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The global increase in cardiovascular disease (CVD) cases, along with the growing use of
wearable health technologies, has created a demand for intelligent tools that support early
diagnostic support and monitoring of heart conditions. This work introduces LLM-
Cardio, an Al-driven cardiology assistant that combines wearable and clinical data with
large language model (LLM) reasoning for personalized cardiovascular assessment. The
system is powered by the Meta-Llama-3.1-8B-Instruct model (4-bit), fine-tuned using the
LoRA (Low-Rank Adaptation) method on a cardiology-specific dataset that includes
structured medical records, diagnostic reports, clinical cases, and medical Q&A data. The
system integrates streaming vital-sign data (simulated in this study) with an
instruction-tuned LLM to deliver adaptive cardiovascular diagnostic support. A key
contribution is the fine-tuning of a pretrained LLM on cardiology-specific datasets,
including diagnostic reports, clinical cases, and medical Q&A data. Users can describe
symptoms or ask cardiology-related questions and receive medically grounded, explainable
responses, while simultaneously monitoring vital signs through a responsive mobile
interface. Using BERTScore, the fine-tuned model achieved Precision=0.9463,
Recall=0.9527, F1-score=0.9493, outperforming baseline generative models in semantic
similarity on our test set. LLM-Cardio illustrates the potential of merging wearable
technologies with Al reasoning for intelligent cardiac monitoring and diagnosis, and sets
the groundwork for future integration with real devices and clinical validation toward
proactive cardiovascular care.

1. INTRODUCTION

still in its early stages, exploring the integration of
physiological data such as heart rate, sleep patterns, and

Cardiovascular diseases (CVD) are the leading cause of
death in the world, they severely affect the human life and
health [1]. They are a set of conditions affecting the heart and
blood vessels. The disease can be physically experienced
indicating a symptomatic person or worse not feeling anything
at all indicating an asymptomatic person. Most symptoms
include certain types of chest pain, fatigue, palpitations,
dizziness or fainting, swelling of the legs, ankles and feet and
shortness of breath. To prevent patients from suffering further
damage, it is essential to diagnose heart disease accurately and
in a timely manner. Recently, innovative medical techniques,
such as those based on artificial intelligence have been used in
the medical field [1].

Among these innovations, the Internet of Wearable Things
(loWT) and large language models (LLMs) such as:
CHATGPT and BERT stand out as powerful tools with the
potential to reshape medical diagnostics and patient
monitoring [2]. Research on LLMSs based on wearable data are
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physical activity into Al-driven models. However, the
effective integration of IoWT real-time wearable data through
connected devices with the advanced reasoning and natural
language understanding capabilities that LLMs offer presents
diverse opportunities to create intelligent systems capable of
supporting patients’ diagnosis process which requires many
tests: blood pressure, glucose, vital signs, etc., clinical studies,
patient history and answers to their questions [3].

CVD remains a main concern for our wellbeing, demanding
early detection, accurate risk assessment and ongoing
monitoring [4]. However, the current healthcare system is
often woefully inadequate in making timely, personalized
diagnoses, especially for individuals in geographically
disadvantaged or resource-limited settings. As widespread as
wearable technology has become, its information often lies
unused because there are no smart systems to filter and make
sense of this information. Moreover, traditional machine
learning algorithms for disease diagnosis often struggle in
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regards to limited generalizability, reliance on human feature
engineering, and inability to handle unstructured clinical data
such as medical texts.

Despite recent advances, LLM-based healthcare systems
remain limited by a lack of cardiology-specific knowledge,
weak integration of wearable physiological data with textual
reasoning, and reliance on cloud-based deployment. These
limitations hinder reliable multimodal clinical assessment and
raise concerns regarding privacy and accessibility.
Consequently, there is a clear need for an intelligent
cardiology assistant that supports domain-adapted reasoning,
multimodal data fusion, and efficient local deployment.

In this context, the objective of our work is to design and
implement an intelligent cardiology assistant capable of
analysing real-time, medical health data records and other
relevant data, such as family history and lifestyle factors to
generate reliable diagnostic insights of CVD. Our approach
focused on fine-tuning an Al-powered language model on
various patients cardiology-related data, including medical
records, test results, and clinical observations. The system
combines a locally hosted large language model, simulated
wearable data, and a mobile application to create a full-stack
solution for cardiac monitoring and personalized diagnostics.

To provide a comprehensive understanding of applying a
LLM for cardiovascular diagnostic support and risk
assessment based on wearable device data, our paper is
organized as follows: Section 2 presents the background and
offers an overview of LLMs in the context of wearable health
monitoring systems. Section 3 details the system design.
Section 4 describes the implementation. Finally, Section 5
concludes the paper and outlines potential directions for future
research.

2. LITERATURE REVIEW

There have been many recent studies exploring the
integration of LLMs into loWT systems. Some of these works
have focused on leveraging LLMs to enhance natural language
interaction between users and wearable devices. Others have
investigated the potential of LLMs for intelligent data
interpretation,  context-aware  decision-making,  and
personalized health monitoring.

Raza et al. [5] proposed a fine-tuned LLM-enhanced
pipeline designed to assist in inductive thematic analysis (TA)
of healthcare interview transcripts involving parents of
children diagnosed with Anomalous Aortic Origin of a
Coronary Artery (AAOCA), atype of congenital heart disease.
The proposed system integrates GPT-40-mini with chunking
strategies and various prompt engineering techniques,
including zero-shot, one-shot, and reflection, to process
contextually rich AAOCA interview transcripts. This pipeline
outperforms existing LLM-augmented TA methods in terms
of thematic accuracy, LLM assessment, and expert evaluation.

Kim et al. [6] proposed the Health-LLM system, which
evaluates different LLM architectures for health prediction
tasks using data collected from wearable sensors. The
proposed system focuses on various health-related areas such
as mental health, physical activity, metabolic functions, and
sleep assessment. The fine-tuned model, named HealthAlpaca,
uses prompting and fine-tuning techniques and demonstrates
performance comparable to larger models like GPT-3.5, GPT-
4, and Gemini Pro. It achieves the best results in 8 out of 10
evaluated tasks. To further enhance prediction accuracy,
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context enhancement was applied, resulting in a performance
improvement of 23.8%.

Xu et al. [7] proposed the Mental-LLM system, which
presents a comprehensive evaluation of several LLMs for
mental health prediction tasks based on online text data. The
evaluated models include Alpaca, Alpaca-LoRA, FLAN-T5,
GPT-3.5, and GPT-4, using different strategies such as zero-
shot prompting, few-shot prompting, and instruction fine-
tuning. The proposed system shows that while zero-shot and
few-shot prompting yield limited performance, instruction
fine-tuning significantly improves results across all tasks. The
best fine-tuned models, namely Mental-Alpaca and Mental-
FLAN-T5, outperform the best prompt design of GPT-3.5 by
10.9% and that of GPT-4 by 4.8% in terms of balanced
accuracy, despite being much smaller in size. Moreover, these
models achieve performance comparable to state-of-the-art
task-specific language models.

Cosentino et al. [8] proposed the Personal Health Large
Language Model (PH-LLM), a fine-tuned version of Gemini
designed to interpret time-series sensor data collected from
wearable devices such as Fitbit and Pixel Watch. The proposed
system focuses on providing analysis and personalized
recommendations related to sleep and fitness. After fine-
tuning, PH-LLM achieved an accuracy of 79% for sleep
analysis and 88% for fitness assessment, outperforming the
average scores obtained from a sample group of human
experts.

Ji et al. [9] proposed HARGPT, a system that explores the
capability of LLMs to perform zero-shot human activity
recognition (HAR) using raw IMU sensor data. The proposed
approach demonstrates that LLMs can effectively interpret
raw IMU signals and carry out HAR tasks without prior
training, relying solely on prompt-based reasoning techniques
such as chain-of-thought prompting. The system achieves a
high accuracy of 80%, surpassing the performance of
traditional machine learning and deep learning models.

Healey and Kohane [10] proposed an open-source
benchmark designed for time-series question-answering tasks,
specifically focused on continuous glucose monitoring (CGM)
data in the context of diabetes management. The proposed
benchmark consists of 30 questions divided into four
categories. To evaluate its effectiveness, the authors
implemented three LLM-based frameworks to analyze both
simulated and real CGM data. The results revealed that the
LLM-code framework performed best on simpler tasks, while
the LLM-codechain framework showed better performance in
handling more complex queries. In contrast, the LLM-text
framework demonstrated overall poor performance.

Singhal et al. [11] proposed Med-PaLM 2, a medical
question-answering system that builds on the PaLM 2 base
model. The proposed approach combines medical-domain
fine-tuning with advanced prompting strategies, including
Ensemble Refinement, to enhance performance. Med-PaLM 2
achieved state-of-the-art results on medical benchmarks such
as MedQA and surpassed physicians across several axes of
clinical utility and safety.

Yang et al. [12] proposed GatorTron, a large-scale clinical
language model specifically designed for healthcare
applications. The model was pretrained using unsupervised
learning on a corpus containing over 90 billion words, under
various training configurations, and was later fine-tuned on
five specific tasks. Using public benchmark datasets, the
proposed system demonstrated superior performance
compared to existing clinical and biomedical transformer
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models, achieving state-of-the-art results in the recognition of
diverse clinical concepts.

The presented works focus on the integration of LLMs into
IOWT systems. These studies cover a wide range of

technologies. To illustrate this diversity and richness, Table 1
provides a comparative analysis of the selected works,
highlighting the LLM model name, dataset, methods used
within the model, task, performance, and base model.

application domains and emphasize the joint use of Al and loT

Table 1. Summary of related works

Reference Year Objectives Model Dataset Methods Task Performance Base
Name Model
This work is to
design an enhanced Zero-shot
LLM pipeline to prompting, few
assist in the AAOCA shot prompting, Thematic Jaccard GPT
[5] 2025  inductive thematic LLM-TA interview Reflexion Analvsis Similarity = 4o-
analysis of medical transcripts prompting, y 0.41 mini
interview transcripts thematic analysis
related to AAOCA. pipeline
Zero-shot
. . prompting, Few-
This worl_< Is to shot Prompting, mental_ h_ealth, Predicted 8/10
evaluate different PMData, ' activity .
[6] 2024 LLM architectures Health GLOBEM, Tur:ir:ftr'll{ztr;?noral tracking, ta;l;sg:/:}th LLaMa
for health prediction Alpaca AW _FB, g.1emp metabolism, L
) - Encoding improved
using data from LifeSnaps Methods sleep erformance
wearable sensors. ' assessment P
parameter efficient
fine-tuning
This work is to
evaluate and - Binary Stress
optimize the DDreaddlt_, Prediction, .
epSeverit, . . 81.6% in
7] 2024 performance of Mental SDCNL Instructional Depression binary stress  LLaMa
several LLMs for Alpaca ' Finetuning Prediction, y st
CSSRS S - prediction
mental health = Suicide Risk
e : Suicide -
prediction using Prediction
online textual data.
This work is to
develop a
personalized
language model Fitbit, Pixel o
capable of Watch Fine-tuning, Sleep & fitness 79% (S_Ieep), -
. L - . 88% (Fitness)  Gemini
8] 2024 interpreting time- PH-LLM  Sensor data, multimodal coaching, on Profession Ultra
series data from expert learning, expert personal health al Exam 10
wearable sensors to curated case evaluation Q&A - '
. . Question
provide studies
recommendations
on sleep and
physical fitness.
This work is to
explore the use of
LLMs for zero-shot
human activity HAR Capture24 Zero-shot, Chain ~ Human Activity o :
(] 2024 recognition using GPT HHAR of thoughts Recognition 80% GPT-4
raw IMU sensor
data, without any
prior training phase.
This work is to
propose an open-
source benchmark
for evaluating
LLMs on time- . CGM data High
series question- LLM Simulated LLM-Text, LLM- querying for erformance
[10] 2024 q Data,Real ~ Code,LLM-  Conversational ~ Po ' GPT-4
answering tasks CGM . - on simpler
- Data CodeChain Diabetes
applied to tasks
h Management
continuous glucose
monitoring data in
diabetes
management.
[11] 2025 This work is to Med- MedQA, instruction Medical 86.5% PaLM
develop Med-PaLM PaLM 2 PubMedQA finetuning Few- Question (MedQA) 2
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2, a medical MedMCQA
question-answering MMLU,
system that MultiMedQ
combines clinical- A
domain fine-tuning
with advanced
prompting strategies
to surpass human
performance across
several medical
criteria.
This work is to
develop GatorTron,
a large-scale
clinical language
model designed for UF Health
healthcare IDR
[12] 2022 applications, aiming  GatorTron Pubmed
to achieve state-of- Wikipedia
the-art performance MIMIC-111

in the recognition of
medical concepts
from biomedical
data.

shot prompting
Chain-of-thought
Self-consistency
Ensemble
refinement

Answering

clinical concept
extraction,
relation
extraction,
semantic textual
similarity,
natural
language
inference,
medical Q&A

BERT architecture
unsupervised
learning fine-

tuning

90.2% (NLI) -

Table 1 shows that existing LLM-based healthcare
approaches are largely limited to task-specific applications,
rely on cloud-based platforms, or only partially integrate
physiological data, often outside the cardiovascular domain. In
contrast, our work adapts an LLM to the cardiovascular domain
through a conversational assistant for diagnostic reasoning
support, integrating vital signs and prioritizing privacy-
preserving local deployment, thereby positioning LLM-Cardio
as a complementary and promising contribution.

3. SYSTEM ARCHITECTURE

Merging and formatting

U Y-

Low rank edaptation on LLAMA 3.1 8b_instruct_Abit

{é} Model evaluation
e

Figure 1. System architecture

CVD is a set of conditions affecting the heart and blood
vessels [13], often linked to critical symptoms such as chest
pain, shortness of breath, fatigue, and irregular heartbeat, as
well as risk factors including high blood pressure, cholesterol
levels, obesity, smoking, and family history. The proposed
approach adapts a large language model (LLM) to cardiology
through a specialized dataset (symptoms, patient histories,
ECG, tests, Q&A), enabling precise predictions, relevant
explanations, and early diagnosis support, as shown in Figure
1. This system enhances risk assessment, clinical reasoning,

3228

and patient engagement, making digital cardiology more
personalized and accessible.

3.1 Data

This work used medical data from a set of structured,
unstructured and custom made cardiology related datasets. It
is beneficial to explore the different data and present it in a
more understandable way for the model that will be used by
translating it into an accessible text format. This allows it to be
interpreted in an appropriate context suitable for LLMs.

3.1.1 Data collection

B

% Kaggle Cardiovascular diseases (Cardio): the dataset
consists of 70 000 records ofw patient’s data, 11 features
like: age, height, weight, vitals, lifestyle factors, etc.
with target that indicates the presence or absence of
heart disease. All of the dataset values were collected at
the moment of medical examination.

+ UCI Cleveland dataset: this multivariate dataset is
collected from the Cleveland Clinic Foundation,
consisting of 14 attributes (13 features and one target)
and 303 instances, this dataset’s main use is to classify
whether a patient has heart disease based on a variety of
medical attributes.

+» HealthCareMagic dataset: this dataset consists of 100k
anonymized doctor-patient conversations, each entry
comprises a patient's query and the corresponding
doctor's response. This dataset is particularly valuable
for training medical chatbots providing them with
medical education. In our project, we retrieved the
dataset directly from Hugging Face using their dataset
hub for convenience and standardized access.
Custom Cardiovascular Diseases Knowledge Base: the
dataset includes 105 cardiac conditions that were
collected from Texas Heart and Victor Chang cardiac
institute sites. For each condition we specified its
description, causes, symptoms, diagnosis, tests,
treatment and prevention.

Question and answer dataset: the dataset consists of 700

rows with question and answer pairs about CVD and

general cardiology with many cardiology multiple

»

*,



choice questions (MCQS) that were collected from
multiple cardiology books.

Clinical cases dataset: the dataset consists of 310
clinical cardiovascular cases which were collected from
different clinical books. It was constructed as a chain of
thought (COT) dataset with reasoning process in disease
diagnosis and its final answer [14, 15].

3.1.2 Data pre-processing

In this initial phase, data from multiple sources is
consolidated and cleaned to create a unified dataset. This
preparation is essential for aligning the data into a format
suitable for detailed analysis and subsequent processing.

K2
0.0

Data cleaning
We checked for duplicates and missing values in both
Cleveland and Cardio datasets.
Removed all rows containing missing or null values
in Cleveland dataset to ensure data quality and avoid
bias during training.

K2
°

Feature engineering

This is the process of transforming raw data into meaningful
inputs by creating, modifying, or scaling features to improve
model performance.
BMI calculation: We created a new feature for body
mass index (BMI: see Table 2) BMI provides a
reliable indicator of body fat for most people.
Therefore, itis used to screen for weight problems that
may lead to health concerns. Using the formula [16]:

_ Weight(Kg)

BMI =
Height(m)?

Age transformation: We converted the age column
from days to years by dividing by 365.

Table 2. Body mass index [16]

Body Composition Body Mass Index (BMI)
Underweight Less than 18.5
Normal 18.5-249
Overweight 25.0-29.9
Obese Greater than 30.0

D3

% Target variable scaling

We converted target variable for Cleveland dataset to:
v" Value 0 = no disease.
v" Values 1-4 = disease present.

7
*°

Data filtering

We applied this method to Healthcare Magic dataset
selecting only records related to cardiology and cardiovascular
diseases using cardiology keywords matching like: arrhythmia,

angina and pacemaker, etc. We ended with 19 253 records.

KD
£ X4

Data balancing
v' Target Class Balancing: From the original dataset of
70 000 rows, we sampled 10 000 rows to ensure a
50/50 balance between patients with and without heart
disease, as shown in Figure 2.
Gender Balancing: Further refined the sampled data to
ensure equal representation of genders within each

target class for fair model training.
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Figure 2. Balanced cardiovascular dataframe

« Text format conversion

To prepare the UCI Cleveland and Kaggle Cardio datasets
for language model fine tuning, each record was transformed
from tabular format into descriptive text using natural language
templates. These representations describe patient attributes,
medical findings, and diagnostic outcomes in a format suitable
for instruction-based learning.

Natural language templates were designed to include all
clinically relevant attributes in a coherent and medically
interpretable manner. The process relied exclusively on
observed data and was implemented deterministically, with
automated controls ensuring completeness and reproducibility.

K2
0‘0

Instruction formatting

All datasets were converted into an Instruction, Input,
Output (110) format to enable instruction tuning, a special case
of supervised fine-tuning of a language model where each
training example includes a task instruction along with input
and output, as illustrated in Figure 3. The goal is to make the
model better at following human instructions.

For each example:
v The Instruction specifies the task the model should

preform, such as: diagnosis, explanation or prediction.

v' The Input contains the context or relevant
information, like: patient symptoms, history or
question.

The Output contains the desired model response like:
diagnosis, answer, or explanation.

Figure 3. Example of instruction input output data format

+ Merging all datasets

All pre-processed datasets were unified into a single dataset
as a JSONL format (Cardiac_10sft) ensuring the instruction
format for fine-tuning. The jsonl format is ideal for large
datasets where each line is a separate JSON object and
compatible with any large language model training tools like
LoRA and PEFT.

« Prompt template

The final merged dataset was formatted using a custom
prompt template that ensures clinical safety, structured
reasoning, and multilingual response capability, as shown in
Figure 4. 1ts main purpose in fine-tuning is to teach the model
what the task is, ensure it understands the context and can
generate a consistent task specific responses especially
important for medical domain.



Figure 4. Train dataset prompt template
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Data splitting

The dataset had 30 720 rows. By randomly splitting it into
training and validation sets, with 90% for training (27, 648
rows) and 10% for validation (3072 rows). The validation data
is used to evaluate the model’s performance on unseen data
during fine-tuning to monitor if the model is learning
effectively without overfitting.

3.2 Model

LLMs have shown great success in medical natural language
processing (NLP) tasks when fine-tuned on domain-specific
instructions, making them suitable for interpreting medical
symptoms, generating diagnoses, and responding to health
related questions in human-like language [17].

3.2.1 Llama-3.1 large language models for text generation

The Meta-Llama-3.1 collection of multilingual LLMs is a
collection of pretrained and instruction tuned generative
models in 8B, 70B and 405B sizes (text in/text out). The
Llama-3.1 instruction tuned text only models are optimized for
multilingual dialogue use cases and outperform many of the
available open-source and closed chat models on common
industry benchmarks [18].

3.2.2 Model selection: Meta-Llama-3.1-8B-4bit

The pre-trained model used as a base is the Meta-Llama-3.1-
8B-Instruct variant, released and optimized by the Unsloth
project for 4-bit quantized inference and training. This model
was chosen for its strong instruction following capabilities,
compact size relative to performance, compatibility with
quantization and LoRA fine-tuning and its strong performance
in understanding complex natural language queries, open-
source accessibility.

3.2.3 Instruction tuning for medical task adaptation

To adapt the model to the cardiology domain, we performed
Instruction Tuning, a form of Supervised Fine-Tuning (SFT).
This involves training the model on curated examples
formatted as instruction—input—output triples, covering a wide
range of tasks such as:

Symptom based diagnosis.

Medical explanation generation.

Disease diagnostic support and risk assessment.
Cardiology-related questions and answers.
Interpretation of clinical test data.

3.2.4 Fine-tuning approach
To efficiently adapt a pre-trained large language model
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(LLM) to our task of cardiac disease diagnostic support and
risk assessment, we employed a parameter-efficient fine-tuning
(PEFT) strategy, specifically the LoRA method, in conjunction
with modern libraries and tools (Transformers, Unsloth, PEFT,
Hugging Face Hub, LoRA, Runpod, TRL, Weights and biases)
that support optimized training on limited hardware.

D3

% LOoRA and Training Configuration

Training process followed these hyperparameters: total
batch size of 2 per device with gradient accumulation steps = 4
so the total batch size is 8, learning rate of 2 x<10-4, 2 epochs,
maximum sequence length of 4096 tokens, and a warmup rate
of 0.01 with weight decay of 0.01. Optimizer: AdamW (8-bit).
Quantization: 4-bit.
Rankr: 8

LoRA-Alpha: 16

The LoRA hyperparameters (r = 8, LORA-Alpha = 16) were
selected based on empirical evaluation and PEFT literature.
This configuration provides an optimal trade-off between
model expressiveness and computational efficiency under 4-bit
guantization.

o,
0‘0

Training and Validation Results
The model demonstrated good convergence during training.
» Training Loss: showed a consistent and steady decline,
starting around 1.1 and decreasing to below 0.9 by the
end of the second epoch, indicating effective learning
without divergence, as shown in Figure 5.
Validation Loss: decreased from 1.04 after the first
epoch to approximately 0.94 after the second, showing
continued generalization improvement and no signs of
overfitting. The trend suggested that the model might
still benefit from an additional training epoch, as shown
in Figure 6.

» Training Time: 4 hours and 47 minutes.

train/loss

\‘ P 0 b ol e A |
VA ey LA T Y i

Figure 5. Train loss plot

Figure 6. Validation loss plot

3.2.5 Evaluation

BERTScore is an automatic evaluation metric for text
generation that computes a similarity score for each token in
the candidate sentence with each token in the reference
sentence. It leverages the pre-trained contextual embeddings
from BERT models and matches words in candidate and
reference sentences by cosine similarity. Moreover,
BERTScore computes precision, recall, and F1 measure, which
can be useful for evaluating different language generation tasks
[19].
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1. Token Matching via Cosine Similarity: For each
candidate token, compute cosine similarity with all
reference tokens.

2. Precision: Measures how many tokens in the candidate
have a similar counterpart in the reference.

3. Recall: Measures how many tokens in the reference
have a match in the candidate.

4. Fl-score: The Fl-score is the harmonic mean of

precision and recall; It provides a single summary value
of overall semantic alignment between the candidate

We evaluated our fine-tuned model using a test dataset
structured in an instruction-response format. The records
combined question—answer pairs, CVD diagnostic support and
risk assessment data derived from the cardio dataset, as well as
25 multiple-choice questions drawn from the American Nurses
Association (ANA) cardiac question bank. Initially, we trained
two machine learning models on our training dataset; however,
their accuracy was near zero / very low due to their inability to
process long text sequences. We subsequently trained these
models on the pre-processed Cardio dataset (10,000 records),
compared their performances, and then evaluated them on the
Cardio test classification records, as shown in Figure 7. The

comparative evaluation using BERTScore metrics is
and the reference. summarized in Table 3.
PBERT ' RBERT
F =2—
BERT Ppgrr + Rpgrr
Table 3. Model evaluation comparison
BERTScore Metric Base Model Na'we Bayes Logistic Regression BioGPT LLM-Cardio

Precision 0.7494 0.5500 0.6151 0.8501 0.9463

Recall 0.8909 0.5504 0.6129 0.8566 0.9527

F1-score 0.8095 0.5495 0.6133 0.8537 0.9493

Traditional machine learning models (Naive Bayes and
Logistic Regression) are included in the evaluation solely as
non-generative reference baselines to illustrate the limitations
of discriminative classifiers when applied to long-form
medical instruction-following tasks. Their BERTScore results
are not intended to represent competitive generative
performance but to contextualize the necessity of generative
language models for conversational diagnostic reasoning.

Example responses

Figure 7. Comparison of base and fine-tuned models
responses

The low BERTScore values observed for traditional
machine learning models reflect their inability to generate
free-form text. In contrast, LLM-Cardio demonstrates stronger
semantic coherence and medical accuracy compared to
BioGPT and the base LLaMA-3.1 model.

4. IMPLEMENTATION

Technology plays an increasingly important role in
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healthcare, specifically in prevention, surveillance and early
diagnosis. CVD is a major concern for global health, requiring
constant attention and effective tools to support both medical
providers and patients. LLM-Cardio system is a smart heart
assistant combining artificial intelligence, mobile technology
and real-time data to provide custom support. It analyses
patient symptoms, vital signs, and medical history using
locally hosted large language model to ensure privacy and
independence from cloud-based services. In this section
presents the implementation of the LLM-Cardio system,
covering the mobile application, the backend server, and the
health wearable data simulation. It outlines the system
architecture and describes the key components that enable its
functionality.

4.1 System implementation

'LLM-Cardio' is a healthcare application designed to
provide LLM-based real-time cardiovascular diagnostic
support and symptom analysis; the system integrates
simulated wearable data with LLMs to generate personalized
symptom analysis and provide answers to cardiology
questions. The system architecture flows from simulating
wearable data that feeds patient’s vital signs into a firebase
database, which is connected to a flutter interface serving as
the user’s interface. When users input queries or symptoms
into the flutter interface the app communicates with a flask
backend connected to the Ollama server running the LLM-
Cardio LLM model, the model finally provides helpful
personalized guidance while taking into account the user’s
medical history and current vital signs, as illustrated in Figure
8, that is displayed on the user’s Chat Screen interface.

4.2 Frontend development

The frontend of the application was developed using Flutter.
The frontend serves as the primary interface between the user
and the backend Al diagnostic engine. It allows users to input
their symptoms (see Figure 9), edit their profile (see Figure
10), review their medical history (see Figure 11), monitor



simulated vital signs (see Figure 12), and receive structured 1658 - CRE ot il
clinical diagnosis generated by our 'LLM-Cardio' (see Figure € MedicalHistory ~ x €  MedicalHistory X

13).
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Figure 13. Chatbot screen
4.3 Wearable device data simulation
We simulated real world wearable device data like

smartwatches to test the system’s ability to process and
respond to dynamic vitals. We focused on metrics that impact

[ = o < = o o | heart diseases such as: heart rate (HR), blood pressure (BP),

Figure 10. Edit profile screen

oxygen saturation (SpO:), and temperature. The wearable
simulation  framework replicates real-world cardiac
monitoring scenarios, enabling robust testing of the system’s

3232



real-time responsiveness without dependency on physical
hardware. Synthetic datasets incorporate medically validated
patterns and anomalies to validate cardiovascular risk
assessment and diagnostic support mechanisms under
controlled conditions.

7
0.0

Test Chatbot responses

» Symptom diagnosis chat: LLM-Cardio analyzes the
user’s medical history and vital-sign data to generate
a clinically oriented response consistent with the
prompt, as shown in Figure 14.

General chat: LLM-Cardio provides a response to
the asked question with multilingual capacities, as
shown in Figure 15.
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Figure 15. General Chat response

5. CONCLUSION

CVD remains one of the leading causes of death globally,
with early diagnostic support and monitoring systems still
presenting major challenges [20], particularly in remote or
underserved areas. Our work aimed to develop an intelligent
cardiology assistant that leverages real-time wearable data and
integrates it with a locally hosted model to create a private,
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scalable, and smart diagnostic system. The pre-trained
LLaMA-3.1 8B model was fine-tuned using instruction tuning
on a custom cardiology-specific dataset, developed with
ethical considerations and an accompanying disclaimer. The
resulting system, LLM-Cardio, was evaluated using the
BERTScore metric to assess the quality of its generated
diagnostic responses. As a result, our fine-tuned model
outperformed traditional machine learning models such as
Naive Bayes and logistic regression in cardiovascular disease
diagnostic support and risk assessment, due to their limited
capacity to handle long-form medical text. Compared with
BioGPT and the base LLaMA model, the fine-tuned LLM-
Cardio excelled in cardiovascular disease diagnosis
generation, achieving a precision of 0.9463 and thereby
demonstrating its effectiveness in producing accurate and
relevant cardiology diagnostics.

Despite these promising results, our work remains at the
proof-of-concept stage due to the use of simulated data, the
absence of clinical validation, and limited multimodality.
Looking ahead, future work will focus on integrating real-
world wearable data, conducting diagnostic evaluations in
collaboration with healthcare professionals, and extending the
system toward full multimodality, including medical image
processing, in order to enhance its clinical robustness. With
these enhancements, LLM-Cardio has the potential to become
a valuable everyday health assistant, particularly in remote or
underserved areas.
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