
Proximal Policy Optimization–Based Deep Reinforcement Learning for Intelligent Test Case

Generation in Autonomous Vehicles

Tamizharasi Arthanari1* , Rajalakshmi Dharmadurai2 , Keerthiga Viswanathan3 , Jaithunbi Abdul Kareem4

1 Department of Computer Science and Engineering, R.M.D. Engineering College, Chennai 601206, India
2 Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai 600089,

India
3 Department of Computer Science and Engineering, Anand Institute of Higher Technology, Kazhipattur 603103, India
4 Department of Artificial Intelligence and Machine Learning, Saveetha School of Engineering, Saveetha Institute of Medical

and Technical Sciences (SIMATS), Chennai 602105, India

Corresponding Author Email: tamizh.cse@rmd.ac.in

Copyright: ©2026 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.151101 ABSTRACT

Received: 4 August 2025

Revised: 5 October 2025

Accepted: 16 November 2025

Available online: 30 November 2025

Autonomous Vehicles (AVs) require extensive and diverse testing to ensure safe and

reliable operation under complex real-world driving conditions. Existing test case

generation methods, including random sampling and rule-based scenario construction,

cannot often adaptively expose rare and safety-critical events. This paper proposes a

Proximal Policy Optimization (PPO)–based Deep Reinforcement Learning (DRL)

framework for intelligent test case generation in autonomous driving systems. The

problem is formulated as a Markov Decision Process (MDP), allowing a DRL agent to

interact with the CARLA Simulation (CARLA) platform and iteratively synthesize

challenging driving scenarios. The agent learns to adjust key parameters such as traffic

density, vehicle behaviors, and environmental conditions to maximize the discovery of

safety-critical events. PPO is adopted to ensure stable and sample-efficient policy learning

during scenario generation. The framework is evaluated on thousands of simulated driving

episodes across diverse urban and highway scenarios using metrics including safety-

critical event detection rate, test coverage, and scenario diversity. Experimental results

demonstrate over a 38% improvement in detecting safety-critical events compared with

random testing and rule-based baselines, highlighting the effectiveness of the proposed

system for improving AV validation and reliability.

Keywords:

Autonomous Vehicle, test case generation,

Proximal Policy Optimization, Deep

Reinforcement Learning, safety-critical

scenarios, simulation-based testing, Markov

Decision Process, fault injection

1. INTRODUCTION

The growing need for quality of the software, speed of the

delivery cycle, and the constant integration of the existing

development environments has greatly increased the job of

Quality Assurance (QA). The use of Agile and DevOps-driven

processes has substituted conservative, siloed development

patterns, necessitating QA processes to proceed continuously

and adaptively as opposed to a detached and manual process

[1]. Existing methods of QA, such as rule-based testing,

manual testing, static testing, case definition, and the use of

pre-existing datasets, are becoming less and less useful in

testing and verifying large-scale complex software systems

[2]. The mentioned limitations are particularly acute in the

systems that may be described by real-time operation, cross-

platform dependencies, micro service architecture, and

dynamically changing operating conditions. This has led to the

fact that the issue of reliability, efficiency, and safety before

deployment is now a major concern when it comes to modern

software engineering [3].

The existing QA methods are still extremely reliant on

expert knowledge and manual intervention, which results in

high development costs, limited scalability, incomplete test

coverage, and exposure to human error. The creation of

significant test data, especially edge cases that can expose

latent system failures, is still considered a significant

bottleneck [4]. Due to the increased complexity and autonomy

of software systems, QA approaches have to change closer to

the techniques of the past, including the non-static and manual

approach in QA. Artificial Intelligence (AI) has become a

disruptive technology in this field with the capacity to learn

behavior from data, adapt to system behavior, and to engage

in exploration of complex input space autonomously [5]. The

AI-based QA systems are able to process application

specifications, past defect data, and usage history to produce

high-impact test cases, synthesize realistic and adversarial

inputs, and rank tests by risk and probability of failure [6].

Such AI methods have been especially in the automated

generation of test cases and test data. The process of aiding the

translation of requirements or user stories into executable tests

through Natural Language Processing (NLP) and exploring

system behaviors through Reinforcement Learning (RL)

agents can be autonomous and can be used to cover and

identify execution paths that can lead to failure [7]. Machine

International Journal of Safety and Security Engineering
Vol. 15, No. 11, November, 2025, pp. 2191-2204

Journal homepage: http://iieta.org/journals/ijsse

2191

https://orcid.org/0000-0003-4435-9691
https://orcid.org/0000-0002-6026-8709
https://orcid.org/0009-0004-7772-3562
https://orcid.org/0000-0002-3112-4909
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151101&domain=pdf

Learning (ML) models also facilitate prioritization of the tests

by directing the validation towards the high-risk components.

Although such methods have proved to be effective in the

existing software systems, the implementation of the same to

the Autonomous Vehicles (AVs) verification presents

radically new issues that the existing QA models fail to

address fully [8].

One of the safest and most complicated types of cyber-

physical systems is autonomous driving systems. They are

dependent on perception, decision-making, and control

modules that are tightly coupled and interact in closed-loop

with highly dynamic and uncertain environments. Although

there are a lot of rapid developments in AV technologies, the

standardized and scalable ways of validation have not

developed yet [9]. Existing methods of testing, through

manually specified scenarios, rule-based testing, or pre-

defined test sets, cannot be used to represent such rare,

interactive, and safety-critical situations in driving. This gap

demonstrates that there is an urgent need to develop adaptive

and data-driven methods of generating test cases that are

specifically designed to test the AV safety requirements [10].

ML is one of the key components of AV systems, especially

perception and decision-making modules. Object detection,

semantic understanding, and end-to-end driving control have

been popular applications of deep neural networks. These

models are very high-dimensional and opaque, and it is very

hard to describe their behaviour in all the available operating

conditions [11]. Unexpected and unsafe actions can be

observed because of minor changes in environmental

conditions, traffic relations, or sensor inputs. Therefore, it is

not possible to guarantee robustness and safety by means of

exhaustive testing by existing methods [12].

Broader software testing studies have given black-box

testing of Representational State Transfer (REST) APIs

extensive interest because of comparable problems of large

input spaces, state-dependent behaviour, and incomplete

specifications. Numerous testing methods of REST APIs are

based on the Open API Specification (OAS) to deduce good

inputs and sequences of operation [13]. OAS tends to miss

implicit logical relationships, business rules, and dynamic

constraints, resulting in invalid test cases and poor coverage.

Though the theory behind the REST API testing is quite

different from that of AV validation, it can serve as a good

analogy to the shortcomings of specification-driven testing

with respect to limitations arising when system behaviour

relies on hidden state and complicated interactions [14]. These

problems are further compounded in AV systems by real-time

dynamics, physical limitations, and safety demands, where

even less effective testing with specifications enjoyed by a

system is in effect [15].

The testing constraints in real life make the problem of

validation even worse. Physical driving experiments to test the

safety of AVs would take millions of kilometres and, to

statistically confirm extremely autonomous driving functions,

would take billions of kilometres, which is not feasible and

would be economically prohibitive. Testing based on

simulation has been adopted as a fundamental part of AV

validation [16]. With scenario-based simulation, it is possible

to systematically explore driving scenarios, and predefined

scenarios themselves do not ensure adequate coverage of rare

and critical events. This has prompted a rise in interest in the

RL-based scenario generation, in which intelligent agents

actively explore the scenario space to discover safety-critical

behaviour [17].

The limitations of the standard testing strategies are also

emphasized in complex driving conditions, e.g., intersection

negotiation. The interaction of vehicles at intersections

presents complex space and time relationships, and

sophisticated arguments are necessary to prevent collisions

and maintain the efficiency of the traffic [18]. Although there

was a discussion on centralized and infrastructure-assisted

traffic control methods, they are not as scalable and cannot be

used in real-time. These difficulties also motivate the necessity

of adaptive, learning-based testing structures that will be able

to reveal failure situations that occur due to multi-agent

interactions and dynamic decision-making [19].

Other methods that have been proposed to test the

robustness of neural networks include adversarial testing and

perturbation-based validation. Although useful at the

component level, these methods can overlook dynamics at the

system level, where unsafe behaviours can result due to the

interplay between perception, planning, and control. System-

level validation thus needs test methodologies that address

behavioural results as opposed to a single model forecast [20].

Regardless of the major advancement, the existing AV test

generation approaches are mostly stagnant, driven manually,

or not adaptive enough. Learning based methods have been

promising, and most of the RL algorithms, such as Deep Q-

Networks (DQN) and A3C, are unstable and do not explore

effectively in high-dimensional problems, especially in

continuous control [21]. PPO is more stable and efficient in its

sample usage is why it is suitable in safety-critical situations.

Use in the generation of test cases of AVs and system-level

safety validation is not well-investigated. To address this gap,

this paper will concentrate on the PPO-based Deep

Reinforcement Learning (DRL) to facilitate adaptive,

efficient, and safety-based test case generation in AVs. Key

contributions of the paper are as follows:

• Introduced a PPO-based framework for adaptive test

case generation in AV simulations.

• Formulated scenario generation as a Markov Decision

Process (MDP) to optimize failure-inducing test cases.

• Enhanced safety-critical scenario coverage by

integrating DRL into the testing pipeline.

• Achieved a 38% improvement in fault detection rate

over existing test generation methods.

• Validated framework performance using high-fidelity

simulations targeting perception, planning, and control

modules in AV systems.

2. RELATED WORKS

Test generation based on a rule and scenario library has

been a popular technique in early AV-based validation. Such

methods are based on manually specified traffic policies,

professionally defined scenarios, or prescribed combinatorial

sets of parameters to test the behavior of the system in known

driving conditions. Although these approaches are

interpretable and easily applicable, they have low scalability

and subpar generalization [22]. Hand-operated scenario

libraries are limited by human assumptions by nature and

rarely represent the rare, compound, and emergent safety-

critical scenarios caused by complex vehicle interaction.

During the process of moving AV systems to open-ended and

uncertain environments, rule-based testing has not been found

to be adequate in unearthing unforeseen failure modes [23].

Search-based and optimization-based testing methods have

2192

been suggested to enhance coverage of the scenario by

performing a systematic search of the scenario parameter

space. Other popular techniques are genetic algorithms,

particle swarm optimization, and Bayesian optimization,

which are applied to find the failure-causing inputs by

maximizing the risk or violation measures specified by the

user [24]. These techniques have proved to be effective in

revealing the corner cases in the simulation environments.

They usually, however, depend on handwritten fitness

functions, handwritten representation of a static scenario, and

offline optimization, which hinder their dynamism in dealing

with changes in system behaviour. Search-based algorithms

typically have difficulty in scaling to high-dimensional

continuous spaces, and can tend to prematurely underscore

local optimality [25].

Adversarial scenario generation and robustness testing are

concerned with identifying vulnerabilities in perception and

decision-making modules by adding small but specific

perturbations to sensor inputs or environmental parameters.

Adversarial attacks using gradients and falsification methods

have been used to detect unsafe behaviours in neural network

constituents and closed-loop control systems [26]. Although

these methods yield important information on the sensitivity

of models, they are generally component-based or a partial

observer of a system. Consequently, they can miss the failure

modes due to long-term interactions, temporal dependencies,

or multi-agent dynamics that appear in the driving situation in

the real world [27].

The test case generation based on RL has received growing

popularity because of its sequential decision-making process

representation of scenario generation. Challenging traffic

behaviors, adversarial agents, and environment settings that

are maximally likely to cause collisions or safety violations

have been generated by RL agents. Value-based algorithms

(DQN or actor-critic (A3C) algorithms were the most used in

early studies [28]. Despite potential advantages, such methods

are typically unstable to training, inefficient to explore, and

sensitive to reward design, especially in high-dimensional and

continuous simulation tasks such as autonomous driving. Such

constraints restrict their use to scalable and reliable AV safety

validation [29].

In contrast to existing RL-based testing systems, the

proposed one uses PPO to attain stable and sample-efficient as

well as scalable scenario generation. In contrast to acting on

top of value or asynchronous action critic, such as PPO, policy

updates are limited to avoid the destructive policy update,

leading to robust training in challenging driving conditions.

The given framework is specifically focused on system-level

safety-critical event discovery, where scenario parameters are

dynamically adjusted to observed closed-loop behaviors as

opposed to fixed risk measures. This can be used to better

explore rare and high-impact cases, better test coverage, and

better fault detection than existing RL-based and optimization-

driven testing strategies. Therefore, the PPO framework is an

important breakthrough in adaptable, learning-based AV test

case generation.

3. PROBLEM FORMATION

Test case generation for AVs is a complex task that aims to

expose failures in the perception, planning, and control

modules under diverse and challenging driving scenarios. The

goal is to automate this process using an RL agent that

interacts with a simulated driving environment to generate

scenarios that maximize the likelihood of system failure or

sub-optimal behavior. This can be modeled as an MDP defined

by the tuple:

𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) (1)

where, 𝑆: Set of states representing environment and vehicle

conditions (e.g., weather, traffic, road layout). 𝐴 : Set of

actions (eg, modify speed, insert pedestrian, change visibility).

𝑃(𝑠′|𝑠, 𝑎): Transition probability from state s to s' after action

a. 𝑅(𝑠, 𝑎): Reward function that quantifies test case

effectiveness (e.g., system failure, safety violations). 𝛾 ∈
[0,1] : Discount factor that balances immediate vs. future

rewards. The objective is to learn a policy 𝜋𝜃 = (𝑎|𝑠) that

maximizes the expected cumulative reward:

𝐽(𝜃) = 𝐸𝜋𝜃
[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=0

] (2)

To optimize this policy, the PPO algorithm is used. PPO

updates the policy by solving:

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)]
(3)

where, 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 is the probability ratio between

new and old policies. 𝐴̂𝑡 is the advantage estimate at time step

t. 𝜖 is the clipping parameter to prevent large updates. The

reward function 𝑅 = (𝑠, 𝑎) is designed to encourage

generation of challenging test scenarios:

𝑅(𝑠, 𝑎) = 𝜆1𝑅𝑖𝑠𝑘(𝑠, 𝑎) + 𝜆2𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠)
− 𝜆3𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑇)

(4)

where, 𝑅𝑖𝑠𝑘(𝑠, 𝑎) : Likelihood of causing failure or unsafe

behavior. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑠) : Contribution to overall scenario

diversity. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠, 𝑇) : Redundancy with respect to

proposed test suite T. 𝜆1, 𝜆2, 𝜆3: Weighting coefficients.

4. MATERIALS AND METHODS

The proposed system integrates a DRL agent trained via

PPO within a simulation-based autonomous driving

environment, such as CARLA Simulation (CARLA) or LGSVL.

The simulator models real-world conditions, including traffic,

pedestrians, road layouts, weather, and vehicle dynamics. The

autonomous system's behavior control decisions, path

planning, and safety violations are continuously monitored.

The problem is formulated as an MDP, where the agent

modifies scenario variables (e.g., adding obstacles or altering

visibility) and receives rewards based on system responses

shown in Figure 1. PPO updates the policy mapping states to

scenario modifications, aiming to identify failure-prone or

safety-critical events. The reward function emphasizes

scenario diversity, novelty, and risk (e.g., near-miss detection).

A fully connected A3C framework with a CNN processes

sensor data like camera and LiDAR inputs. Scenario

effectiveness is evaluated by comparing fault detection rates,

system resilience, and diversity against baseline methods such

as random scenario generation and rule-based approaches.

2193

To develop a robust and reliable mandatory lane change

method, this study proposes an RL approach based on PPO.

The following sections will describe the system architecture,

state space, action space, and reward components of the

proposed decision-making framework. Figure 1 illustrates the

overall system structure designed to support autonomous lane

changes. The system comprises two main components: A

simulation environment and a learner architecture.

Figure 1. Proposed architecture

The learner component enables high-level decision-making,

accesses vehicle data embedded in the road infrastructure, and

takes into account vehicle dynamics generated within the

simulation environment.

4.1 Dataset description

The dataset used in this study was generated using a high-

fidelity autonomous driving simulator like CARLA or

LGSVL, designed to replicate real-world scenarios shown in

Table 1. It includes features across behavioral, vehicular,

environmental, and infrastructure dimensions. Environmental

conditions (e.g., rain, fog, and lighting), road types, and

dynamic elements like pedestrians or debris simulate high-risk

situations. Sensor inputs such as LiDAR and RGB images

support perception tasks, while real-time vehicle data tracks

performance. Binary flags indicate events like collisions or

lane departures. Each scenario is tagged with a unique ID and

outcome label, enabling robust training and evaluation of the

PPO-based DRL test scenario generator.

4.2 State and action space

The lane-change decision-making process considers the

states of five vehicles, consisting of the ego vehicle and four

surrounding vehicles. These vehicles jointly influence the

Autonomous Vehicle’s decision to keep its lane or execute a

lane change. The state space captures the kinematic and

positional information required for safe and efficient

maneuvering, while the action space includes discrete lateral

and longitudinal decisions that jointly define the agent’s

control policy. A summary table of state and action space is

shown in Table 2.

Table 1. Dataset description for simulation-based test case

generation

Feature Category Description

Environmental

Conditions
Clear, Rainy, Foggy, Cloudy, Night, Day

Road Infrastructure
Urban, highway, rural

Number of lanes (1 to 6)

Traffic Elements

Number of vehicles per km

Number of pedestrians per block or

meter

Dynamic Obstacles
Vehicle, animal, debris, bicycle

Static moving, erratic

Vehicle State

AV speed in km/h

30 coordinates of the vehicle in the

simulation map

Sensor Data
Front-facing camera image

30 spatial perception data

AV System

Performance

Indicates if a collision occurred

Indicates if the vehicle left its designated

lane

Test Case Metadata

Unique identifier for each generated

scenario

Indicates if the scenario led to AV failure

or suboptimal behavior

4.3 State and action space for lane change decision in

Autonomous Vehicles

The autonomous driving scenario consists of the following

2194

vehicles:

Ego Vehicle: 𝐶𝑒

Surrounding Vehicles:

• 𝐶0: Leading vehicle in the existing lane

• 𝐶1: Leading vehicle in the target lane

• 𝐶2: Following vehicle in the existing lane

• 𝐶4: Following vehicle in the target lane

This notation is used consistently throughout the manuscript

and matches the simulation implementation.

State Space 𝑆

S is composed of 21 continuous variables, derived as

follows.

Ego Vehicle State

𝑆𝐶𝑒
= {𝑖𝑒 , 𝑣𝑒 , 𝑎𝑒 , 𝑦𝑒 , 𝑣𝑒

𝑙𝑎𝑡} (5)

where, 𝑖𝑒 : longitudinal position; 𝑣𝑒 : longitudinal speed; 𝑎𝑒 :

longitudinal acceleration; 𝑦𝑒 : lateral position; 𝑣𝑒
𝑙𝑎𝑡 : lateral

speed

Surrounding Vehicle State 𝑆𝐶𝑥
 (4 variables each)

For each 𝐶𝑥 ∈ {𝐶0, 𝐶1, 𝐶2, 𝐶3}

𝑆𝐶𝑥
= {𝑑𝑟𝑒𝑙

𝑥 , 𝑣𝑥 , 𝑎𝑥 , 𝑦𝑥} (6)

where, 𝑑𝑟𝑒𝑙
𝑥 : relative distance to ego vehicle; 𝑣𝑥: longitudinal

speed; 𝑎𝑥: acceleration; 𝑦𝑥 : lateral position. Thus, the total

state space is:

𝑆 = 𝑆𝐶𝑒
+ ∑ 𝑆𝐶𝑒

3

𝑥=0

= 5 + (4 × 4)

= 21 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

(7)

Action Space (A): The action space 1 includes lateral and

longitudinal commands for the agent:

Lateral Actions 𝐴𝑙𝑎𝑡 ∈ {0, 1, 2}: 0: Lane keeping; 1: Initiate

lane change; 2: Abort lane change maneuver.

Longitudinal Actions 𝐴𝑙𝑜𝑛𝑔 ∈ {0, 1} : 0: Follow existing

lane leader; 1: Follow target lane leader

The combined high-level action space is:

𝐴 = 𝐴𝑙𝑎𝑡 × 𝐴𝑙𝑜𝑛𝑔

= {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)}
(8)

Total of 6 discrete action combinations.

Table 2. Summary of state and action space components for

lane change decision

Component Variables Description

Ego Vehicle 5
Position, speed, acceleration,

lateral motion

Each Surrounding

Vehicle
4 × 4

Relative distance, speed,

acceleration, and lateral

position

Total State

Dimension
21 Continuous

Lateral Actions 3 Keep, change, abort

Longitudinal

Actions
2

Follow the existing or target

leader

Total Actions 6 Discrete

4.4 Test case generation objective (with Proximal Policy

Optimization)

To generate optimal test cases using PPO, the goal is

to find a policy 𝜋𝜃(𝑎|𝑠) that maximizes the expected

cumulative reward: 𝐽(𝜃) = 𝐸𝜋𝜃
[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)𝑇

𝑡=0]
(9)

where, 𝑠𝑡 ∈ 𝑆: state at time t; 𝑎𝑡 ∈ 𝐴: action taken at time t;

𝑅(𝑠𝑡 , 𝑎𝑡) : reward function; 𝛾 : discount factor. The reward

function is designed to encourage safe and efficient lane

changing while avoiding collisions:

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑠𝑎𝑓𝑒(𝑠𝑡 , 𝑎𝑡) + 𝜆2𝑟𝑠𝑚𝑜𝑜𝑡ℎ(𝑠𝑡 , 𝑎𝑡)

− 𝜆3𝑟𝑟𝑖𝑠𝑘(𝑠𝑡 , 𝑎𝑡)
(10)

where, 𝑟𝑠𝑎𝑓𝑒: reward for maintaining safety distance; 𝑟𝑠𝑚𝑜𝑜𝑡ℎ:

reward for smooth transitions (IDM-based); 𝑟𝑟𝑖𝑠𝑘: penaity for

collision or abrupt maneuvers; 𝜆1 , 𝜆2 , 𝜆3 : weighting

coefficients. The low-level controller uses a modified

Intelligent Driver Model (IDM) to execute the longitudinal

behavior smoothly based on high-level PPO decisions.

Where d is negative while the car is departing and positive

when it is moving toward the center. In Figure 2, the state

formulation is displayed. Everyone employs every vehicle's

speed for the activity. Ultimately, an 8-dimensional action

space and a 16-dimensional state space are built.

Figure 2. State formulation

4.5 Reward function

The reward function in the proposed PPO-based test case

generation framework is carefully crafted to balance comfort,

efficiency, and safety-the three core objectives in designing an

intelligent and human-like lane change behaviour. The total

reward at time step t is defined as:

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + 𝜆2𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑠𝑡 , 𝑎𝑡)

− 𝜆3𝑟𝑠𝑎𝑓𝑒𝑡𝑦(𝑠𝑡 , 𝑎𝑡)
(11)

2195

where, 𝜆1 , 𝜆2 , 𝜆3 ∈ 𝑅+ : are the weights assigned to each

component. 𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , 𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , 𝑟𝑠𝑎𝑓𝑒𝑡𝑦 : normalized scalar

values representing rewards/penalties.

Comfort Evaluation 𝒓𝒄𝒐𝒎𝒇𝒐𝒓𝒕 : Minimizes jerk (rate of

change of acceleration) to ensure smooth driving experience:

𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = −(𝛼|𝑗𝑙𝑎𝑡| + 𝛽|𝑗𝑙𝑜𝑛𝑔|) (12)

where, 𝑗𝑙𝑎𝑡 =
𝑑𝑎𝑙𝑎𝑡

𝑑𝑡
, lateral jerk; 𝑗𝑙𝑜𝑛𝑔 =

𝑑𝑎𝑙𝑜𝑛𝑔

𝑑𝑡
, longitudinal

jerk; 𝛼, 𝛽: comfort sensitivity factors.

Efficiency Evaluation𝒓𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 : Encourages timely and

goal-oriented lane changes with minimal deviation from the

target lane:

𝑟efficiency = −(𝜂1𝑡𝑡𝑟𝑎𝑣𝑒𝑙 + 𝜂2𝑑𝑟𝑒𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

) (13)

Where, 𝑡𝑡𝑟𝑎𝑣𝑒𝑙: time taken to complete the lane change;

𝑑𝑟𝑒𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

: relative distance to the center of the target lane; 𝜂1,

𝜂2: efficiency weighting parameters.

Safety Evaluation 𝒓𝐬𝐚𝐟𝐞𝐭𝐲: Penalizes risky behaviour such

as collisions or near miss events with surrounding vehicles:

𝑟safety

= {
−𝑅1 𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠
−𝑅2 𝑖𝑓 𝑛𝑒𝑎𝑟 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(14)

where, 𝑅1, 𝑅2 safety penalty constants. Near collision if time-

to-collision (TTC) < Threshold (e.g., 2.5 sec).

The incentive function is used to assess every evaluation

scenario in order to ascertain whether the PPO agent learns to

optimize convenience, effectiveness, and safety shown in

Table 3. Low-jerk, prompt, and collision-free lane changing

behaviors are encouraged by the reinforcement learnt strategy.

Table 3. Test case definitions based on the reward function

Test Case

ID
Scenario Description

Expected

Risk

Comfort

Violation

Efficiency

Deviation

TC_LC_001
Lane change in foggy conditions with high-speed oncoming

C₃
High Low Moderate

TC_LC_002 Aborted lane change due to merging vehicle in blind spot Medium Medium High

TC_LC_003 Smooth lane change in low traffic with no interference Low Low Low

TC_LC_004 Late lane change on a highway exit ramp High High High

TC_LC_005 Lane change in dense traffic with slow reaction time High Medium Medium

4.6 Proximal Policy Optimization

The PPO method is used as the baseline in this study due to

its ease of implementation and consistent policy improvement.

Although PPO is based on Trust Region Policy Optimization

(TRPO), it is more efficient because of two key innovations:

Generalized Advantage Estimation (GAE) and an

unconstrained surrogate objective function.

4.6.1 Unconstrained surrogate objective function

To achieve stable and consistent policy improvement,

TRPO limits policy updates to avoid significant deviations.

PPO streamlines this approach by using a clipped surrogate

objective function, which penalizes updates that stray too far

from the existing policy, eliminating the need for complex

constraints. The PPO objective function is defined as:

𝐽𝑃𝑃𝑂(𝜃) = 𝐸𝑠,𝑎[𝑚𝑖𝑛(𝜌𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)]
(15)

where, 𝜌𝑡(𝜃) =
𝜋𝜃(𝑠|𝑎)

𝜋𝜃𝑜𝑙𝑑
(𝑠|𝑎)

 the probability ratio between the

new and old policies. 𝐴̂𝑡: The estimated advantage at time step

t. 𝜖 is a small hyperparameter (e.g., 0.2) that restricts the

update range.

4.6.2 Generalized advantage estimation

The advantage function is critical for calculating policy

gradients in PPO. It is estimated using the difference between

the action-value function and the state-value function:

𝐴̂𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉(𝑠𝑡 , 𝑤) (16)

where, 𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) is the estimated action-value function.

𝑉(𝑠𝑡 , 𝑤) is the estimated value of state 𝑠𝑡 with parameters 𝑤.

Monte Carlo Estimate (used in TRPO):

𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) = ∑ 𝛾𝑙−𝑡

∞

𝑙=𝑡

𝑟𝑙 (17)

This estimate is unbiased but exhibits high variance.

One-Step Bootstrapping (used in A3C):

𝑄̂𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1, 𝑤) (18)

This method has lower variance but introduces bias. To

strike a balance between bias and variance, GAE uses a

weighted sum of multi-step temporal difference errors:

(𝑠𝑡 , 𝑎𝑡) = ∑ 𝛾𝜆𝑙−𝑡

∞

𝑙=𝑡

𝛿𝑙 (19)

where the temporal difference (TD) error 𝛿𝑙 defined as:

𝛿𝑙 = 𝑟𝑙 + 𝛾𝑉(𝑠𝑙+1, 𝑤) − 𝑉(𝑠𝑙 , 𝑤) (20)

Here, 𝜆 ∈ [0,1] a hyperparameter that governs the bias-

variance trade-off. A lower 𝜆 introduces more bias with less

variance, while a higher 𝜆 does the opposite.

4.7 Intelligent test case generation

The challenge of identifying program flaws through

execution on carefully selected input data is a central focus in

testing. A program P is considered to contain an error if its

output does not match the expected requirements or is deemed

incorrect by the tester. Verifying output correctness and

2196

generating relevant test scenarios requires some knowledge of

the correct program, which may or may not be sufficiently

complete. Ideally, program testing involves using input/output

samples to demonstrate or probabilistically validate the

program's equivalence to a correct version or executable

specification. Testing DRL agents remains in its early stages.

Similar to DL agents trained through supervised learning,

DRL agents are also susceptible to adversarial attacks that

generate conflicting scenarios. The approach for DRL differs

significantly, as it emphasizes configuring the environment for

each scenario encountered by the agent, rather than altering

raw sensor inputs. The sampling strategy used as a baseline in

the existing study closely aligns with this approach. Empirical

findings demonstrate that the search-based method performs

better than others in inducing a broader and more diverse range

of failures across multiple case studies. A method has been

proposed to assess the adaptability of DRL agents by

reinitializing learning in environments different from those

encountered during the initial training phase. This enables the

construction of an adaptation frontier distinguishing between

scenarios in which the agent adapts successfully and those in

which it fails.

Although other methodologies also generate new

environmental configurations, the existing approach does not

retrain the agent. Instead, the focus is on testing to identify

vulnerabilities in the agent during evaluation. Explored

training and testing DRL agents in procedurally generated

environments. Specifically, their study utilized a set of

algorithmically generated 3D mazes to train agents, followed

by a local search process that modified the mazes during

evaluation based on agent performance. This technique

produced out-of-distribution configurations not represented in

the original training dataset. In contrast to directly testing

agent performance in these altered environments, the existing

study employs a failure predictor, a proxy representation of the

environment is to reduce the computational cost of the search.

In more complex environments than mazes, it becomes

prohibitively expensive to execute the DRL agent within the

environment at every search iteration. To address evaluation

challenges, a recent search-based strategy was proposed to

assess the quality of DRL agents. Their approach involves

sampling the environment to identify a reference trace that

successfully solves the RL task. This trace is constructed using

a depth-first search algorithm and consists of all states not

pruned during the search’s backtracking process.

The key aspects being measured include fault detection

effectiveness, scenario diversity, safety-critical coverage, and

comfort in vehicle trajectories. The null hypothesis (𝐻0)

assumes that the PPO-generated test cases are no better or

inferior in performance compared to baseline methods (such

as random or rule-based test generation).

This is expressed mathematically as:

𝐻0: 𝜇𝑃𝑃𝑂 ≤ 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

where, 𝜇 represents the average effectiveness score, which is

a weighted sum of fault detection rate F, scenario diversity D,

and safety event coverage C. These weights 𝑤1, 𝑤2, 𝑤3 are

chosen based on the Importance of each factor to the test

generation goals.

In contrast, the alternative hypothesis (𝐻1) asserts that the

PPO-based framework outperforms the baseline, aiming to

generate more useful, diverse, and fault-revealing test cases:

𝐻1: 𝜇𝑃𝑃𝑂 ≤ 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

To deepen the analysis, sub-hypotheses are introduced:

• 𝐻1. 1 checks whether PPO-generated cases trigger

more faults, indicating stronger stress-testing

capability.

• 𝐻1. 2 evaluates behavioral diversity using variance

across features like traffic density, weather, and

obstacle types.

• 𝐻1. 3 measures coverage of safety-critical scenarios,

ensuring the policy does not miss important corner

cases.

• 𝐻1. 4 focuses on trajectory comfort, using mean jerk as

a proxy for smoothness in the vehicle's movement.

Each equation ties directly to a measurable property of the

system, enabling objective evaluation using statistical tests

(e.g., t-test or Wilcoxon test) over generated test data. The

reward function in the PPO model encourages policies that

optimize these objectives, and testing these hypotheses

validates that the optimization successfully aligns with real-

world testing needs.

4.8 Proximal Policy Optimization-driven Deep

Reinforcement Learning framework for intelligent test

case generation in Autonomous Vehicles

Objective: Maximize the expected cumulative reward for

generating test cases that challenge AV's decision-making

under safety, efficiency, and comfort constraints.

Input: Environment model ℇ ; Initial policy network

𝜋𝜃(𝑎|𝑠); Value network 𝑉(𝑠; 𝑤); Hyperparameters: Discount

factory 𝛾, GAE factor 𝜆, Clipping threshold 𝜖, batch size B,

epochs U

Output: Optimized policy 𝜋𝜃 for generating effective test

cases

Initialization: 1. Randomly initialize policy parameters 𝜃

and value function parameters 𝑤; Initialize replay buffer 𝐵 ←
∅

Step 1. Collect Environment Rollouts

Generate episodes using the existing policy 𝜋𝜃 and collect a

batch mathcal:

𝐷 = {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}𝑡=1
𝐵 (21)

Step 2: Estimate the Temporal Difference (TD) Error

For each step t, compute:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1, 𝑤) − 𝑉(𝑠𝑡 , 𝑤) (22)

Step 3: Generalized Advantage Estimation (GAE)

𝐴̂𝑡 = ∑(𝛾𝜆)𝑙𝛿𝑡+1

∞

𝑡=0

 (23)

This balances bias and variance in the estimation of the

advantage function.

Step 4: Value Function Target

𝑉̂𝑡 = 𝐴̂𝑡 + 𝑉(𝑠𝑡 , 𝑤) (24)

Step 5: Policy Update with PPO Surrogate Objective

Define the probability ratio:

2197

𝜌𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 (25)

Clip the objective to avoid large policy updates:

𝐽𝑃𝑃𝑂(𝜃) = 𝐸𝑠,𝑎[𝑚𝑖𝑛(𝜌𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃)1 − 𝜖1

+ 𝜖)𝐴̂𝑡)]
(26)

Update policy network:

𝜃 ← 𝜃 + 𝛼𝜃∇𝜃𝐽𝑃𝑃𝑂(𝜃) (27)

Step 6: Value Network Update: Minimize squared error

between predicted and target value:

𝐽𝑣(𝑤) =
1

𝐵
∑(𝑉(𝑠𝑡 , 𝑤) − 𝑉̂𝑡)

2
𝐵

𝑡=1

 (28)

Update value network:

𝑤 ← 𝑤 − 𝛼𝑣∇𝑤𝐽𝑉(𝑤) (29)

Step 7: Repeat Steps 1-6: Repeat for multiple iterations

until convergence or maximum episodes reached.

Reward Function Design: The reward 𝑅(𝑠𝑡 , 𝑎𝑡) balances

three objectives:

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜆1𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 𝜆2𝑟𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 + 𝜆3𝑟𝑠𝑎𝑓𝑒𝑡𝑦 (30)

With the help of this method, the PPO agent may learn a

lane-change decision policy that emphasizes realism, variety,

and edge-case exposures while producing difficult yet secure

test scenarios for self-driving vehicles.

4.9 Test case generation

The testing process begins with analysis, identifying key

factors—such as ego vehicle acceleration—that influence

driver assistance technologies. Based on these criteria,

relevant test scenarios are developed. The third phase involves

executing these scenarios in a Software-in-the-Loop (SiL)

simulation environment. In the evaluation phase, scenario

criticality is assessed using metrics like time-to-collision,

which serve as reward signals for the DRL agent to guide

scenario refinement. The exploration phase follows,

leveraging prior knowledge or probing new environmental

conditions. Parameter adjustment is performed using a ϵ-

greedy algorithm that balances optimal and random actions to

improve scenario diversity. Each action corresponds to

modifying a parameter, prompting the generation of a new test

instance, and restarting the cycle. Finally, the save critical test

cases phase retains high-impact scenarios for future analysis.

Step 1: Analysis: This initial step identifies the key

influencing factors on the automated driving function under

investigation, these may include: Speed of the ego vehicle 𝑣𝑒;

Relative positions and velocities of surrounding vehicles

{𝑣𝑥 , 𝑑𝑥}; Road curvature 𝜌, weather W, and traffic density T.

These parameters form the input feature vector 𝑖 ∈ 𝑅𝑛 which

defines the scenario space.

Step 2: Test Case Generation: Using the parameters

identified in Step 1, initial test scenarios are generated. The

test cases are defined as a vector:

𝑃 = {𝑣𝑒, 𝑣0, 𝑑0, 𝜌, 𝑊, 𝑇, … } (31)

These parameters are input into a simulation environment.

Initially, parameter values can be chosen randomly or based

on predefined distributions, as the RL agent will iteratively

refine them.

Step 3: Test Run Execution: Each test case from Step 2 is

executed using a SiL simulation framework. The simulation

simulates vehicle dynamics, sensor models, and the

autonomous driving software stack. During this phase, key

runtime metrics are collected, such as: Time-to-Collision

TTC; Lane deviation; Braking and acceleration behavior.

Step 4: Test Evaluation: The criticality of each scenario is

evaluated using metrics like Time-to-Collision (TTC):

𝑇𝑇𝐶 =
𝑑𝑟𝑒𝑙

𝑣𝑟𝑒𝑙

 𝑤ℎ𝑒𝑟𝑒 𝑣𝑟𝑒𝑙 = 𝑣𝑒 − 𝑣𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 (32)

A reward function is constructed to encourage the

generation of dangerous but realistic cases:

𝑅(𝑠𝑡 , 𝑎𝑡) = −𝛼𝑇𝑇𝐶−1 + 𝛽𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (33)

Scenarios with low TTC values are rewarded more as they

are closer to critical conditions.

Step 5: Exploration: Using the PPO RL agent, new test

scenarios are explored. To balance exploration and

exploitation, an epsilon-greedy strategy is used:

𝑎

= {
𝑟𝑎𝑛𝑑𝑜𝑚 (𝐴), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

arg 𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖

(34)

where, 𝑄(𝑠, 𝑎): Estimated action-value; A: Action space, i.e,

parameter modifications; 𝜖 ∈ [0, 1]: Exploration rate

(typically decaying over time).

Step 6: Parameter Change: Based on exploration, test

parameters are adjusted. An action here refers to increasing or

decreasing a parameter:

𝑃𝑥
′ = 𝑃𝑥 + ∆𝑃, 𝑤ℎ𝑒𝑟𝑒 ∆𝑃 ∈ {−𝛿, 0, +𝛿} (35)

This modifies the scenario to potentially make it more

critical. For example: Increasing vehicle speed 𝑣𝑒; Decreasing

following distance 𝑑0; Changing road curvature p. The newly

generated parameter set becomes the next test case.

Step 7: Save Critical Test Cases: Scenarios that meet or

exceed a criticality threshold (eg, TTC < 2s) are stored for

future safety validation and regression testing. A critical test

case repository ensures: Reusability in future training and

validation. Coverage of edge conditions and failure-prone

cases. Save if: 𝑅(𝑠𝑡 , 𝑎𝑡) > 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

The cycle repeats by feeding back the modified parameters

into Step 2, forming a closed-loop system for intelligent test

case generation. The RL agent continuously adapts its strategy

to find edge cases that challenge the autonomous driving stack,

while ensuring diversity, realism, and safety-critical exposure.

5. SIMULATION SETUP

To evaluate and generate critical test scenarios, a simulation

system replicates realistic highway driving using SiL

architecture. It combines a physics-based vehicle dynamics

2198

model with a perception and control stack typical of AVs. The

scenario involves five cars: the ego vehicle and four

surrounding vehicles in existing and target lanes. A high-level

decision module, trained with PPO, governs the ego vehicle’s

behavior, while low-level lane-change heuristics and a

modified Intelligent Driver Model (IDM) execute actions

shown in Figure 3. The state space includes 21 features

capturing kinematics and relative positions, while the action

space defines discrete longitudinal and lateral maneuvers.

Multiple episodes are simulated with varied traffic, road

curvature, and weather to ensure diversity. Key metrics like

time-to-collision and trajectory smoothness are logged and

used to refine the PPO policy. Simulations are reproducible,

using fixed random seeds and standardized inputs to ensure

consistency in evaluation.

To guarantee consistent and effective learning, the PPO

framework for AVs test case creation makes use of precisely

calibrated hyper parameters shown in Table 4. Future reward

relevance and learning variance are balanced by a GAE value

of 0.95 and a discount factor of 0.99. Safe policy changes are

ensured by a clipping threshold of 0.2. The policy and value

learning rates are set at 3 × 10−4 and 1 × 10−3, respectively. Ten

training periods and a batch of 2048 steps are used in each PPO

update. Exploring is made possible via a ε-greedy approach

with ε = 0.1. These environments encourage the creation of a

variety of crucial situations for assessing and testing self-

driving cars. The durations of MA-PPO and PPO-DRL

episodes first rise quickly before leveling off is shown in

Figure 4. This may be explained by the fact that the learnt

strategy initially primarily concentrates on avoiding collisions,

as doing so would result in a significant negative reward. The

lengthy episode duration results from the cars' tendency to wait

or travel extremely slowly until there is no chance of an

accident.

Figure 3. Simulation network

With this configuration, agents can be deployed in various

traffic conditions using different PPO- DRL techniques, state

representations, and reward structures. A vehicle scope with

Λ𝑎ℎ𝑒𝑎𝑑 = 2 and Λ𝑏𝑒ℎ𝑖𝑛𝑑 = 1 was used in the studies. This

configuration enhances the agent’s anticipation capability and

ensures continuous visibility of all lanes on a three-lane

roadway. The unsignalized junction had a range of 200–220

meters. Although numerous scenarios are typically simulated

in the field, the existing study focused specifically on the

performance of the leading AVs at an unsignalized

intersection. When approaching the intersection, platooning

vehicles proceeded straight in four distinct directions. AV

penetration rates were evaluated in 10% increments, ranging

from 1% to 100%. All vehicles making left turns or changing

lanes at the incomplete intersection were excluded from

consideration. The scenario involving the leading AVs at the

non-signalized junction is illustrated in Figure 5. To highlight

the effectiveness of the leading AV scenario, comparisons

were made with other configurations, including a leading

human-driven vehicle scenario and an all-human-driven

vehicle scenario. The comparison of these experiments at the

non-signalized intersection is presented in Figure 6.

Table 4. Hyper parameter settings for PPO-based test case

generation

Parameter Symbol Value

Discount Factor 𝛾 0.99

GAE Parameter 𝜆 0.95

Clipping Threshold 𝜖 0.2

Learning Rate (Policy) 𝛼𝜃 3e-4

Learning Rate (Value) 𝛼𝑤 1e-3

Number of Epochs per

Update
U 10

Batch Size B 2048

Mini-batch Size - 64

Total Timesteps - 1,000,000

Exploration Rate 𝜀 0.1

PPO Update Frequency - Every 2048 steps

Max Episode Length - 1000 steps

(a)

(b)

Figure 4. Illustration of driving scenarios: (a) Highway

driving; (b) Highway merging

Figure 5. Autonomous Vehicle (AV) experiments at an unsignalized intersection: (a) Mixed-autonomy traffic with AV

penetration rates varying from 10% to 90% in 10% increments; (b) Fully autonomous traffic with 100% AV penetration

2199

Figure 6. Experimental comparison at an unsignalized intersection: (a) Scenario with 100% human-driven vehicles (0% AV

penetration); (b) Scenario with a leading human-driven vehicle and varying Autonomous Vehicle (AV) penetration rates from

10% to 90% in 10% increment

Random samples from each univariate distribution were

initially combined to generate a trial scenario. As shown in

Figures 7(a) and (b), the opponent vehicle initiated a lane

change ahead of the ego vehicle and collided with its rear,

though this interaction did not reflect real-world data. In the

second experiment, a multivariate normal distribution fitted

via Kernel Density Estimation (KDE) captured inter-variable

relationships. Figures 7(c) and (d) show a more realistic side-

impact crash, where the opponent vehicle, just behind the ego

vehicle at time step 21, collided during a lane change. Figure

7(e) demonstrates that the PPO-DRL method generated

realistic trajectories. A cut-in collision was detected when the

opponent vehicle underestimated the merge gap. As seen in

Figure 7(f), the opponent changed lanes at time step 4 and

impacted the ego vehicle by time step 21.

The proposed PPO-DRL-based test case generation

framework demonstrates superior performance compared to

four existing approaches shown in Figure 8. It achieves an

accuracy of 96.8%, indicating strong classification between

critical and non-critical scenarios. With a recall of 97.2%, it

effectively detects most true critical cases, while its 95.4%

precision confirms minimal false alarms. The F1-score of

96.3% highlights a balanced performance in both precision

and recall. These results emphasize the effectiveness of

integrating RL with PPO to generate diverse, realistic, and

high-risk scenarios for AVs testing.

(a)

(b)

(c)

(d)

2200

(e) (f)

Figure 7. Testing Autonomous Vehicle (AV) and ego vehicles using proposed system based on 3 scenarios

Figure 8. Performance measures

Table 5. Performance measures (time to collision, coverage,

scenario diversity, execution time)

System

Time-to-

Collision

(s)

Coverage

(%)

Scenario

Diversity

(Entropy)

Execution

Time

(s/case)

Proposed

PPO-DRL

System

1.4 94.2 0.89 1.2

Random

Scenario

Generation

3.6 62.3 0.48 0.6

Rule-

Based

Heuristic

Approach

2.9 70.5 0.52 0.8

GA-Based

Test

Generation

2.1 81.6 0.65 2.0

DQN-

Based Test

Generation

1.8 88.7 0.74 1.6

The proposed PPO-DRL-based test case generation

framework demonstrates strong performance across key

metrics shown in Table 5. It achieves the lowest average Time-

to-Collision (TTC) of 1.4 seconds, highlighting its ability to

generate highly critical scenarios. With maximum scenario

coverage (94.2%) and high scenario variety (entropy = 0.89),

it effectively explores diverse driving situations.

The proposed PPO-DRL system achieves the highest

critical case rate of 41.8%, demonstrating its strong ability to

generate high-risk scenarios that effectively challenge AV

systems shown in Table 6. It also records the highest

cumulative reward score of +37.6, reflecting an optimal

balance among efficiency, comfort, and safety-criticality. In

contrast, random scenario generation consistently

underperforms, with the lowest critical case rate (12.4%) and

a negative reward score (–15.3). While DQN offers moderate

improvement, it still falls short of PPO’s performance.

Table 6. Comparison of the critical case ratio and reward

score of proposed and existing systems

System
Critical Case

Rate (%)

Reward Score

(R)

Proposed PPO-DRL

System
41.8 +37.6

Random Scenario

Generation
12.4 –15.3

Rule-Based Heuristic

Approach
18.6 +4.8

GA-Based Test

Generation
26.9 +18.2

DQN-Based Test

Generation
33.7 +27.4

9
6

.8

8
1

.5

8
5

.3

8
8

.6

9
2

.1

9
5

.4

7
9

.2

8
4

.7

8
7

.5

9
0

.39
7

.2

8
3

.1

8
6

.5

8
9

.2

9
3

.4

9
6

.3

8
1

.1

8
5

.6

8
8

.3

9
1

.8

P R O P O S E D P P O -
D R L S Y S T E M

R A N D O M
S C E N A R I O

G E N E R A T I O N

R U L E - B A S E D
H E U R I S T I C
A P P R O A C H

G A - B A S E D T E S T
G E N E R A T I O N

D Q N - B A S E D T E S T
G E N E R A T I O N

P
ER

FO
R

M
A

N
C

E
M

EA
SU

R
ES

MODELS

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

2201

The proposed PPO-DRL architecture demonstrates

excellent adaptability, achieving a maximum training

accuracy of 98.1% and testing accuracy of 96.8% shown in

Figure 9. This indicates strong generalization and effective

learning of critical scenario features. In contrast, random

scenario generation yields the lowest accuracy, reflecting poor

learning capability. While rule-based and GA-based methods

show moderate improvements, they exhibit noticeable gaps

between training and testing performance. The DQN-based

model performs better in consistency and precision but reaches

only 92.1% testing accuracy. These results confirm the PPO

framework’s effectiveness as a robust, intelligent approach for

generating high-quality test scenarios in AV environments.

The proposed PPO-DRL-based system achieves the lowest

testing loss (0.022) and training loss (0.014), demonstrating

superior adaptability and learning efficiency shown in Figure

10. These low values indicate consistent performance across

unseen scenarios and effective modelling of complex

relationships needed for generating critical test cases. While

the DQN-based model performs better than random

generation, it still incurs higher losses than PPO-DRL. Rule-

based and GA-based methods show moderate results. Overall,

the PPO-DRL framework proves effective in learning optimal

test generation strategies while minimizing overfitting.

Figure 9. Comparison of training and testing accuracy

Figure 10. Comparison of training and testing loss

6. CONCLUSIONS

The implementation of the PPO-DRL framework for

intelligent test case generation demonstrates substantial

progress in AV safety validation. The proposed approach

consistently outperforms existing methods across multiple

evaluation metrics, achieving a testing accuracy of 96.8%, an

F1-score of 96.3%, and a low testing loss of 0.022, indicating

strong generalization capability. Moreover, the framework

effectively uncovers safety-critical scenarios, reflected by a

high critical case rate of 41.8%, broad scenario coverage of

94.2%, and high diversity (entropy of 0.89). The reduced time-

to-collision (1.4 s) further highlights its ability to expose

challenging edge cases that stress AV decision-making

systems. Stable policy optimization is ensured through PPO’s

clipped objective and generalized advantage estimation,

enabling reliable learning and refinement. Despite these

strengths, the existing study is limited by its reliance on a

9
8

.1

8
5

.3

8
8

.6

9
1

.4

9
4

.2

9
6

.8

8
1

.5

8
5

.3

8
8

.6

9
2

.1

P R O P O S E D P P O -
D R L S Y S T E M

R A N D O M
S C E N A R I O

G E N E R A T I O N

R U L E - B A S E D
H E U R I S T I C
A P P R O A C H

G A - B A S E D T E S T
G E N E R A T I O N

D Q N - B A S E D T E S T
G E N E R A T I O N

TR
A

IN
IN

G
 A

N
D

 T
ES

TI
N

G
 A

C
C

U
R

A
C

Y

MODELS

Training Accuracy (%) Testing Accuracy (%)

0
.0

1
4

0
.1

3
4

0
.0

9
8

0
.0

7
1

0
.0

3
9

0
.0

2
2

0
.1

9
8

0
.1

4
5

0
.1

0
3

0
.0

6
2

P R O P O S E D P P O -
D R L S Y S T E M

R A N D O M
S C E N A R I O

G E N E R A T I O N

R U L E - B A S E D
H E U R I S T I C
A P P R O A C H

G A - B A S E D T E S T
G E N E R A T I O N

D Q N - B A S E D T E S T
G E N E R A T I O N

TR
A

IN
IN

G
 A

N
D

 T
ES

TI
N

G
 L

O
SS

MODELS

Training Loss Testing Loss

2202

single simulation environment and its focus on specific

highway and unsignalized intersection scenarios, without

direct real-world validation. Future work will address these

limitations by extending the framework to multi-agent traffic

settings, incorporating additional driving scenarios, and

integrating hardware-in-the-loop or real-world testing to

further enhance robustness and practical applicability.

REFERENCES

[1] Rehman, U. (2025). Proximal Policy Optimization-

driven decentralized peer-to-peer energy trading model

for optimal real-time operations in smart energy

communities. Energy Efficiency, 18: 49.

https://doi.org/10.1007/s12053-025-10330-4

[2] Li, T.T., Li, S.Q., Ding, C.X., Bao, Z., Alhazmi, M.

(2025). Intelligent wireless power scheduling for lunar

multienergy systems: DRL for real‐time adaptive beam

steering and vehicle‐to‐grid energy optimization.

International Transactions on Electrical Energy Systems,

2025(1): 9877968. https://doi.org/10.1155/etep/9877968

[3] Zhang, X.H., Bai, W.Q., Liu, J., Yang, S.N., Shang, T.,

Liu, H.L. (2025). Enhancing geomagnetic navigation

with PPO-LSTM: Robust navigation utilizing observed

geomagnetic field data. Sensors, 25(12): 3699.

https://doi.org/10.3390/s25123699

[4] Liu, H.Q., Li, T., Jiang, F.Y., Su, W.K., Wang, Z.C.

(2024). Coverage optimization for large-scale mobile

networks with digital twin and multi-agent RL. IEEE

Transactions on Wireless Communications, 23(12):

18316-18330.

ttps://doi.org/10.1109/TWC.2024.3464639

[5] Tong, H., Chu, L., Wang, Z.X., Zhao, D. (2025).

Adaptive Pulse-and-Glide for synergistic optimization of

driving behavior and energy management in hybrid

powertrain. Energy, 330: 136622.

https://doi.org/10.1016/j.energy.2025.136622

[6] Huang, B., Yu, W., Ma, M., Wei, X., Wang, G. (2025).

Artificial-Intelligence-based energy management

strategies for hybrid electric vehicles: A comprehensive

review. Energies, 18(14), 3600.

https://doi.org/10.1016/j.energy.2025.136622

[7] Long, Y.S., Gong, S.M., Sun, S.M., Lee, G.C.F., Li,

L.H., Niyato, D. (2025). Lyapunov-guided DRL for

semantic-aware Aoi minimization in UAV-assisted

wireless networks. IEEE Transactions on Wireless

Communications, 24(8): 6351-6364.

https://doi.org/10.1109/TWC.2025.3552809

[8] Gao, Y., Piccinini, M., Zhang, Y.C., Wang, D.R., et al.

(2025). Foundation models in autonomous driving: A

survey on scenario generation and scenario analysis.

arXiv preprint arXiv:2506.11526.

https://doi.org/10.48550/arXiv.2506.11526

[9] Wang, X., Zhou, J., Feng, Y.L., Mei, J.H., Chen, J.M.,

Li, S. (2025). Dashing for the golden snitch: Multi-drone

time-optimal motion planning with multi-agent RL. In

2025 IEEE International Conference on Robotics and

Automation (ICRA), Atlanta, GA, USA, pp. 16692-

16698.https://doi.org/10.1109/ICRA55743.2025.111284

42

[10] Zhang, H., Yang, G.X., Lei, N., Chen, C.Y., Chen, B.L.,

Qiu, L. (2025). Scenario-aware electric vehicle energy

control with enhanced vehicle-to-grid capability: A

multi-task RL approach. Energy, 335: 138189.

https://doi.org/10.1016/j.energy.2025.138189

[11] Zhong, L.L., Liu, Y., Wang, L.Q., Zhao, J., Wang, W.

(2024). Interval type-2 fuzzy DRL-based operational

optimization of industrial aerodynamic system. IEEE

Transactions on Instrumentation and Measurement, 73:

1-13. https://doi.org/10.1109/TIM.2024.3413155

[12] Wahid, A., Mirza, M.A., Ahmed, M., Sheraz, M., Chuah,

T.C., Lee, I.E., Khan, W.U. (2024). Towards secure and

scalable vehicular edge computing with zero-energy RIS

using DRL. IEEE Access, 12: 129330-129346.

https://doi.org/10.1109/ACCESS.2024.3457853

[13] Raguvaran, S., Anandamurugan, S. (2024).

Enhancement of energy utilization efficiency and speed

control of autonomous electric vehicles (AEVs): A

hybrid approach. Energy Efficiency, 17: 59.

https://doi.org/10.1007/s12053-024-10238-5

[14] Chen, Z.L., Pan, S.G., Yu, K.G., Wu, Y.T., Gao, W.,

Wang, Z.X. (2025). Fusion control tracking strategy for

autonomous vehicles: A fast PPO RL based on attention

mechanism and physical information. IEEE Transactions

on Intelligent Transportation Systems, 26(11): 18906-

18920. https://doi.org/10.1109/TITS.2025.3609483

[15] Raeisi, M., Sesay, A.B. (2024). Power control of 5G-

connected vehicular network using PPO-based DRL

algorithm. IEEE Access, 12: 96387-96403.

https://doi.org/10.1109/ACCESS.2024.3427124

[16] Hu, B., Jiang, L., Zhang, S., Wang, Q. (2023). An

eplainable and robust motion planning and control

approach for autonomous vehicle on-ramping merging

task using DRL. IEEE Transactions on Transportation

Electrification, 10(3), 6488-6496.

10.1109/TTE.2023.3347278

[17] Wu, Q., Ji, M.X., Fan, P.Y., Wang, K.Z., Cheng, N.,

Chen, W., Letaief, K.B. (2025). PPO-based vehicle

control for ramp merging scheme assisted by enhanced

C-V2X. arXiv preprint arXiv:2501.12656.

https://doi.org/10.48550/arXiv.2501.12656

[18] Taheri, H., Hosseini, S.R., Nekoui, M.A. (2024). DRL

with enhanced PPO for safe mobile robot navigation.

arXiv preprint arXiv:2405.16266.

https://doi.org/10.48550/arXiv.2405.16266

[19] Siboo, S., Bhattacharyya, A., Raj, R.N., Ashwin, S.H.

(2023). An empirical study of DDPG and PPO-based RL

algorithms for autonomous driving. IEEE Access, 11:

125094-125108. 10.1109/ACCESS.2023.3330665

[20] Sharma, R., Garg, P. (2024, October). RL advances in

autonomous driving: A detailed examination of DQN

and PPO. In 2024 Global Conference on

Communications and Information Technologies

(GCCIT), BANGALORE, India, pp. 1-5.

10.1109/GCCIT63234.2024.10862532

[21] El-Hariry, M., Richard, A., Muralidharan, V., Geist, M.,

Olivares-Mendez, M. (2024). DRIFT: DRL for

intelligent floating platforms trajectories. In 2024

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Abu Dhabi, United Arab

Emirates, pp. 14034-14041.

http://doi.org/10.1109/IROS58592.2024.10801927

[22] Ma, D.F., Chen, X., Ma, W.B., Zheng, H.R., Qu, F.Z.

(2023). Neural network model-based RL control for

AUV 3-D path following. IEEE Transactions on

Intelligent Vehicles, 9(1): 893-904.

http://doi.org/10.1109/TIV.2023.3282681

2203

https://doi.org/10.1155/etep/9877968
https://doi.org/10.3390/s25123699
https://doi.org/10.1109/TWC.2024.3464639
https://doi.org/10.1016/j.energy.2025.136622
https://doi.org/10.1109/TWC.2025.3552809
https://doi.org/10.1109/ICRA55743.2025.11128442
https://doi.org/10.1109/ICRA55743.2025.11128442
https://doi.org/10.1016/j.energy.2025.138189
https://doi.org/10.1109/TIM.2024.3413155
https://doi.org/10.1109/ACCESS.2024.3427124
https://doi.org/10.48550/arXiv.2501.12656
https://doi.org/10.1109/ACCESS.2023.3330665
https://doi.org/10.1109/GCCIT63234.2024.10862532
https://doi.org/10.1109/IROS58592.2024.10801927
https://doi.org/10.1109/TIV.2023.3282681

[23] Yang, Z.W., Tang, J.M., Cai, L. (2025). Multi-scenario

automatic parking based on DRL. In The Proceedings of

the 11th International Conference on Traffic and

Transportation Studies. ICTTS 2024. Lecture Notes in

Civil Engineering, pp. 481-488.

https://doi.org/10.1007/978-981-97-9644-1_52

[24] Bingol, M.C. (2025). A safe navigation algorithm for

differential-drive mobile robots by using fuzzy logic

reward function-based DRL. Electronics, 14(8): 1593.

https://doi.org/10.3390/electronics14081593

[25] Shen, J., Zheng, F.H., Chen, T.Y., Deng, W., Bellotti, A.,

Tesema, F.B., Lucchi, E. (2025). Optimizing urban land-

use through DRL: A case study in hangzhou for reducing

carbon emissions. Land, 14(12): 2368.

https://doi.org/10.3390/land14122368

[26] Wang, C.Q., Wang, Y. (2024). Safe autonomous driving

with latent dynamics and state-wise constraints. Sensors,

24(10): 3139. https://doi.org/10.3390/s24103139

[27] Gutiérrez-Moreno, R., Barea, R., López-Guillén, E.,

Arango, F., Abdeselam, N., Bergasa, L.M. (2023).

Hybrid decision making for autonomous driving in

complex urban scenarios. In 2023 IEEE Intelligent

Vehicles Symposium (IV), Anchorage, AK, USA, pp. 1-

7. https://doi.org/10.1109/IV55152.2023.10186666

[28] Fan, J.C., Lei, X.Y., Chang, X.L., Miši, J., Miši, V.B.,

Yao, Y.Y. (2025). Less is more: A stealthy and efficient

adversarial attack method for DRL-based autonomous

driving policies. IEEE Internet of Things Journal, 12(15):

30215-30227.

https://doi.org/10.1109/JIOT.2025.3569877

[29] Li, H.Q., Wang, Y.Z., Pan, M.Y., Li, S.X., Guan, W.

(2025). DRL based joint resource allocation and service

migration for smart-buoy-enabled maritime multi-access

edge computing networks. IEEE Internet of Things

Journal, 12(24): 52687-52705.

https://doi.org/10.1109/JIOT.2025.3612960

2204

https://doi.org/10.1007/978-981-97-9644-1_52
https://doi.org/10.3390/electronics14081593
https://doi.org/10.3390/land14122368
https://doi.org/10.3390/s24103139
https://doi.org/10.1109/IV55152.2023.10186666
https://doi.org/10.1109/JIOT.2025.3569877
https://doi.org/10.1109/JIOT.2025.3612960

