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This study investigates the bacterial diversity in spontaneously fermented sourdough
using a novel substrate, modified cassava flour (MOCAF), through DNA metabarcoding
based on next-generation sequencing (NGS) of the 16S rRNA gene. Three sourdough
formulations were evaluated: pure MOCAF sourdough (M1), a composite of MOCAF
and wheat flour sourdough (M2), and wheat-based flour sourdough (M3). MOCAF, a
gluten-free substrate, created a highly selective fermentation environment, enriching
substrate starch-adapted bacterial specialists such as Lactiplantibacillus plantarum and
L. paraplantarum, which were present in all treated sourdough. Notably, Holzapfeliella
floricola was exclusively detected in MOCAF-based sourdough and absent in wheat-
based sourdough (M3). Despite its low leavening capacity, M1 exhibited high acidity (pH
3.64) and a distinct sour aroma (total titratable acidity (TTA) 4.79%), indicating intense
metabolic activity by lactic acid bacteria. While the wheat sourdough exhibited slightly
higher acidity (pH 4.38-3.04; TTA 4-4.97%), the acidification in the M1 was substantial
enough to generate the characteristic sour aroma observed. Cluster analysis and alpha
diversity indices revealed that M1 harboured the highest species richness but with low
evenness, suggesting dominance by a few acid-tolerant taxa. The findings underscore the
potential of MOCAF as an innovative fermentation substrate that can shape distinct
microbial ecosystems. This offers novel opportunities for the development of gluten-free
and functional bakery products characterized by unique fermentation dynamics and
flavor profiles.

1. INTRODUCTION

and Lactobacillus reuteri [7, 8]. The presence of L.
sanfranciscensis is linked to specific environmental

Sourdough fermentation is initiated by mixing flour and
water, where spontaneous fermentation under acidic and
nutrient-stressed conditions promotes the growth of acid-
tolerant lactic acid bacteria (LAB) and resilient yeasts.
Through successive backslopping, a stable and functionally
adapted microbial community emerges, contributing to the
distinctive biochemical and sensory characteristics of
sourdough [1-3]. The metabolic activities of these
microorganisms lead to acidification, flavor development, and
dough leavening [4]. The composition of sourdough
microbiota is influenced by endogenous factors (e.g., flour
type and equipment) and exogenous factors (e.g., temperature
and incubation time), resulting in mature sourdough
dominated by LAB, while yeasts are present in lower
quantities [4, 5]. The microbial composition of sourdough
varies with the ingredients and production conditions.
Spontaneous sourdough made from a single flour type
typically contains fewer than three LAB species [3, 6]. The
most commonly found LAB groups are Lactobacillus
fructivorans, Lactobacillus plantarum, Lactobacillus brevis,
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conditions, whereas L. plantarum and L. reuteri are influenced
by metabolic capacity and environmental stress resistance [9].

LAB are gram-positive, non-spore-forming, and highly
fermentative members of the Firmicutes phylum that dominate
fermented foods. In sourdough, LAB are typically more
prevalent than yeast species [8]. In stable sourdough, the
heterofermentative LAB community is the dominant
bacterium found in the system, especially the Lactobacillus
genus [10-12]. The less dominant genera included Weisella,
Pediococcus, and Leuconostoc, whereas homofermentative
species such as Enterococcus, Lactococcus, and Streptococcus
were more abundant than Weisella spp. [13]. Flour is the
primary source of sourdough microbiota. Different flour types
create selective pressures on microbial communities,
producing unique profiles [14, 15]. Previous research has
explored the use of gluten-free substrates in sourdough
production, such as quinoa, rye, legumes, and cereals [16-19].
However, the application of modified cassava flour (MOCAF)
as a substrate for spontaneous sourdough fermentation
remains underexplored. Consequently, MOCAF, as a local
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carbohydrate source, has a unique starch matrix that offers a
novel substrate that may influence microbial diversity and
fermentation dynamics of sourdough microorganisms because
of performing in a specific environment, warranting further
investigation.

MOCAF is produced through fermentation and supports
food security by providing a local calorie source [20, 21]. It is
created through microbial cell modification, offering
advantages such as high starch bioavailability, reduced
cyanogenic glycosides, and enhanced water-binding capacity
[22]. Its neutral flavours make it suitable for fermentation [23],
but its unique biochemical composition may impose novel
selection pressures on sourdough microbiota [24, 25].
Understanding the influence of MOCAF on microbial
behavior is crucial for optimizing its use in baking. LAB
diversity regulates acidification rate, exopolysaccharide
production, and enzymatic breakdown of starch and proteins,
impacting texture, shelf life, and sensory attributes [26]. Given
the distinctive properties of MOCAF, employing advanced
methodologies such as 16S rRNA sequencing is crucial for
elucidating its effects on sourdough microbiota.

16S rRNA sequencing enables high-resolution microbiome
analysis by targeting hypervariable regions for species
identification [27]. The use of 16S rRNA with Oxford
Nanopore Technology, and analyzed using the centrifuge
classifier represent a significant advancement in microbial
community profiling. Oxford Nanopore Technologies (ONT)
allows for the sequencing of full-length 16S rRNA genes,
which is crucial for accurate taxonomic resolution at the
species level [28, 29]. Microbial community composition was
determined using Oxford Nanopore sequencing followed by
direct taxonomic classification through the Centrifuge
classifier. Consequently, the analytical unit used herein refers
to taxonomically classified reads mapped to the NCBI RefSeq
database, providing a direct representation of microbial
abundance. DNA metabarcoding overcomes culture-based
biases, revealing rare taxa and successional dynamics [30, 31].
It effectively distinguishes flour-derived microbiota from
environmental contaminants [3, 12, 30]. Sourdough substrate
such as MOCAF is shaping unique microbial profiles [5, 14,
15]. Moreover, contamination from the processing
environment may occur [32-35], and both equipment and
sanitation practices significantly influence microbial growth
[36]. While wheat-based sourdough microbiomes are well-
characterized, those derived from alternative flours,
particularly gluten-free substrates like MOCAF, remain
underexplored. Given the unique characteristic of MOCAF
and its underexplored potential in sourdough fermentation,
this study aims to employ 16S rRNA gene sequencing to
elucidate the impact of MOCAF as a single or combined
matrix on the bacterial community structure, diversity, and
function of spontaneously fermenting sourdough, thereby
providing a comparative analysis with traditional wheat
sourdough. It explores how MOCAF influences microbial
composition and fermentation dynamics, providing insights
for developing local gluten-free material and functional bakery
products with tailored attributes.

2. MATERIAL AND METHODS

The study carried out three types of flour substrates to
prepare sourdough: pure MOCAF, a composite mixture of
MOCAF and wheat flour, and pure wheat flour. The
sourdough formulations were designated according to section
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2.1.

High-protein wheat flour was sourced from a local supplier
in Indonesia. Throughout the 17-day fermentation period, all
sourdough samples were monitored daily for leavening
capacity: it was evaluated on a daily basis by quantifying its
rise in the jar: the initial height was documented on day 0,
followed by measurements taken immediately before and 24
hours after each propagation [37], pH, total titratable acidity
(TTA): 1 gram of the sample was homogenized with 10
milliliters of distilled water. This mixture was then titrated
with 0.1 normal sodium hydroxide (NaOH) solution using 1%
phenolphthalein (PP) as an indicator. The endpoint of the
titration was identified by the persistent faint pink color that
appeared [18], and growth rate: cell counts were calculated as
growth rates using de Man, Rogosa, and Sharpe maltose agar.
Samples were diluted appropriately and grown (plated) on
MRS agar media and incubated anaerobically at 32°C for 48
hours [38].

On day 17, further analyses were conducted to assess
organic acid profiles using Fourier Transform Infrared
Spectroscopy (FTIR), simple sugar content using high-
performance liquid chromatography (HPLC), and bacterial
community composition through 16S rRNA gene sequencing.
In microbiome analysis, DNA extraction was performed on
each biological replicate. Then, equal concentrations of DNA
from the three replicates of each treatment were pooled to
create a single composite sample for high-throughput
sequencing. This approach ensured a representative profile of
the microbial community.

2.1 Sourdough preparation and propagation

Three sourdough variants were prepared using spontaneous
fermentation and conventional backslopping techniques over
a 17-day period to establish stable microbial communities. The
first variant (M1) utilized MOCAF as the sole substrate,
initiated by mixing 50 g MOCAF with 50 mL warm water
(40°C) at a 1:1 (w/v) ratio. The second variant (M2) employed
a composite flour blend of MOCAF and high-protein wheat
flour (1:1), while the third variant (M3) used only high-protein
wheat flour. All mixtures were incubated at ambient
temperature (approximately 27°C) for 24 hours under static
conditions to promote indigenous microbial growth.

Each sourdough underwent daily backslopping, where 50%
of the fermented mixture was replaced with fresh flour and
warm water in a 1:2:2 (w/v/w) ratio. The MOCAF-based
sourdough (M1) included an initial three-day aeration phase
before transitioning to daily propagation. Throughout the
fermentation process, pH and ambient temperature were
monitored daily to assess microbial activity and fermentation
progression. This standardized approach facilitated the
development of distinct microbial consortia influenced by
substrate composition.

2.2 Organic acid and simple sugar analysis

The analysis of organic acids in sourdough samples was
conducted using FTIR, covering a spectral range of 400 to
4000 cm™', with scans performed at a resolution of 6 cm™!. The
detected spectra were subsequently examined utilizing
OMNIC software. Monosaccharide concentrations in
sourdough samples were quantified using HPLC equipped
with a 20 mL automatic injection loop and a refractive index
detector (RID 156, Beckman) [39]. Separation was performed
on an ion-exclusion ORH-801 column (300 mm x 6.5 mm,



Interaction Chromatography, France) using 0.001 N H>SOs as
the mobile phase at a flow rate of 0.7 mL/min. Quantification
was carried out using the external standard method based on
calibration curves generated from pure standards. The column
temperature was maintained at 45°C, and analyses were
conducted under ambient conditions.

2.3 Metagenome 16S rRNA sequencing

Genomic DNA was extracted using the Quick-DNA
MagBead Plus Kit (Zymo Research). DNA quality and
concentration were assessed via NanoDrop and Qubit
fluorometry. Full-length 16S rRNA genes were amplified
using universal primers (27F/1492R) and visualized by
agarose gel electrophoresis. Sequencing libraries were
prepared with Oxford Nanopore kits and sequenced on a
MinlION platform. Basecalling was performed using Dorado,
and quality control was conducted with NanoPlot and
NanoFilt. Taxonomic classification was carried out using a
centrifuge with reference indices from the NCBI 16S RefSeq
database (https://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/).

2.3.1 Relative abundance of the microbiota in sourdough

The relative abundance for each sample was calculated
based on the total species observed at the phylum and genus
levels of taxonomic classification.

2.3.2 Alpha diversity of sourdough bacterial microbiota

Relative abundance for each sample was calculated based
on the total number of observed taxa at the phylum and genus
levels. Alpha diversity indices, including Shannon, Simpson,
and Inverse Simpson, were computed using taxonomic
assignments and abundance data to evaluate species richness
and evenness.

Shannon Index (H)
The Shannon diversity index accounts for both the
abundance and evenness of species in a community [40].
H' =¥ (p; xIn p;) (1)
where, p;is the proportion of species i relative to the total
number of species

Simpson’s Index (D)

Simpson’s Index measures the probability that two
individuals randomly selected from a sample belong to the
same species [40].

D =¥ () 2

The value of D ranges from 0 to 1, where 0 indicates infinite
diversity and 1 indicates no diversity.

Inverse Simpson Index (1/D)

The Inverse Simpson Index is the reciprocal of Simpson’s
Index, providing a measure of diversity where higher values
indicate greater diversity [40].

1/D = 1/X(p) )
2.4 Data analysis

Microbial diversity was assessed using Chao and Simpson
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indices, while species evenness and richness were visualized
via Pavian and RStudio (v4.2.3). Multivariate analyses,
including PCA and PCoA, were performed on normalized
LAB data to explore microbial community structure.
Spearman correlation analysis was applied to dominant
bacterial taxa (> 5% relative abundance) and sourdough
physicochemical parameters (pH, TTA, leavening capacity,
LAB growth rate). All statistical analyses were conducted
using R and Python environments.

3. RESULTS AND DISCUSSION
3.1 Leavening capacity

Leavening capacity, a key indicator of dough gas retention
and final bread texture, was lowest in MOCAF sourdough
(M1) due to the absence of gluten, which limits CO:
entrapment despite high acid production. In contrast, wheat
flour sourdough (M3) showed the highest volume expansion,
supported by gluten and fermentable sugars (Figure 1), while
the composite sourdough (M2) exhibited a moderate rise,
reflecting the combined effects of both substrates [41, 42]. The
presence of gluten in wheat flour allows the formation of an
elastic matrix that effectively retains gas, leading to significant
dough rise [43].

However, MOCAF relies on the hydration of its less elastic
fiber to provide structure, rather than forming an elastic gluten
network. Its high fiber content may slow down or inhibit
microbial growth [44] and affect the availability of simple
sugars for fermentation. Simple sugars such as glucose serve
as effective substrates for yeast, and their limited presence
may restrict CO: production. Inadequate CO: retention in
MOCAF sourdough results in insufficient dough rise.
Consequently, combining MOCAF with wheat flour helps
form a gluten matrix that improves dough volume, though not
as ideal as pure wheat sourdough; it performs better than
MOCAF alone.

3.2 pH and total titratable acidity

Lactic acid bacteria (LAB) produce organic acids such as
lactic and acetic acid, which lead to a gradual decrease in pH
during the fermentation process (Figure 2). Conversely, TTA
tends to increase over time due to the accumulation of these
acids (Figure 3). The most significant pH reduction was
observed in the MOCAF sourdough (M1), likely due to the
dominance of heterofermentative LAB known for their high
acid production capacity [45, 46]. Organic acids not only
lower pH but also contribute to dough structure enhancement
through protein denaturation and starch gelatinization [47, 48].

MOCAF sourdough (M1) exhibited rapid acidification due
to its modified starch structure, which initially provided
fermentable sugars and later retrograded into resistant starch,
leading to pH stabilization near the pK, of lactic acid [37, 49].
In contrast, wheat flour sourdough (M3) showed slower
acidification and greater microbial diversity due to intact
starch and gluten [50, 51], while the composite sourdough
(M2) demonstrated moderate acidification and buffering
effects from wheat components, reflecting substrate-driven
microbial ecology and selective enrichment in MOCAF
sourdough [4, 50-52].
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Figure 1. Leavening capacity during the spontaneous fermentation sourdough period (17" day)
M1: MOCAF sourdough, M2: composite MOCAF and wheat flour (1:1), M3: wheat flour sourdough
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Figure 2. pH value of sourdough during the fermentation period (17" day)

2748



—e— Mocaf sourdough (M1)
—=— Mocaf-wheat blend (M2)
—4+— Wheat sourdough (M3)

Total titratable acidity (%)

T T T T T T T T T

9

10 11 12 13 14 15 16 17

Fermentation time (days)

Figure 3. Total titratable acidity (%) of sourdough during the fermentation period (17% day)
M1: MOCAF sourdough, M2: Composite MOCAF and wheat flour (1:1), M3: wheat flour sourdough

3.3 Growth rate

The growth curve of total lactic acid bacteria (LAB) in all
sourdough formulations exhibited distinct lag, exponential,
and stationary phases (Figure 4). In the M1 formulation, LAB
proliferation was not observed until 72 hours, after which
exponential growth occurred between 72 and 96 hours,
reaching 11.62 x 108 CFU/mL. The population peaked at 12.70
x 10® CFU/mL at 240 hours and remained stable at 12.78 x 10®
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CFU/mL until 384 hours. In the M2 formulation, microbial
growth was detected as early as 24 hours (3.52 x 108
CFU/mL), followed by exponential growth until 72 hours
(11.86 x 10®* CFU/mL), peaking at 12.98 x 10® CFU/mL at 264
hours and stabilizing at 12.97 x 108 CFU/mL. M3 exhibited a
faster onset of exponential growth at 24 hours (7.28 x 108
CFU/mL), reaching a peak of 13.37 x 10®8 CFU/mL at 264
hours, and stabilizing at 13.43 x 108 CFU/mL.
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Figure 4. Total lactic acid bacteria of three types of spontaneous fermented sourdough (17% day)
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Figure 5. FTIR spectra of three types of spontaneously fermented sourdough (17" day)

The extended lag phase observed in MOCAF sourdough
indicates microbial adaptation to the gluten-free substrate,
requiring time for hydrolytic enzyme synthesis [53-56]. In
contrast, wheat-based sourdoughs accelerate LAB
proliferation due to the presence of readily fermentable sugars,
proteins, and peptones, which are rapidly converted into amino
acids, supporting initial microbial growth [57-59]. The
accumulation of organic acids such as lactic acid and acetate
contributes to pH reduction, which inhibits the growth of
competing microorganisms and stabilizes the LAB population.
This pH decline is directly correlated with increased bacterial
abundance [54, 52].

3.4 Organic acids

FTIR spectroscopy revealed distinct chemical differences
among sourdough samples, particularly in organic acid,
carbohydrate, and hydroxyl group content (Figure 5). All
samples exhibited characteristic peaks at ~1700 cm™, 1400
cm!, and 1100 cm™, corresponding to carboxylic acid
carbonyl groups, COO/CHs bending, and C-O stretching,
respectively—indicative of lactic and acetic acid presence
during fermentation [60, 61]. MOCAF sourdough displayed
the highest peak intensity at 1700 cm™, suggesting a greater
accumulation of carboxylic acids, particularly lactic and/or
acetic acid [62, 63]. The composite sourdough showed
intermediate peak intensities, while wheat sourdough
exhibited the lowest. This trend was consistent across other
key spectral regions (1400 cm™ and 1100 cm™), supporting
the hypothesis that MOCAF promotes higher organic acid
production. These spectral findings were corroborated by
HPLC analysis, which quantified lactic acid at 75%, acetic
acid at 15%, and succinic acid at 0.5% in MOCAF sourdough,
confirming its elevated acid content.

These findings align with those validated by HPLC analysis
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(see Figure 6). This research indicates that lactic acid
constitutes 75%, acetate about 15%, and succinic acid 0.5% in
MOCAF sourdough. Additionally, the combination of
sourdough between MOCAF and wheat flour sourdough
exhibited lactic acid concentrations of 39%, acetic acid at
49%, and succinic acid at 0.9%. The minimal concentrations
were recorded in wheat flour sourdough, with lactic acid at
14%, acetic acid at 24%, and succinic acid at 0.8%. The
overlay of spectra from all sourdough-treated samples
highlights the disparities in chemical profiles, with each
sourdough sample forming distinct clusters, mostly influenced
by the 1700—-1400 cm™ area, which is the main factor in the
differentiation among groups [37, 64].

3.5 Simple sugar

The unique simple sugar compositions identified through
HPLC analysis (Figure 6) profoundly influence the
fermentation dynamics and organic acid generation in all
treated sourdoughs. The predominance of glucose (4.84%) in
MOCAF sourdough (Table 1), along with reduced levels of
xylose (1.12%) and arabinose (2.62%), indicates a rapid
enzymatic breakdown of cassava starch, facilitating swift
microbial glycolysis [49]. The accessible glucose stimulates
vigorous homolactic fermentation [65], as demonstrated by the
rapid acidity of MOCAF increase over the initial five days and
a subsequent pH decline to 3.5. The FTIR spectra further
validate this process, with pronounced C=0 peaks (1712—-1757
cm™) affirming the predominance of lactic acid. The depletion
of simple sugars by mid-fermentation, indicated by the
plateauing TTA percentage at around 2.2 mL (0.1M NaOH/10
g sample) by day 8, highlights MOCAF sourdough metabolic
constraint; the lack of complex carbohydrates, such as
arabinoxylans, limits prolonged leavening capacity beyond
day 7 [41, 66, 67].
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Table 1. Simple sugar in sourdough with different flour

treatments
Smple  MOCAF  \GCATund  Fiour
Wheat Flour (1:1)  Sourdough
Glg;f)’se 4.84 1.76 40.96
Xz)l/f)se 1.12 9.07 20.24
Ara(lggose 262 ) )

In contrast, wheat sourdough demonstrates remarkably
elevated levels of glucose (40.96%) and xylose (20.24%),
reflecting the abundant starch and hemicellulose content of
wheat [50]. Notwithstanding this abundance, acidification
commences gradually, characterized by an extended critical
pH phase (around 4,5 - 5.0; days 4-8) that postpones microbial
succession. According to research [66, 67], the slow
acidification phase in sourdough is essential for microbial
succession. The pH range of 4.5 to 5.0 is sustained for several
days, facilitating microbial adaptation and the formation of a
stable microbiota. This delay is likely due to catabolic
inhibition or microbial adaptation to intricate substrates.

Upon initiation, the successive consumption of glucose
(early phase) and pentoses such as xylose (middle-late phase)
maintains heterofermentative activity, producing various
organic acids (wide FTIR C=0O bands). As a result, wheat
sourdough attains the highest final TTA (5% by Day 17,
Figure 3) and increasing acidification growth, facilitated by
prolonged sugar availability [51, 68].

The composite flour of MOCAF and wheat sourdough
establishes a metabolic equilibrium, incorporating glucose
from MOCAF (1.76%) and xylose from wheat (9.07%). The
absence of arabinose suggests a preference for the utilization
of pentoses by the microbiome. This synergy enables
simultaneous homolactic (glucose-driven) and
heterofermentative (xylose-driven) pathways, leading to a
stable acidification rate and optimal TTA (3%) without
reduction. FTIR data confirm this balance, indicating
intermediate C=0 peak widths between MOCAF wheat
sourdough, which signifies a balanced lactic and acetic acid
ratio. M2 accelerates through the critical pH phase more
rapidly than wheat flour sourdough alone, while also
preventing the unnecessary metabolic exhaustion observed in
MOCAF sourdough. This highlights how the blend contributes
to stabilizing fermentation kinetics.

3.6 Bacterial diversity of MOCAF sourdough

All treated sourdough samples (M1, M2, and M3) were
analysed, as illustrated in Figure 7, the successful
amplification of the full-length 16S rRNA gene from the
extracted gDNA, producing bands of the anticipated size
(approximately 1500 bp, as indicated by the 27F-1492R
primers). The results indicate that the gDNA from each sample
has been successfully amplified and is prepared for the
subsequent stage, specifically sequencing. Effective
amplification is crucial for ensuring the quality and reliability
of the data obtained from this study.

This study employed 16S rRNA gene-based next-
generation sequencing (NGS) to characterize the bacterial
communities in spontaneously fermented sourdoughs
prepared from M1, M2, and M3. The concentration and yield
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of the extracted genomic DNA are summarized in Table 2.
Qubit dsDNA high sensitivity allows for accurate
quantification of the DNA concentration in the range of 0.1
ng/uL to 120 ng/pL. This measurement method was highly
selective for dsDNA, ignoring the presence of contaminants
such as salts, free nucleotides, solvents, detergents, or proteins.

DNA Ladder
10,000
— 8,000
— 6,000
— 5,000
— 4,000
- 3,000
— 2,500
— 2,000

1,500

Figure 7. Agarose gel electrophoresis photo of the PCR

product
1 =MOCAF sourdough, 2 = composite flour sourdough, and 3 = wheat
sourdough

Table 2. Nanodrop and qubit DNA quantification of treated

sourdough
Sample Volume Nano Drop Qubit
Sample  Code () (gul)  (nglul)
Ml N1261-1 40 49.4 39.4
M2 N1261-2 40 17 13.7
M3 N1261-3 40 83 8.52

Note: M1: MOCAF sourdough, M2: composite MOCAF and wheat flour
(1:1), M3: wheat flour sourdough.

The concentrations of the extracted DNA ranged from 17 to
83 ng/uL, while the total DNA yield was between 8.52 and
39.4 ng/uL. Microbial genomic analysis using metagenomics
and RNA sequencing reveals that the type of flour used to
make sourdough affects the presence of microorganisms,
including the diversity and number of microorganisms in the
final product [3, 69, 70].

Nanopore sequencing generated an average of 97,647 reads
per sample. To ensure the quality of the data, NanoFilt was
employed to retain high-quality full-length sequences. The
filtering criteria included a minimum quality score threshold
of 10 (Q > 10) and a minimum read length of 1,000 bp. As a
result, a high-quality dataset was obtained, with an average
quality score of 15 and an average read length of 1,641 bp.

3.6.1 The bacterial abundance community

The bacterial community across all sourdough samples was
predominantly composed of the phylum Bacillota (formerly
Firmicutes), with Bacilli as the dominant class. Minor
variations in relative abundance were observed between
MOCAF and composite flour sourdoughs, suggesting
substrate-specific ecological influences (Figure 8). While
Alphaproteobacteria and other minor classes (e.g.,
Actinobacteria, Gammaproteobacteria, Betaproteobacteria,
Flavobacteria) were detected in low abundance, their presence
indicates subtle environmental differences. At the order level,
Lactobacillales were most abundant, particularly in wheat
sourdough. Pseudanabaenales appeared exclusively in



MOCAF and composite sourdoughs, whereas Acetobacterales
was more prominent in the composite variant. The family
Lactobacillaceae  was  consistently dominant, with
Lactiplantibacillus and Levilactobacillus prevailing across all
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samples. Lacticaseibacillus was more prevalent in composite
and wheat sourdoughs, but less so in MOCAF, indicating that
the type of substrate influences the microbial selection
process.
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Figure 8. The top 10 taxonomic compositions of bacterial communities: A. Phylum-level, B. Class-level, C. Order-level, D.
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Figure 9. UPGMA cluster tree along with species relative abundance at the phylum level from sourdough (M1: MOCAF
sourdough; M2: composite MOCAF and wheat flour sourdough; M3: wheat flour sourdough)

This taxonomic research revealed that although all treated
sourdoughs exhibit comparable bacterial compositions at
broader taxonomic levels, notable differences emerge at
deeper taxonomic levels, especially within genera. These
findings indicated that sourdough may preferentially support
specific taxa of sourdough bacteria. In contrast, the greater
diversity of the bacterial community in sourdough likely
facilitates a more intricate variety of nutrients as carbon
sources within the ecosystem [4, 50, 71, 72].

Lactiplantibacillus plantarum, Lactiplantibacillus
pentosus, and Levilactobacillus brevis were dominant in
MOCAF and composite sourdoughs, indicating that cassava-
based substrates selectively promote these lactic acid bacteria.
This supports previous findings on the metabolic adaptability
of L. plantarum in carbohydrate-rich environments such as
cassava [11, 71-73]. The exclusive presence of Holzapfeliella
floricola in MOCAF samples indicates a substrate-specific
association. Holzapfeliella floricola is a Gram-positive,

2753

catalase-negative, non-motile rod-shaped bacterium. This
process employs a limited spectrum of carbohydrates,
including glucose and fructose, through homofermentative
metabolism, a characteristic feature of lactic acid bacteria [74,
75]. In contrast, Lacticaseibacillus paracasei and
Companilactobacillus musae were more abundant in wheat
sourdough, likely due to the higher availability of fermentable
sugars and proteins in wheat flour [17, 59, 76]. These
microbial  differences have functional implications,
influencing fermentation kinetics, acidification, and the
sensory attributes of the final product. Understanding the
microbial ecology of alternative flours like MOCAF is
essential for developing gluten-free flours with enhanced shelf
life, nutritional, and sensory qualities [77].

3.6.2 Similarity among sourdough samples
The unweighted pair group method with arithmetic mean
(UPGMA) dendrogram on the left shows the clustering of



three samples based on their microbial community
composition at the phylum level (Figure 9). The samples are
grouped according to their similarities; samples that are more
similar cluster closer together. In the dendrogram, two samples
are more similar to each other, while the third sample is
distinct, joining the cluster at a larger distance.

The observed pattern indicates that two of the samples
exhibit highly comparable microbial community structures,
while the third sample contains a distinctly different
community. Based on the UPGMA cluster tree and the relative
abundance chart at the phylum level, it is evident that the
microbial communities in the three samples have low
diversity, with one phylum overwhelmingly dominating all
samples. However, the bar charts reveal that all samples are
primarily composed of the same dominant phylum, with only
minor contributions from other phyla.

This pattern suggests a highly selective environment where
only certain microbial groups can thrive, leading to a lack of
evenness and richness at the phylum level. Such dominance

communities but also reflects potential vulnerability to
environmental changes, as low diversity can reduce ecosystem
resilience. Overall, the combination of clustering analysis and
relative abundance profiles demonstrates that while there may
be minor compositional differences, the microbial
communities are largely uniform and dominated by a single
phylum [78-81].

3.6.3 Alpha diversity analysis

The effect of the extraction methods on alpha diversity was
assessed by Chaol (nonparametric indices used to estimate
species richness in microbial communities), Abundance-based
Coverage Estimator (ACE), Shannon, and Simpson indices.
For the evaluation of the species richness, ACE and Chaol
indices were estimated (Figure 10). The diversity indices
Shannon and Simpson (these indices provide insights into the
complexity and balance of microbial communities within
sourdough) were also calculated for each isolate [82]. The
rarefaction curves plateaued, signifying that the sequencing

may indicate functional specialization within these depth was sufficient.
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Alpha diversity analysis revealed differences in microbial
richness and evenness among the sourdough variants, with
MOCAF sourdough (M1) exhibiting the highest species
richness (Observed = 479; Chaol = 1052.77; Fisher’s alpha =
65.56), followed by the composite (M2) and wheat (M3)
sourdoughs. Despite its richness, M1 displayed lower
evenness, suggesting dominance by a few acid-tolerant taxa,
notably  Lactiplantibacillus  plantarum. The observed
difference in richness and evenness in M indicates a
functional specialization, whereas dominance drives
ecosystem activity towards significant acidification instead of
encompassing multifunctionality [82, 83]. In contrast, M2
showed the highest diversity indices (Shannon 2.01;
Simpson = 0.8), indicating a more balanced microbial
community structure. The composite substrate likely supports
a synergistic microbial environment due to the combined
availability of fermentable carbohydrates and proteins from
both MOCAF and wheat flours [77]. This balanced diversity
enhances fermentation stability, acid and gas production, and
potentially improves leavening performance and resilience
through functional redundancy [58, 82]. Conversely, the high
gluten content in wheat flour favors species such as
Lacticaseibacillus paracasei, contributing to a more uniform
but less diverse community [58].

3.6.4 Beta diversity and community

The Bray-Curtis approach was employed for beta diversity
analysis, which was subsequently visualised through principal
coordinates analysis (PCoA). Beta diversity analysis using
PCoA (Figure 11) revealed distinct clustering of microbial
communities across sourdough samples, corresponding to
flour type [70, 84]. MOCAF sourdough (M1) exhibited the
most distinct microbial profile, clustering separately along the
primary PCoA1 axis, which accounted for 75.03% of the total
variation. Composite sourdough (M2) occupied an
intermediate position, while wheat sourdough (M3) clustered
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along the PCoA2 axis (24.97% variation), indicating more
subtle differences. These findings suggest that flour type
exerts a strong influence on microbial community structure,
with MOCAF and wheat flours imposing distinct selective
pressures on microbial colonization and succession [69].
Principal component analysis (PCA) further supported these
results, with PC1 and PC2 explaining 87.03% and 12.97% of
the variance, respectively. MOCAF sourdough demonstrated
a uniquely differentiated microbial composition, while
composite and wheat sourdoughs showed more nuanced
distinctions, likely due to differences in substrate composition
[43, 54].

3.7 Correlation between bacterial diversity and sourdough
MOCAF characteristic

Spearman correlation analysis revealed significant
associations between dominant bacterial species and key
physicochemical parameters of sourdough, including

leavening capacity, pH, and TTA [71]. Based on Figure 12,
among the 30 most abundant taxa, nine species demonstrated
strong correlations with these parameters. Lacticaseibacillus
rhamnosus, Lacticaseibacillus casei, Lacticaseibacillus
paracasei, and Gluconobacter japonicus exhibited strong
positive correlations with pH and leavening capacity, but
negative correlations with TTA, suggesting their role in
moderating acidity.

These Lacticaseibacillus species are known for their
probiotic potential and tolerance to mildly acidic environments
[43]. G. japonicus, an acetic acid bacterium, may influence pH
and microbial dynamics through acetic acid production [85].
These findings underscore the importance of microbial
composition in shaping sourdough fermentation outcomes and
highlight the potential of MOCAF as a substrate for
modulating microbial behavior.
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Figure 11. Principal coordinate analysis (PCoA) and principal component analysis (PCA) on M1, M2, and M3
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Figure 12. Spearman correlation analysis between significant species and sourdough characteristics (pH, total titratable acidity,

and leavening capacity)
Significant correlations (FDR-adjusted p < 0.05)

L. plantarum and L. paraplantarum exhibited strong
negative correlations with pH and positive correlations with
TTA, highlighting their central role in sourdough acidification
[86]. L. plantarum, a dominant and acid-tolerant lactic acid
bacterium, is enriched in MOCAF-based sourdough due to its
enzymatic capacity to degrade cassava starch, facilitating
rapid acidification. Similarly, Levilactobacillus brevis
demonstrated a preference for acidic environments and
contributed significantly to acid production during later
fermentation stages [87, 88]. The resulting pH decline not only
favors acidophilic taxa such as Lacticaseibacillus spp. but also
alters the overall microbial community structure [89, 90]. In
contrast, Lacticaseibacillus paracasei, Lacticaseibacillus
casei, Lacticaseibacillus rhamnosus, and Gluconobacter
Jjaponicus were positively associated with leavening capacity.
These species, particularly G. japonicus, enhance CO:
production via acetic acid synthesis, potentially stimulating
yeast activity and improving dough expansion. Their
prevalence in composite and wheat sourdoughs suggests
synergistic interactions that support balanced fermentation
dynamics.

Conversely, L. plantarum, L. paraplantarum, and L. brevis
showed weak to moderate negative correlations with
leavening, likely due to their homolactic metabolism, which
limits CO: output [4, 87, 89, 91]. While MOCAF sourdoughs
exhibit high acidification and complex flavor profiles due to
elevated acetic acid levels, their low gluten content and limited
gas retention result in denser textures. In contrast, wheat-based
sourdoughs benefit from a balanced production of acids and
gases, which promotes better dough structure and volume.
Overall, the microbial composition plays a crucial role in
determining the physicochemical, sensory, and functional
properties of sourdough.

4. CONCLUSIONS

This study demonstrates that flour type is a key determinant
of microbial diversity and fermentation dynamics in
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spontaneously  fermented sourdoughs. MOCAF-based
sourdoughs selectively enriched acid-tolerant
Lactiplantibacillus  species, particularly L. plantarum,

contributing to pronounced acidification but limited leavening
capacity due to homolactic fermentation and low CO:
production. Notably, Holzapfeliella floricola was uniquely
identified in MOCAF sourdough. In contrast, composite
sourdoughs (MOCAF and wheat flour) supported a more
balanced microbial community, enabling both homolactic and
heterofermentative  pathways through the combined
availability of glucose and xylose. This resulted in improved
leavening and acidification performance. These findings
highlight the potential of MOCAF as a gluten-free substrate
for sourdough fermentation, offering distinct microbial
profiles and flavor characteristics.

While this study focused on bacterial communities, future
research should explore yeast populations and their
interactions in MOCAF-based systems. Additionally, isolating
key bacterial strains may facilitate the development of targeted
starter cultures for optimized sourdough functionality and
product quality, especially in bakery products. MOCAF
sourdough demonstrates potential as a starter for producing
high-quality, shelf-stable gluten-free bread for individuals
with celiac disease, attributed to its significant acidification
that guarantees enhanced microbial stability.
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