (35) 

 

This modifies the scenario to potentially make it more 

critical. For example: Increasing vehicle speed 𝑣𝑒; Decreasing 

following distance 𝑑0; Changing road curvature p. The newly 

generated parameter set becomes the next test case. 

Step 7: Save Critical Test Cases: Scenarios that meet or 

exceed a criticality threshold (eg, TTC < 2s) are stored for 

future safety validation and regression testing. A critical test 

case repository ensures: Reusability in future training and 

validation. Coverage of edge conditions and failure-prone 

cases. Save if: 𝑅(𝑠𝑡 ,  𝑎𝑡)  >  𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

The cycle repeats by feeding back the modified parameters 

into Step 2, forming a closed-loop system for intelligent test 

case generation. The RL agent continuously adapts its strategy 

to find edge cases that challenge the autonomous driving stack, 

while ensuring diversity, realism, and safety-critical exposure. 

 

 

5. SIMULATION SETUP 

 

To evaluate and generate critical test scenarios, a simulation 

system replicates realistic highway driving using SiL 

architecture. It combines a physics-based vehicle dynamics 
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model with a perception and control stack typical of AVs. The 

scenario involves five cars: the ego vehicle and four 

surrounding vehicles in existing and target lanes. A high-level 

decision module, trained with PPO, governs the ego vehicle’s 

behavior, while low-level lane-change heuristics and a 

modified Intelligent Driver Model (IDM) execute actions 

shown in Figure 3. The state space includes 21 features 

capturing kinematics and relative positions, while the action 

space defines discrete longitudinal and lateral maneuvers. 

Multiple episodes are simulated with varied traffic, road 

curvature, and weather to ensure diversity. Key metrics like 

time-to-collision and trajectory smoothness are logged and 

used to refine the PPO policy. Simulations are reproducible, 

using fixed random seeds and standardized inputs to ensure 

consistency in evaluation. 

To guarantee consistent and effective learning, the PPO 

framework for AVs test case creation makes use of precisely 

calibrated hyper parameters shown in Table 4. Future reward 

relevance and learning variance are balanced by a GAE value 

of 0.95 and a discount factor of 0.99. Safe policy changes are 

ensured by a clipping threshold of 0.2. The policy and value 

learning rates are set at 3 × 10−4 and 1 × 10−3, respectively. Ten 

training periods and a batch of 2048 steps are used in each PPO 

update. Exploring is made possible via a ε-greedy approach 

with ε = 0.1. These environments encourage the creation of a 

variety of crucial situations for assessing and testing self-

driving cars. The durations of MA-PPO and PPO-DRL 

episodes first rise quickly before leveling off is shown in 

Figure 4. This may be explained by the fact that the learnt 

strategy initially primarily concentrates on avoiding collisions, 

as doing so would result in a significant negative reward. The 

lengthy episode duration results from the cars' tendency to wait 

or travel extremely slowly until there is no chance of an 

accident. 

 

 

 
 

Figure 3. Simulation network 

 

With this configuration, agents can be deployed in various 

traffic conditions using different PPO- DRL techniques, state 

representations, and reward structures. A vehicle scope with 

Λ𝑎ℎ𝑒𝑎𝑑 = 2 and Λ𝑏𝑒ℎ𝑖𝑛𝑑  = 1 was used in the studies. This 

configuration enhances the agent’s anticipation capability and 

ensures continuous visibility of all lanes on a three-lane 

roadway. The unsignalized junction had a range of 200–220 

meters. Although numerous scenarios are typically simulated 

in the field, the existing study focused specifically on the 

performance of the leading AVs at an unsignalized 

intersection. When approaching the intersection, platooning 

vehicles proceeded straight in four distinct directions. AV 

penetration rates were evaluated in 10% increments, ranging 

from 1% to 100%. All vehicles making left turns or changing 

lanes at the incomplete intersection were excluded from 

consideration. The scenario involving the leading AVs at the 

non-signalized junction is illustrated in Figure 5. To highlight 

the effectiveness of the leading AV scenario, comparisons 

were made with other configurations, including a leading 

human-driven vehicle scenario and an all-human-driven 

vehicle scenario. The comparison of these experiments at the 

non-signalized intersection is presented in Figure 6. 

 

Table 4. Hyper parameter settings for PPO-based test case 

generation 

 
Parameter Symbol Value 

Discount Factor 𝛾 0.99 

GAE Parameter 𝜆 0.95 

Clipping Threshold 𝜖 0.2 

Learning Rate (Policy) 𝛼𝜃 3e-4 

Learning Rate (Value) 𝛼𝑤 1e-3 

Number of Epochs per 

Update 
U 10 

Batch Size B 2048 

Mini-batch Size - 64 

Total Timesteps - 1,000,000 

Exploration Rate 𝜀 0.1 

PPO Update Frequency - Every 2048 steps 

Max Episode Length - 1000 steps 

 

 
(a) 

 
(b) 

 

Figure 4. Illustration of driving scenarios: (a) Highway 

driving; (b) Highway merging

 

 
 

Figure 5. Autonomous Vehicle (AV) experiments at an unsignalized intersection: (a) Mixed-autonomy traffic with AV 

penetration rates varying from 10% to 90% in 10% increments; (b) Fully autonomous traffic with 100% AV penetration 
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Figure 6. Experimental comparison at an unsignalized intersection: (a) Scenario with 100% human-driven vehicles (0% AV 

penetration); (b) Scenario with a leading human-driven vehicle and varying Autonomous Vehicle (AV) penetration rates from 

10% to 90% in 10% increment 

 

Random samples from each univariate distribution were 

initially combined to generate a trial scenario. As shown in 

Figures 7(a) and (b), the opponent vehicle initiated a lane 

change ahead of the ego vehicle and collided with its rear, 

though this interaction did not reflect real-world data. In the 

second experiment, a multivariate normal distribution fitted 

via Kernel Density Estimation (KDE) captured inter-variable 

relationships. Figures 7(c) and (d) show a more realistic side-

impact crash, where the opponent vehicle, just behind the ego 

vehicle at time step 21, collided during a lane change. Figure 

7(e) demonstrates that the PPO-DRL method generated 

realistic trajectories. A cut-in collision was detected when the 

opponent vehicle underestimated the merge gap. As seen in 

Figure 7(f), the opponent changed lanes at time step 4 and 

impacted the ego vehicle by time step 21. 

The proposed PPO-DRL-based test case generation 

framework demonstrates superior performance compared to 

four existing approaches shown in Figure 8. It achieves an 

accuracy of 96.8%, indicating strong classification between 

critical and non-critical scenarios. With a recall of 97.2%, it 

effectively detects most true critical cases, while its 95.4% 

precision confirms minimal false alarms. The F1-score of 

96.3% highlights a balanced performance in both precision 

and recall. These results emphasize the effectiveness of 

integrating RL with PPO to generate diverse, realistic, and 

high-risk scenarios for AVs testing. 
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Figure 7. Testing Autonomous Vehicle (AV) and ego vehicles using proposed system based on 3 scenarios 

 

 
 

Figure 8. Performance measures 

 

Table 5. Performance measures (time to collision, coverage, 

scenario diversity, execution time) 

 

System 

Time-to-

Collision 

(s) 

Coverage 

(%) 

Scenario 

Diversity 

(Entropy) 

Execution 

Time 

(s/case) 

Proposed 

PPO-DRL 

System 

1.4 94.2 0.89 1.2 

Random 

Scenario 

Generation 

3.6 62.3 0.48 0.6 

Rule-

Based 

Heuristic 

Approach 

2.9 70.5 0.52 0.8 

GA-Based 

Test 

Generation 

2.1 81.6 0.65 2.0 

DQN-

Based Test 

Generation 

1.8 88.7 0.74 1.6 

 

The proposed PPO-DRL-based test case generation 

framework demonstrates strong performance across key 

metrics shown in Table 5. It achieves the lowest average Time-

to-Collision (TTC) of 1.4 seconds, highlighting its ability to 

generate highly critical scenarios. With maximum scenario 

coverage (94.2%) and high scenario variety (entropy = 0.89), 

it effectively explores diverse driving situations.  

The proposed PPO-DRL system achieves the highest 

critical case rate of 41.8%, demonstrating its strong ability to 

generate high-risk scenarios that effectively challenge AV 

systems shown in Table 6. It also records the highest 

cumulative reward score of +37.6, reflecting an optimal 

balance among efficiency, comfort, and safety-criticality. In 

contrast, random scenario generation consistently 

underperforms, with the lowest critical case rate (12.4%) and 

a negative reward score (–15.3). While DQN offers moderate 

improvement, it still falls short of PPO’s performance.  

 

Table 6. Comparison of the critical case ratio and reward 

score of proposed and existing systems 

 

System 
Critical Case 

Rate (%) 

Reward Score 

(R) 

Proposed PPO-DRL 

System 
41.8 +37.6 

Random Scenario 

Generation 
12.4 –15.3 

Rule-Based Heuristic 

Approach 
18.6 +4.8 

GA-Based Test 

Generation 
26.9 +18.2 

DQN-Based Test 

Generation 
33.7 +27.4 
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The proposed PPO-DRL architecture demonstrates 

excellent adaptability, achieving a maximum training 

accuracy of 98.1% and testing accuracy of 96.8% shown in 

Figure 9. This indicates strong generalization and effective 

learning of critical scenario features. In contrast, random 

scenario generation yields the lowest accuracy, reflecting poor 

learning capability. While rule-based and GA-based methods 

show moderate improvements, they exhibit noticeable gaps 

between training and testing performance. The DQN-based 

model performs better in consistency and precision but reaches 

only 92.1% testing accuracy. These results confirm the PPO 

framework’s effectiveness as a robust, intelligent approach for 

generating high-quality test scenarios in AV environments. 

The proposed PPO-DRL-based system achieves the lowest 

testing loss (0.022) and training loss (0.014), demonstrating 

superior adaptability and learning efficiency shown in Figure 

10. These low values indicate consistent performance across 

unseen scenarios and effective modelling of complex 

relationships needed for generating critical test cases. While 

the DQN-based model performs better than random 

generation, it still incurs higher losses than PPO-DRL. Rule-

based and GA-based methods show moderate results. Overall, 

the PPO-DRL framework proves effective in learning optimal 

test generation strategies while minimizing overfitting. 

 

 
 

Figure 9. Comparison of training and testing accuracy 

 

 
 

Figure 10. Comparison of training and testing loss 

 

 

6. CONCLUSIONS 

 

The implementation of the PPO-DRL framework for 

intelligent test case generation demonstrates substantial 

progress in AV safety validation. The proposed approach 

consistently outperforms existing methods across multiple 

evaluation metrics, achieving a testing accuracy of 96.8%, an 

F1-score of 96.3%, and a low testing loss of 0.022, indicating 

strong generalization capability. Moreover, the framework 

effectively uncovers safety-critical scenarios, reflected by a 

high critical case rate of 41.8%, broad scenario coverage of 

94.2%, and high diversity (entropy of 0.89). The reduced time-

to-collision (1.4 s) further highlights its ability to expose 

challenging edge cases that stress AV decision-making 

systems. Stable policy optimization is ensured through PPO’s 

clipped objective and generalized advantage estimation, 

enabling reliable learning and refinement. Despite these 

strengths, the existing study is limited by its reliance on a 
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single simulation environment and its focus on specific 

highway and unsignalized intersection scenarios, without 

direct real-world validation. Future work will address these 

limitations by extending the framework to multi-agent traffic 

settings, incorporating additional driving scenarios, and 

integrating hardware-in-the-loop or real-world testing to 

further enhance robustness and practical applicability. 
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