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Autonomous Vehicles (AVs) require extensive and diverse testing to ensure safe and
reliable operation under complex real-world driving conditions. Existing test case
generation methods, including random sampling and rule-based scenario construction,
cannot often adaptively expose rare and safety-critical events. This paper proposes a
Proximal Policy Optimization (PPO)-based Deep Reinforcement Learning (DRL)
framework for intelligent test case generation in autonomous driving systems. The
problem is formulated as a Markov Decision Process (MDP), allowing a DRL agent to
interact with the CARLA Simulation (CARLA) platform and iteratively synthesize
challenging driving scenarios. The agent learns to adjust key parameters such as traffic
density, vehicle behaviors, and environmental conditions to maximize the discovery of
safety-critical events. PPO is adopted to ensure stable and sample-efficient policy learning
during scenario generation. The framework is evaluated on thousands of simulated driving
episodes across diverse urban and highway scenarios using metrics including safety-
critical event detection rate, test coverage, and scenario diversity. Experimental results
demonstrate over a 38% improvement in detecting safety-critical events compared with
random testing and rule-based baselines, highlighting the effectiveness of the proposed

system for improving AV validation and reliability.

1. INTRODUCTION

The growing need for quality of the software, speed of the
delivery cycle, and the constant integration of the existing
development environments has greatly increased the job of
Quality Assurance (QA). The use of Agile and DevOps-driven
processes has substituted conservative, siloed development
patterns, necessitating QA processes to proceed continuously
and adaptively as opposed to a detached and manual process
[1]. Existing methods of QA, such as rule-based testing,
manual testing, static testing, case definition, and the use of
pre-existing datasets, are becoming less and less useful in
testing and verifying large-scale complex software systems
[2]. The mentioned limitations are particularly acute in the
systems that may be described by real-time operation, cross-
platform dependencies, micro service architecture, and
dynamically changing operating conditions. This has led to the
fact that the issue of reliability, efficiency, and safety before
deployment is now a major concern when it comes to modern
software engineering [3].

The existing QA methods are still extremely reliant on
expert knowledge and manual intervention, which results in
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high development costs, limited scalability, incomplete test
coverage, and exposure to human error. The creation of
significant test data, especially edge cases that can expose
latent system failures, is still considered a significant
bottleneck [4]. Due to the increased complexity and autonomy
of software systems, QA approaches have to change closer to
the techniques of the past, including the non-static and manual
approach in QA. Artificial Intelligence (AI) has become a
disruptive technology in this field with the capacity to learn
behavior from data, adapt to system behavior, and to engage
in exploration of complex input space autonomously [5]. The
Al-based QA systems are able to process application
specifications, past defect data, and usage history to produce
high-impact test cases, synthesize realistic and adversarial
inputs, and rank tests by risk and probability of failure [6].
Such Al methods have been especially in the automated
generation of test cases and test data. The process of aiding the
translation of requirements or user stories into executable tests
through Natural Language Processing (NLP) and exploring
system behaviors through Reinforcement Learning (RL)
agents can be autonomous and can be used to cover and
identify execution paths that can lead to failure [7]. Machine
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Learning (ML) models also facilitate prioritization of the tests
by directing the validation towards the high-risk components.
Although such methods have proved to be effective in the
existing software systems, the implementation of the same to
the Autonomous Vehicles (AVs) verification presents
radically new issues that the existing QA models fail to
address fully [8].

One of the safest and most complicated types of cyber-
physical systems is autonomous driving systems. They are
dependent on perception, decision-making, and control
modules that are tightly coupled and interact in closed-loop
with highly dynamic and uncertain environments. Although
there are a lot of rapid developments in AV technologies, the
standardized and scalable ways of validation have not
developed yet [9]. Existing methods of testing, through
manually specified scenarios, rule-based testing, or pre-
defined test sets, cannot be used to represent such rare,
interactive, and safety-critical situations in driving. This gap
demonstrates that there is an urgent need to develop adaptive
and data-driven methods of generating test cases that are
specifically designed to test the AV safety requirements [10].

ML is one of the key components of AV systems, especially
perception and decision-making modules. Object detection,
semantic understanding, and end-to-end driving control have
been popular applications of deep neural networks. These
models are very high-dimensional and opaque, and it is very
hard to describe their behaviour in all the available operating
conditions [11]. Unexpected and unsafe actions can be
observed because of minor changes in environmental
conditions, traffic relations, or sensor inputs. Therefore, it is
not possible to guarantee robustness and safety by means of
exhaustive testing by existing methods [12].

Broader software testing studies have given black-box
testing of Representational State Transfer (REST) APIs
extensive interest because of comparable problems of large
input spaces, state-dependent behaviour, and incomplete
specifications. Numerous testing methods of REST APIs are
based on the Open API Specification (OAS) to deduce good
inputs and sequences of operation [13]. OAS tends to miss
implicit logical relationships, business rules, and dynamic
constraints, resulting in invalid test cases and poor coverage.
Though the theory behind the REST API testing is quite
different from that of AV validation, it can serve as a good
analogy to the shortcomings of specification-driven testing
with respect to limitations arising when system behaviour
relies on hidden state and complicated interactions [14]. These
problems are further compounded in AV systems by real-time
dynamics, physical limitations, and safety demands, where
even less effective testing with specifications enjoyed by a
system is in effect [15].

The testing constraints in real life make the problem of
validation even worse. Physical driving experiments to test the
safety of AVs would take millions of kilometres and, to
statistically confirm extremely autonomous driving functions,
would take billions of kilometres, which is not feasible and
would be economically prohibitive. Testing based on
simulation has been adopted as a fundamental part of AV
validation [16]. With scenario-based simulation, it is possible
to systematically explore driving scenarios, and predefined
scenarios themselves do not ensure adequate coverage of rare
and critical events. This has prompted a rise in interest in the
RL-based scenario generation, in which intelligent agents
actively explore the scenario space to discover safety-critical
behaviour [17].
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The limitations of the standard testing strategies are also
emphasized in complex driving conditions, e.g., intersection
negotiation. The interaction of vehicles at intersections
presents complex space and time relationships, and
sophisticated arguments are necessary to prevent collisions
and maintain the efficiency of the traffic [18]. Although there
was a discussion on centralized and infrastructure-assisted
traffic control methods, they are not as scalable and cannot be
used in real-time. These difficulties also motivate the necessity
of adaptive, learning-based testing structures that will be able
to reveal failure situations that occur due to multi-agent
interactions and dynamic decision-making [19].

Other methods that have been proposed to test the
robustness of neural networks include adversarial testing and
perturbation-based validation. Although useful at the
component level, these methods can overlook dynamics at the
system level, where unsafe behaviours can result due to the
interplay between perception, planning, and control. System-
level validation thus needs test methodologies that address
behavioural results as opposed to a single model forecast [20].

Regardless of the major advancement, the existing AV test
generation approaches are mostly stagnant, driven manually,
or not adaptive enough. Learning based methods have been
promising, and most of the RL algorithms, such as Deep Q-
Networks (DQN) and A3C, are unstable and do not explore
effectively in high-dimensional problems, especially in
continuous control [21]. PPO is more stable and efficient in its
sample usage is why it is suitable in safety-critical situations.
Use in the generation of test cases of AVs and system-level
safety validation is not well-investigated. To address this gap,
this paper will concentrate on the PPO-based Deep
Reinforcement Learning (DRL) to facilitate adaptive,
efficient, and safety-based test case generation in AVs. Key
contributions of the paper are as follows:

e Introduced a PPO-based framework for adaptive test
case generation in AV simulations.

Formulated scenario generation as a Markov Decision
Process (MDP) to optimize failure-inducing test cases.
Enhanced safety-critical scenario coverage by
integrating DRL into the testing pipeline.

Achieved a 38% improvement in fault detection rate
over existing test generation methods.

Validated framework performance using high-fidelity
simulations targeting perception, planning, and control
modules in AV systems.

. RELATED WORKS

Test generation based on a rule and scenario library has
been a popular technique in early AV-based validation. Such
methods are based on manually specified traffic policies,
professionally defined scenarios, or prescribed combinatorial
sets of parameters to test the behavior of the system in known
driving conditions. Although these approaches are
interpretable and easily applicable, they have low scalability
and subpar generalization [22]. Hand-operated scenario
libraries are limited by human assumptions by nature and
rarely represent the rare, compound, and emergent safety-
critical scenarios caused by complex vehicle interaction.
During the process of moving AV systems to open-ended and
uncertain environments, rule-based testing has not been found
to be adequate in unearthing unforeseen failure modes [23].

Search-based and optimization-based testing methods have



been suggested to enhance coverage of the scenario by
performing a systematic search of the scenario parameter
space. Other popular techniques are genetic algorithms,
particle swarm optimization, and Bayesian optimization,
which are applied to find the failure-causing inputs by
maximizing the risk or violation measures specified by the
user [24]. These techniques have proved to be effective in
revealing the corner cases in the simulation environments.
They usually, however, depend on handwritten fitness
functions, handwritten representation of a static scenario, and
offline optimization, which hinder their dynamism in dealing
with changes in system behaviour. Search-based algorithms
typically have difficulty in scaling to high-dimensional
continuous spaces, and can tend to prematurely underscore
local optimality [25].

Adversarial scenario generation and robustness testing are
concerned with identifying vulnerabilities in perception and
decision-making modules by adding small but specific
perturbations to sensor inputs or environmental parameters.
Adversarial attacks using gradients and falsification methods
have been used to detect unsafe behaviours in neural network
constituents and closed-loop control systems [26]. Although
these methods yield important information on the sensitivity
of models, they are generally component-based or a partial
observer of a system. Consequently, they can miss the failure
modes due to long-term interactions, temporal dependencies,
or multi-agent dynamics that appear in the driving situation in
the real world [27].

The test case generation based on RL has received growing
popularity because of its sequential decision-making process
representation of scenario generation. Challenging traffic
behaviors, adversarial agents, and environment settings that
are maximally likely to cause collisions or safety violations
have been generated by RL agents. Value-based algorithms
(DQN or actor-critic (A3C) algorithms were the most used in
early studies [28]. Despite potential advantages, such methods
are typically unstable to training, inefficient to explore, and
sensitive to reward design, especially in high-dimensional and
continuous simulation tasks such as autonomous driving. Such
constraints restrict their use to scalable and reliable AV safety
validation [29].

In contrast to existing RL-based testing systems, the
proposed one uses PPO to attain stable and sample-efficient as
well as scalable scenario generation. In contrast to acting on
top of value or asynchronous action critic, such as PPO, policy
updates are limited to avoid the destructive policy update,
leading to robust training in challenging driving conditions.
The given framework is specifically focused on system-level
safety-critical event discovery, where scenario parameters are
dynamically adjusted to observed closed-loop behaviors as
opposed to fixed risk measures. This can be used to better
explore rare and high-impact cases, better test coverage, and
better fault detection than existing RL-based and optimization-
driven testing strategies. Therefore, the PPO framework is an
important breakthrough in adaptable, learning-based AV test
case generation.

3. PROBLEM FORMATION

Test case generation for AVs is a complex task that aims to
expose failures in the perception, planning, and control
modules under diverse and challenging driving scenarios. The
goal is to automate this process using an RL agent that
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interacts with a simulated driving environment to generate
scenarios that maximize the likelihood of system failure or
sub-optimal behavior. This can be modeled as an MDP defined
by the tuple:

M = (S,AP,R,y) (1)
where, S: Set of states representing environment and vehicle
conditions (e.g., weather, traffic, road layout). A: Set of
actions (eg, modify speed, insert pedestrian, change visibility).
P(s’|s, a): Transition probability from state s to s' after action
a. R(s,a): Reward function that quantifies test case
effectiveness (e.g., system failure, safety violations). y €
[0,1]: Discount factor that balances immediate vs. future
rewards. The objective is to learn a policy my = (als) that
maximizes the expected cumulative reward:

T
1) = Ex, [Z VRGs: a»] @
t=0

To optimize this policy, the PPO algorithm is used. PPO
updates the policy by solving:

LEUP(0) = E,[min(r.(0)A,, clip(r,(8)1 — &

+OA,)] ®)

mg(at|se)
79 44 (atlst)
new and old policies. A, is the advantage estimate at time step
t. € is the clipping parameter to prevent large updates. The
reward function R = (s,a) is designed to encourage
generation of challenging test scenarios:

where, 1.(0) = is the probability ratio between

R(s,a) = A Risk(s,a) + A,Coverage(s) )
— AzSimilarity(s,T)

where, Risk(s,a): Likelihood of causing failure or unsafe
behavior. Coverage(s): Contribution to overall scenario
diversity. Similarity(s,T) : Redundancy with respect to
proposed test suite T. 44, 1,, 13: Weighting coefficients.

4. MATERIALS AND METHODS

The proposed system integrates a DRL agent trained via
PPO within a simulation-based autonomous driving
environment, such as CARLA Simulation (CARLA) or LGSVL.
The simulator models real-world conditions, including traffic,
pedestrians, road layouts, weather, and vehicle dynamics. The
autonomous system's behavior control decisions, path
planning, and safety violations are continuously monitored.
The problem is formulated as an MDP, where the agent
modifies scenario variables (e.g., adding obstacles or altering
visibility) and receives rewards based on system responses
shown in Figure 1. PPO updates the policy mapping states to
scenario modifications, aiming to identify failure-prone or
safety-critical events. The reward function emphasizes
scenario diversity, novelty, and risk (e.g., near-miss detection).
A fully connected A3C framework with a CNN processes
sensor data like camera and LiDAR inputs. Scenario
effectiveness is evaluated by comparing fault detection rates,
system resilience, and diversity against baseline methods such
as random scenario generation and rule-based approaches.



To develop a robust and reliable mandatory lane change
method, this study proposes an RL approach based on PPO.
The following sections will describe the system architecture,
state space, action space, and reward components of the

proposed decision-making framework. Figure 1 illustrates the
overall system structure designed to support autonomous lane
changes. The system comprises two main components: A
simulation environment and a learner architecture.
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Figure 1. Proposed architecture

The learner component enables high-level decision-making,
accesses vehicle data embedded in the road infrastructure, and
takes into account vehicle dynamics generated within the
simulation environment.

4.1 Dataset description

The dataset used in this study was generated using a high-
fidelity autonomous driving simulator like CARLA or
LGSVL, designed to replicate real-world scenarios shown in
Table 1. It includes features across behavioral, vehicular,
environmental, and infrastructure dimensions. Environmental
conditions (e.g., rain, fog, and lighting), road types, and
dynamic elements like pedestrians or debris simulate high-risk
situations. Sensor inputs such as LiDAR and RGB images
support perception tasks, while real-time vehicle data tracks
performance. Binary flags indicate events like collisions or
lane departures. Each scenario is tagged with a unique ID and
outcome label, enabling robust training and evaluation of the
PPO-based DRL test scenario generator.

4.2 State and action space

The lane-change decision-making process considers the
states of five vehicles, consisting of the ego vehicle and four
surrounding vehicles. These vehicles jointly influence the
Autonomous Vehicle’s decision to keep its lane or execute a
lane change. The state space captures the kinematic and
positional information required for safe and efficient
maneuvering, while the action space includes discrete lateral
and longitudinal decisions that jointly define the agent’s

control policy. A summary table of state and action space is
shown in Table 2.

Table 1. Dataset description for simulation-based test case
generation

Feature Category
Environmental
Conditions

Description

Clear, Rainy, Foggy, Cloudy, Night, Day

Urban, highway, rural
Number of lanes (1 to 6)
Number of vehicles per km
Number of pedestrians per block or
meter
Vehicle, animal, debris, bicycle
Static moving, erratic
AV speed in km/h
30 coordinates of the vehicle in the
simulation map
Front-facing camera image
30 spatial perception data
Indicates if a collision occurred

Road Infrastructure

Traffic Elements

Dynamic Obstacles

Vehicle State

Sensor Data

AV System Indicates if the vehicle left its designated
Performance
lane
Unique identifier for each generated
scenario

Test Case Metadata Indicates if the scenario led to AV failure

or suboptimal behavior

4.3 State and action space for lane change decision in
Autonomous Vehicles

The autonomous driving scenario consists of the following
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vehicles:
Ego Vehicle: C,
Surrounding Vehicles:
Co: Leading vehicle in the existing lane
C;: Leading vehicle in the target lane
C,: Following vehicle in the existing lane
C,: Following vehicle in the target lane
This notation is used consistently throughout the manuscript
and matches the simulation implementation.
State Space S
S is composed of 21 continuous variables, derived as
follows.
Ego Vehicle State

— (i lat
SCe - {le've'ae' YVes Ve

&)
where, i,: longitudinal position; v,: longitudinal speed; a,:
longitudinal acceleration; 1y, : lateral position; v4t: lateral
speed
Surrounding Vehicle State S; (4 variables each)
For each C, € {C,, Cy,C,, C3}
SCx = {dfel' VUx) Qy» yx}

(6)

where, d7,;: relative distance to ego vehicle; v,: longitudinal
speed; a,: acceleration; y, : lateral position. Thus, the total

state space is:

3
S=SCQ+ZSCE=5+(4><4)

x=0

(7

= 21 continuous variables

Action Space (A): The action space 1 includes lateral and
longitudinal commands for the agent:

Lateral Actions 4,,; € {0, 1, 2}: 0: Lane keeping; 1: Initiate
lane change; 2: Abort lane change maneuver.

Longitudinal Actions A, € {0,1}: 0: Follow existing
lane leader; 1: Follow target lane leader

The combined high-level action space is:

A=A X Along

Total of 6 discrete action combinations.

Table 2. Summary of state and action space components for
lane change decision

Component Variables Description
Ego Vehicle 5 Position, speed, acpeleratlon,
lateral motion
Each Surrounding Relative Q1stance, speed,
. 4 x4 acceleration, and lateral
Vehicle -
position
Tgtal St? te 21 Continuous
Dimension
Lateral Actions 3 Keep, change, abort
Longitudinal Follow the existing or target
Actions leader
Total Actions 6 Discrete

4.4 Test case generation objective (with Proximal Policy
Optimization)

To generate optimal test cases using PPO, the goal is
to find a policy mg(a|s) that maximizes the expected
cumulative reward: J(0) = Er,[X{-o ¥ R(s;, ar)]

)

where, s; € S: state at time t; a, € A: action taken at time t;
R(s; a;): reward function; y: discount factor. The reward
function is designed to encourage safe and efficient lane
changing while avoiding collisions:

R(s¢,ap) = MTsape (St @) + AaTsmooen (St r) (10)
- A3rrisk (St' at)
where, T5qf.: reward for maintaining safety distance; Tsmooen:
reward for smooth transitions (IDM-based); 7;.;5;: penaity for
collision or abrupt maneuvers; A, , 4, , A3 : weighting
coefficients. The low-level controller uses a modified
Intelligent Driver Model (IDM) to execute the longitudinal
behavior smoothly based on high-level PPO decisions.

Where d is negative while the car is departing and positive
when it is moving toward the center. In Figure 2, the state
formulation is displayed. Everyone employs every vehicle's
speed for the activity. Ultimately, an 8-dimensional action

8 space and a 16-dimensional state space are built.
= {(0,0), (0,1, (10), (1,1), (2.0), (2.1)} ® P

Center point of . V2 Center point of

: path of type ‘DL’ ' Center point of ! path of type ‘DR’

Sou = [-d2.V2] , . Spy=[-d2.¥2] - path of type “DU H ;
d2 ’ , agf : I;S,_,R = [-d2.V2]
Pl " !
V2
pi| o =141V1] @t e a1 /P -1 Sor = [dLV1]

Figure 2. State formulation

4.5 Reward function

The reward function in the proposed PPO-based test case
generation framework is carefully crafted to balance comfort,
efficiency, and safety-the three core objectives in designing an

intelligent and human-like lane change behaviour. The total
reward at time step t is defined as:

R(st' at) = Alrcomfort (St' at) + )lzrefficiency (St' at)
- /13rsafety(st' at)

(11)
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where, A;, 1,, A; € R*: are the weights assigned to each
COMPONENt. Teomrores Tefficiencys Tsafety : Normalized scalar
values representing rewards/penalties.

Comfort Evaluation ropfo. : Minimizes jerk (rate of
change of acceleration) to ensure smooth driving experience:

Tcomfort = _(aljlatl +.3|jlong|) (12)

i __daqt . L __dajong
where, fjq = > lateral jerk; jiong = e

longitudinal
jerk; a, B: comfort sensitivity factors.

Efficiency Evaluation?ficiency: Encourages timely and
goal-oriented lane changes with minimal deviation from the
target lane:

_ target
refficiency - _(nlttravel + Uzdrez

) (13)

Where, t; qpe;: time taken to complete the lane change;
dL89%: relative distance to the center of the target lane; 7y,
7, efficiency weighting parameters.

Safety Evaluation rg,¢.q,: Penalizes risky behaviour such

as collisions or near miss events with surrounding vehicles:

Tsafety
_Rl
= _RZ

if collision occurs
if near collision (headway below threshold)
0 otherwise

(14)

where, R, R, safety penalty constants. Near collision if time-
to-collision (TTC) < Threshold (e.g., 2.5 sec).

The incentive function is used to assess every evaluation
scenario in order to ascertain whether the PPO agent learns to
optimize convenience, effectiveness, and safety shown in
Table 3. Low-jerk, prompt, and collision-free lane changing
behaviors are encouraged by the reinforcement learnt strategy.

Table 3. Test case definitions based on the reward function

Test Case Scenario Description Expected Comfort Efficiency
1D P Risk Violation Deviation
TC_LC 001 Lane change in foggy COIldlthO:lS with high-speed oncoming High Low Moderate
TC _LC 002 Aborted lane change due to merging vehicle in blind spot Medium Medium High
TC LC 003 Smooth lane change in low traffic with no interference Low Low Low
TC _LC 004 Late lane change on a highway exit ramp High High High
TC LC 005 Lane change in dense traffic with slow reaction time High Medium Medium

4.6 Proximal Policy Optimization

The PPO method is used as the baseline in this study due to
its ease of implementation and consistent policy improvement.
Although PPO is based on Trust Region Policy Optimization
(TRPO), it is more efficient because of two key innovations:
Generalized Advantage Estimation (GAE) and an
unconstrained surrogate objective function.

4.6.1 Unconstrained surrogate objective function

To achieve stable and consistent policy improvement,
TRPO limits policy updates to avoid significant deviations.
PPO streamlines this approach by using a clipped surrogate
objective function, which penalizes updates that stray too far
from the existing policy, eliminating the need for complex
constraints. The PPO objective function is defined as:

Jppo(8) = Es,a[min(pt(H)At' clip(p:(6)1 — €, (15)
+e)A,)]
mg(sla)
6010 (510)
new and old policies. A;: The estimated advantage at time step
t. € is a small hyperparameter (e.g., 0.2) that restricts the
update range.

where, p.(0) = the probability ratio between the

4.6.2 Generalized advantage estimation

The advantage function is critical for calculating policy
gradients in PPO. It is estimated using the difference between
the action-value function and the state-value function:

A"(st, ag) = Qn(st' as) =V (s, w) (16)

where, Q7(s;, a,) is the estimated action-value function.
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V (s¢, w) is the estimated value of state s, with parameters w.
Monte Carlo Estimate (used in TRPO):

0"Gea) = ) ¥t an
I=t
This estimate is unbiased but exhibits high variance.
One-Step Bootstrapping (used in A3C):
Q" (st ap) =1 + YV (Ses1, W) (18)

This method has lower variance but introduces bias. To
strike a balance between bias and variance, GAE uses a
weighted sum of multi-step temporal difference errors:

(sua) = ) y2= s (19
I=t
where the temporal difference (TD) error §; defined as:
6 =m+yV (s, w) —V(s,w) (20)

Here, 1 € [0,1] a hyperparameter that governs the bias-
variance trade-off. A lower A introduces more bias with less
variance, while a higher A does the opposite.

4.7 Intelligent test case generation

The challenge of identifying program flaws through
execution on carefully selected input data is a central focus in
testing. A program P is considered to contain an error if its
output does not match the expected requirements or is deemed
incorrect by the tester. Verifying output correctness and



generating relevant test scenarios requires some knowledge of
the correct program, which may or may not be sufficiently
complete. Ideally, program testing involves using input/output
samples to demonstrate or probabilistically validate the
program's equivalence to a correct version or executable
specification. Testing DRL agents remains in its early stages.
Similar to DL agents trained through supervised learning,
DRL agents are also susceptible to adversarial attacks that
generate conflicting scenarios. The approach for DRL differs
significantly, as it emphasizes configuring the environment for
each scenario encountered by the agent, rather than altering
raw sensor inputs. The sampling strategy used as a baseline in
the existing study closely aligns with this approach. Empirical
findings demonstrate that the search-based method performs
better than others in inducing a broader and more diverse range
of failures across multiple case studies. A method has been
proposed to assess the adaptability of DRL agents by
reinitializing learning in environments different from those
encountered during the initial training phase. This enables the
construction of an adaptation frontier distinguishing between
scenarios in which the agent adapts successfully and those in
which it fails.

Although other methodologies also generate new
environmental configurations, the existing approach does not
retrain the agent. Instead, the focus is on testing to identify
vulnerabilities in the agent during evaluation. Explored
training and testing DRL agents in procedurally generated
environments. Specifically, their study utilized a set of
algorithmically generated 3D mazes to train agents, followed
by a local search process that modified the mazes during
evaluation based on agent performance. This technique
produced out-of-distribution configurations not represented in
the original training dataset. In contrast to directly testing
agent performance in these altered environments, the existing
study employs a failure predictor, a proxy representation of the
environment is to reduce the computational cost of the search.

In more complex environments than mazes, it becomes
prohibitively expensive to execute the DRL agent within the
environment at every search iteration. To address evaluation
challenges, a recent search-based strategy was proposed to
assess the quality of DRL agents. Their approach involves
sampling the environment to identify a reference trace that
successfully solves the RL task. This trace is constructed using
a depth-first search algorithm and consists of all states not
pruned during the search’s backtracking process.

The key aspects being measured include fault detection
effectiveness, scenario diversity, safety-critical coverage, and
comfort in vehicle trajectories. The null hypothesis ( Hy)
assumes that the PPO-generated test cases are no better or
inferior in performance compared to baseline methods (such
as random or rule-based test generation).

This is expressed mathematically as:

Hy: Uppo < Hpaseline

where, u represents the average effectiveness score, which is
a weighted sum of fault detection rate F, scenario diversity D,
and safety event coverage C. These weights wy, w,, w; are
chosen based on the Importance of each factor to the test
generation goals.

In contrast, the alternative hypothesis (H;) asserts that the
PPO-based framework outperforms the baseline, aiming to
generate more useful, diverse, and fault-revealing test cases:
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Hy: Uppo < Upasetine

To deepen the analysis, sub-hypotheses are introduced:
H;.1 checks whether PPO-generated cases trigger
more faults, indicating stronger stress-testing
capability.
H;.2 evaluates behavioral diversity using variance
across features like traffic density, weather, and
obstacle types.
H,.3 measures coverage of safety-critical scenarios,
ensuring the policy does not miss important corner
cases.
H,.4 focuses on trajectory comfort, using mean jerk as
a proxy for smoothness in the vehicle's movement.
Each equation ties directly to a measurable property of the
system, enabling objective evaluation using statistical tests
(e.g., t-test or Wilcoxon test) over generated test data. The
reward function in the PPO model encourages policies that
optimize these objectives, and testing these hypotheses
validates that the optimization successfully aligns with real-
world testing needs.

4.8 Proximal Policy Optimization-driven Deep
Reinforcement Learning framework for intelligent test
case generation in Autonomous Vehicles

Objective: Maximize the expected cumulative reward for
generating test cases that challenge AV's decision-making
under safety, efficiency, and comfort constraints.

Input: Environment model € ; Initial policy network
g (a|s); Value network V (s; w); Hyperparameters: Discount
factory y, GAE factor A, Clipping threshold €, batch size B,
epochs U

Output: Optimized policy my for generating effective test
cases

Initialization: 1. Randomly initialize policy parameters 6
and value function parameters w; Initialize replay buffer B «
)

Step 1. Collect Environment Rollouts

Generate episodes using the existing policy g and collect a
batch mathcal:

e2y)

Step 2: Estimate the Temporal Difference (TD) Error
For each step t, compute:

D = {(s¢, a, 1, 5t+1)}1tg=1

8 =1t +YV(serr, w) — Vs, w) (22)
Step 3: Generalized Advantage Estimation (GAE)
2 (23)
t=0

This balances bias and variance in the estimation of the
advantage function.
Step 4: Value Function Target
V,=A, +V(s,w) (24)
Step 5: Policy Update with PPO Surrogate Objective
Define the probability ratio:



7o (aclse)

pe(0) = ECAD)) (25)
Clip the objective to avoid large policy updates:
Jepo(8) = Egq[min(p.(6)A,, clip(p,(0)1 — €,
+)d,)] (@)
Update policy network:
6 < 6 + agVoJppo(6) 27)

Step 6: Value Network Update: Minimize squared error
between predicted and target value:

v .
Jow) =5 D (Vsew) = 7,) )
t=1
Update value network:
W e w = a,V,Jy (W) (29)

Step 7: Repeat Steps 1-6: Repeat for multiple iterations
until convergence or maximum episodes reached.

Reward Function Design: The reward R(s;, a,;) balances
three objectives:

R(st' at) = Alrcomfort + Azrefficiency + /13rsafety (30)

With the help of this method, the PPO agent may learn a
lane-change decision policy that emphasizes realism, variety,

and edge-case exposures while producing difficult yet secure
test scenarios for self-driving vehicles.

4.9 Test case generation

The testing process begins with analysis, identifying key
factors—such as ego vehicle acceleration—that influence
driver assistance technologies. Based on these criteria,
relevant test scenarios are developed. The third phase involves
executing these scenarios in a Software-in-the-Loop (SiL)
simulation environment. In the evaluation phase, scenario
criticality is assessed using metrics like time-to-collision,
which serve as reward signals for the DRL agent to guide
scenario refinement. The exploration phase follows,
leveraging prior knowledge or probing new environmental
conditions. Parameter adjustment is performed using a e-
greedy algorithm that balances optimal and random actions to
improve scenario diversity. Each action corresponds to
modifying a parameter, prompting the generation of a new test
instance, and restarting the cycle. Finally, the save critical test
cases phase retains high-impact scenarios for future analysis.

Step 1: Analysis: This initial step identifies the key
influencing factors on the automated driving function under
investigation, these may include: Speed of the ego vehicle V,;
Relative positions and velocities of surrounding vehicles
{vy, dy}; Road curvature p, weather ¥, and traffic density T.
These parameters form the input feature vector i € R™ which
defines the scenario space.

Step 2: Test Case Generation: Using the parameters
identified in Step 1, initial test scenarios are generated. The
test cases are defined as a vector:
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P ={v, vy, dy,p,W,T,..} (31)

These parameters are input into a simulation environment.
Initially, parameter values can be chosen randomly or based
on predefined distributions, as the RL agent will iteratively
refine them.

Step 3: Test Run Execution: Each test case from Step 2 is
executed using a SiL simulation framework. The simulation
simulates vehicle dynamics, sensor models, and the
autonomous driving software stack. During this phase, key
runtime metrics are collected, such as: Time-to-Collision
TTC; Lane deviation; Braking and acceleration behavior.

Step 4: Test Evaluation: The criticality of each scenario is
evaluated using metrics like Time-to-Collision (TTC):

drel

TTC =

where Vrelt = Ve — Upbstacle (32)

VUrel

A reward function is constructed to encourage the
generation of dangerous but realistic cases:
R(s;, a.) = —aTTC™! + Bcomfort penalty (33)
Scenarios with low TTC values are rewarded more as they
are closer to critical conditions.
Step S: Exploration: Using the PPO RL agent, new test

scenarios are explored. To balance exploration and
exploitation, an epsilon-greedy strategy is used:

a
random (4),

{ with probability e
argmax, Q(s,a),

with probability 1 — €

(34

where, Q (s, a): Estimated action-value; A: Action space, i.e,
parameter modifications; € € [0, 1]: Exploration rate
(typically decaying over time).

Step 6: Parameter Change: Based on exploration, test
parameters are adjusted. An action here refers to increasing or
decreasing a parameter:

P, = P, + AP, where AP € {-§,0,+6} (35)

This modifies the scenario to potentially make it more
critical. For example: Increasing vehicle speed v, ; Decreasing
following distance d,; Changing road curvature p. The newly
generated parameter set becomes the next test case.

Step 7: Save Critical Test Cases: Scenarios that meet or
exceed a criticality threshold (eg, TTC < 2s) are stored for
future safety validation and regression testing. A critical test
case repository ensures: Reusability in future training and
validation. Coverage of edge conditions and failure-prone
cases. Save if: R(S;, a;) > Rinreshold-

The cycle repeats by feeding back the modified parameters
into Step 2, forming a closed-loop system for intelligent test
case generation. The RL agent continuously adapts its strategy
to find edge cases that challenge the autonomous driving stack,
while ensuring diversity, realism, and safety-critical exposure.

5. SIMULATION SETUP

To evaluate and generate critical test scenarios, a simulation
system replicates realistic highway driving using SiL
architecture. It combines a physics-based vehicle dynamics



model with a perception and control stack typical of AVs. The
scenario involves five cars: the ego vehicle and four
surrounding vehicles in existing and target lanes. A high-level
decision module, trained with PPO, governs the ego vehicle’s
behavior, while low-level lane-change heuristics and a
modified Intelligent Driver Model (IDM) execute actions
shown in Figure 3. The state space includes 21 features
capturing kinematics and relative positions, while the action
space defines discrete longitudinal and lateral maneuvers.
Multiple episodes are simulated with varied traffic, road
curvature, and weather to ensure diversity. Key metrics like
time-to-collision and trajectory smoothness are logged and
used to refine the PPO policy. Simulations are reproducible,
using fixed random seeds and standardized inputs to ensure
consistency in evaluation.

To guarantee consistent and effective learning, the PPO
framework for AVs test case creation makes use of precisely
calibrated hyper parameters shown in Table 4. Future reward
relevance and learning variance are balanced by a GAE value
of 0.95 and a discount factor of 0.99. Safe policy changes are
ensured by a clipping threshold of 0.2. The policy and value
learning rates are set at 3 x 10*and 1 x 10> respectively. Ten
training periods and a batch of 2048 steps are used in each PPO
update. Exploring is made possible via a g-greedy approach
with € = 0.1. These environments encourage the creation of a
variety of crucial situations for assessing and testing self-
driving cars. The durations of MA-PPO and PPO-DRL
episodes first rise quickly before leveling off is shown in
Figure 4. This may be explained by the fact that the learnt
strategy initially primarily concentrates on avoiding collisions,
as doing so would result in a significant negative reward. The
lengthy episode duration results from the cars' tendency to wait
or travel extremely slowly until there is no chance of an
accident.

Figure 3. Simulation network

With this configuration, agents can be deployed in various
traffic conditions using different PPO- DRL techniques, state

representations, and reward structures. A vehicle scope with
Agheaa = 2 and Apeping = 1 was used in the studies. This
configuration enhances the agent’s anticipation capability and
ensures continuous visibility of all lanes on a three-lane
roadway. The unsignalized junction had a range of 200-220
meters. Although numerous scenarios are typically simulated
in the field, the existing study focused specifically on the
performance of the leading AVs at an unsignalized
intersection. When approaching the intersection, platooning
vehicles proceeded straight in four distinct directions. AV
penetration rates were evaluated in 10% increments, ranging
from 1% to 100%. All vehicles making left turns or changing
lanes at the incomplete intersection were excluded from
consideration. The scenario involving the leading AVs at the
non-signalized junction is illustrated in Figure 5. To highlight
the effectiveness of the leading AV scenario, comparisons
were made with other configurations, including a leading
human-driven vehicle scenario and an all-human-driven
vehicle scenario. The comparison of these experiments at the
non-signalized intersection is presented in Figure 6.

Table 4. Hyper parameter settings for PPO-based test case

generation
Parameter Symbol Value
Discount Factor y 0.99
GAE Parameter A 0.95
Clipping Threshold € 0.2
Learning Rate (Policy) ag 3e
Learning Rate (Value) Ay le3
Number of Epochs per
Update u 10
Batch Size B 2048
Mini-batch Size - 64
Total Timesteps - 1,000,000
Exploration Rate £ 0.1
PPO Update Frequency - Every 2048 steps
Max Episode Length - 1000 steps

- Human-driven vehicles

@ Automated vehicles

Figure 4. Illustration of driving scenarios: (a) Highway
driving; (b) Highway merging

@ Automated vehicles

Figure 5. Autonomous Vehicle (AV) experiments at an unsignalized intersection: (a) Mixed-autonomy traffic with AV
penetration rates varying from 10% to 90% in 10% increments; (b) Fully autonomous traffic with 100% AV penetration
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‘ .Automated vehicles \
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@ Automated vehicles

Human-driven

Figure 6. Experimental comparison at an unsignalized intersection: (a) Scenario with 100% human-driven vehicles (0% AV
penetration); (b) Scenario with a leading human-driven vehicle and varying Autonomous Vehicle (AV) penetration rates from
10% to 90% in 10% increment

Random samples from each univariate distribution were
initially combined to generate a trial scenario. As shown in
Figures 7(a) and (b), the opponent vehicle initiated a lane
change ahead of the ego vehicle and collided with its rear,
though this interaction did not reflect real-world data. In the
second experiment, a multivariate normal distribution fitted
via Kernel Density Estimation (KDE) captured inter-variable
relationships. Figures 7(c) and (d) show a more realistic side-
impact crash, where the opponent vehicle, just behind the ego
vehicle at time step 21, collided during a lane change. Figure
7(e) demonstrates that the PPO-DRL method generated
realistic trajectories. A cut-in collision was detected when the
opponent vehicle underestimated the merge gap. As seen in

Longitudinal displacement

Longitudinal displacement
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Figure 7(f), the opponent changed lanes at time step 4 and
impacted the ego vehicle by time step 21.

The proposed PPO-DRL-based test case generation
framework demonstrates superior performance compared to
four existing approaches shown in Figure 8. It achieves an
accuracy of 96.8%, indicating strong classification between
critical and non-critical scenarios. With a recall of 97.2%, it
effectively detects most true critical cases, while its 95.4%
precision confirms minimal false alarms. The Fl-score of
96.3% highlights a balanced performance in both precision
and recall. These results emphasize the effectiveness of
integrating RL with PPO to generate diverse, realistic, and
high-risk scenarios for AVs testing.
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Figure 7. Testing Autonomous Vehicle (AV) and ego vehicles using proposed system based on 3 scenarios
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Figure 8. Performance measures

Table 5. Performance measures (time to collision, coverage,
scenario diversity, execution time)

Time-to- Coverage Scenario  Execution
System Collision (%) Diversity Time
(s) (Entropy) (s/case)
Proposed
PPO-DRL 1.4 94.2 0.89 1.2
System
Random
Scenario 3.6 62.3 0.48 0.6
Generation
Rule-
Based 2.9 705 0.52 0.8
Heuristic
Approach
GA-Based
Test 2.1 81.6 0.65 2.0
Generation
DQN-
Based Test 1.8 88.7 0.74 1.6
Generation

The proposed PPO-DRL-based test case generation
framework demonstrates strong performance across key
metrics shown in Table 5. It achieves the lowest average Time-
to-Collision (TTC) of 1.4 seconds, highlighting its ability to
generate highly critical scenarios. With maximum scenario
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coverage (94.2%) and high scenario variety (entropy = 0.89),
it effectively explores diverse driving situations.

The proposed PPO-DRL system achieves the highest
critical case rate of 41.8%, demonstrating its strong ability to
generate high-risk scenarios that effectively challenge AV
systems shown in Table 6. It also records the highest
cumulative reward score of +37.6, reflecting an optimal
balance among efficiency, comfort, and safety-criticality. In
contrast, random  scenario  generation  consistently
underperforms, with the lowest critical case rate (12.4%) and
a negative reward score (—15.3). While DQN offers moderate
improvement, it still falls short of PPO’s performance.

Table 6. Comparison of the critical case ratio and reward
score of proposed and existing systems

Critical Case Reward Score

System Rate (%) ®R)
Proposed PPO-DRL 41.8 376
System
Random Sc.enarlo 12.4 _15.3
Generation
Rule-Based Heuristic 186 4.8
Approach
GA-Baseq Test 26.9 +182
Generation
DQN-Basefl Test 337 127.4
Generation




The proposed PPO-DRL architecture demonstrates
excellent adaptability, achieving a maximum training
accuracy of 98.1% and testing accuracy of 96.8% shown in
Figure 9. This indicates strong generalization and effective
learning of critical scenario features. In contrast, random
scenario generation yields the lowest accuracy, reflecting poor
learning capability. While rule-based and GA-based methods
show moderate improvements, they exhibit noticeable gaps
between training and testing performance. The DQN-based
model performs better in consistency and precision but reaches
only 92.1% testing accuracy. These results confirm the PPO
framework’s effectiveness as a robust, intelligent approach for
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generating high-quality test scenarios in AV environments.
The proposed PPO-DRL-based system achieves the lowest
testing loss (0.022) and training loss (0.014), demonstrating
superior adaptability and learning efficiency shown in Figure
10. These low values indicate consistent performance across
unseen scenarios and effective modelling of complex
relationships needed for generating critical test cases. While
the DQN-based model performs better than random
generation, it still incurs higher losses than PPO-DRL. Rule-
based and GA-based methods show moderate results. Overall,
the PPO-DRL framework proves effective in learning optimal
test generation strategies while minimizing overfitting.
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Figure 9. Comparison of training and testing accuracy
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Figure 10. Comparison of training and testing loss
6. CONCLUSIONS effectively uncovers safety-critical scenarios, reflected by a

The implementation of the PPO-DRL framework for
intelligent test case generation demonstrates substantial
progress in AV safety validation. The proposed approach
consistently outperforms existing methods across multiple
evaluation metrics, achieving a testing accuracy of 96.8%, an
F1-score of 96.3%, and a low testing loss of 0.022, indicating
strong generalization capability. Moreover, the framework
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high critical case rate of 41.8%, broad scenario coverage of
94.2%, and high diversity (entropy of 0.89). The reduced time-
to-collision (1.4 s) further highlights its ability to expose
challenging edge cases that stress AV decision-making
systems. Stable policy optimization is ensured through PPO’s
clipped objective and generalized advantage estimation,
enabling reliable learning and refinement. Despite these
strengths, the existing study is limited by its reliance on a



single simulation environment and its focus on specific
highway and unsignalized intersection scenarios, without
direct real-world validation. Future work will address these
limitations by extending the framework to multi-agent traffic
settings, incorporating additional driving scenarios, and
integrating hardware-in-the-loop or real-world testing to
further enhance robustness and practical applicability.
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