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The global increase in cardiovascular disease (CVD) cases, along with the growing use of 

wearable health technologies, has created a demand for intelligent tools that support early 

diagnostic support and monitoring of heart conditions. This work introduces LLM-

Cardio, an AI-driven cardiology assistant that combines wearable and clinical data with 

large language model (LLM) reasoning for personalized cardiovascular assessment. The 

system is powered by the Meta-Llama-3.1-8B-Instruct model (4-bit), fine-tuned using the 

LoRA (Low-Rank Adaptation) method on a cardiology-specific dataset that includes 

structured medical records, diagnostic reports, clinical cases, and medical Q&A data. The 

system integrates streaming vital-sign data (simulated in this study) with an 

instruction-tuned LLM to deliver adaptive cardiovascular diagnostic support. A key 

contribution is the fine-tuning of a pretrained LLM on cardiology-specific datasets, 

including diagnostic reports, clinical cases, and medical Q&A data. Users can describe 

symptoms or ask cardiology-related questions and receive medically grounded, explainable 

responses, while simultaneously monitoring vital signs through a responsive mobile 

interface. Using BERTScore, the fine-tuned model achieved Precision=0.9463, 

Recall=0.9527, F1-score=0.9493, outperforming baseline generative models in semantic 

similarity on our test set. LLM-Cardio illustrates the potential of merging wearable 

technologies with AI reasoning for intelligent cardiac monitoring and diagnosis, and sets 

the groundwork for future integration with real devices and clinical validation toward 

proactive cardiovascular care. 
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1. INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of 

death in the world, they severely affect the human life and 

health [1]. They are a set of conditions affecting the heart and 

blood vessels. The disease can be physically experienced 

indicating a symptomatic person or worse not feeling anything 

at all indicating an asymptomatic person. Most symptoms 

include certain types of chest pain, fatigue, palpitations, 

dizziness or fainting, swelling of the legs, ankles and feet and 

shortness of breath. To prevent patients from suffering further 

damage, it is essential to diagnose heart disease accurately and 

in a timely manner. Recently, innovative medical techniques, 

such as those based on artificial intelligence have been used in 

the medical field [1].  

Among these innovations, the Internet of Wearable Things 

(IoWT) and large language models (LLMs) such as: 

CHATGPT and BERT stand out as powerful tools with the 

potential to reshape medical diagnostics and patient 

monitoring [2]. Research on LLMs based on wearable data are 

still in its early stages, exploring the integration of 

physiological data such as heart rate, sleep patterns, and 

physical activity into AI-driven models. However, the 

effective integration of IoWT real-time wearable data through 

connected devices with the advanced reasoning and natural 

language understanding capabilities that LLMs offer presents 

diverse opportunities to create intelligent systems capable of 

supporting patients’ diagnosis process which requires many 

tests: blood pressure, glucose, vital signs, etc., clinical studies, 

patient history and answers to their questions [3].  

CVD remains a main concern for our wellbeing, demanding 

early detection, accurate risk assessment and ongoing 

monitoring [4]. However, the current healthcare system is 

often woefully inadequate in making timely, personalized 

diagnoses, especially for individuals in geographically 

disadvantaged or resource-limited settings. As widespread as 

wearable technology has become, its information often lies 

unused because there are no smart systems to filter and make 

sense of this information. Moreover, traditional machine 

learning algorithms for disease diagnosis often struggle in 
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regards to limited generalizability, reliance on human feature 

engineering, and inability to handle unstructured clinical data 

such as medical texts. 

Despite recent advances, LLM-based healthcare systems 

remain limited by a lack of cardiology-specific knowledge, 

weak integration of wearable physiological data with textual 

reasoning, and reliance on cloud-based deployment. These 

limitations hinder reliable multimodal clinical assessment and 

raise concerns regarding privacy and accessibility. 

Consequently, there is a clear need for an intelligent 

cardiology assistant that supports domain-adapted reasoning, 

multimodal data fusion, and efficient local deployment.  

In this context, the objective of our work is to design and 

implement an intelligent cardiology assistant capable of 

analysing real-time, medical health data records and other 

relevant data, such as family history and lifestyle factors to 

generate reliable diagnostic insights of CVD. Our approach 

focused on fine-tuning an AI-powered language model on 

various patients cardiology-related data, including medical 

records, test results, and clinical observations. The system 

combines a locally hosted large language model, simulated 

wearable data, and a mobile application to create a full-stack 

solution for cardiac monitoring and personalized diagnostics.  

To provide a comprehensive understanding of applying a 

LLM for cardiovascular diagnostic support and risk 

assessment based on wearable device data, our paper is 

organized as follows: Section 2 presents the background and 

offers an overview of LLMs in the context of wearable health 

monitoring systems. Section 3 details the system design. 

Section 4 describes the implementation. Finally, Section 5 

concludes the paper and outlines potential directions for future 

research. 

2. LITERATURE REVIEW

There have been many recent studies exploring the 

integration of LLMs into IoWT systems. Some of these works 

have focused on leveraging LLMs to enhance natural language 

interaction between users and wearable devices. Others have 

investigated the potential of LLMs for intelligent data 

interpretation, context-aware decision-making, and 

personalized health monitoring.  

Raza et al. [5] proposed a fine-tuned LLM-enhanced 

pipeline designed to assist in inductive thematic analysis (TA) 

of healthcare interview transcripts involving parents of 

children diagnosed with Anomalous Aortic Origin of a 

Coronary Artery (AAOCA), a type of congenital heart disease. 

The proposed system integrates GPT-4o-mini with chunking 

strategies and various prompt engineering techniques, 

including zero-shot, one-shot, and reflection, to process 

contextually rich AAOCA interview transcripts. This pipeline 

outperforms existing LLM-augmented TA methods in terms 

of thematic accuracy, LLM assessment, and expert evaluation. 

Kim et al. [6] proposed the Health-LLM system, which 

evaluates different LLM architectures for health prediction 

tasks using data collected from wearable sensors. The 

proposed system focuses on various health-related areas such 

as mental health, physical activity, metabolic functions, and 

sleep assessment. The fine-tuned model, named HealthAlpaca, 

uses prompting and fine-tuning techniques and demonstrates 

performance comparable to larger models like GPT-3.5, GPT-

4, and Gemini Pro. It achieves the best results in 8 out of 10 

evaluated tasks. To further enhance prediction accuracy, 

context enhancement was applied, resulting in a performance 

improvement of 23.8%. 

Xu et al. [7] proposed the Mental-LLM system, which 

presents a comprehensive evaluation of several LLMs for 

mental health prediction tasks based on online text data. The 

evaluated models include Alpaca, Alpaca-LoRA, FLAN-T5, 

GPT-3.5, and GPT-4, using different strategies such as zero-

shot prompting, few-shot prompting, and instruction fine-

tuning. The proposed system shows that while zero-shot and 

few-shot prompting yield limited performance, instruction 

fine-tuning significantly improves results across all tasks. The 

best fine-tuned models, namely Mental-Alpaca and Mental-

FLAN-T5, outperform the best prompt design of GPT-3.5 by 

10.9% and that of GPT-4 by 4.8% in terms of balanced 

accuracy, despite being much smaller in size. Moreover, these 

models achieve performance comparable to state-of-the-art 

task-specific language models. 

Cosentino et al. [8] proposed the Personal Health Large 

Language Model (PH-LLM), a fine-tuned version of Gemini 

designed to interpret time-series sensor data collected from 

wearable devices such as Fitbit and Pixel Watch. The proposed 

system focuses on providing analysis and personalized 

recommendations related to sleep and fitness. After fine-

tuning, PH-LLM achieved an accuracy of 79% for sleep 

analysis and 88% for fitness assessment, outperforming the 

average scores obtained from a sample group of human 

experts. 

Ji et al. [9] proposed HARGPT, a system that explores the 

capability of LLMs to perform zero-shot human activity 

recognition (HAR) using raw IMU sensor data. The proposed 

approach demonstrates that LLMs can effectively interpret 

raw IMU signals and carry out HAR tasks without prior 

training, relying solely on prompt-based reasoning techniques 

such as chain-of-thought prompting. The system achieves a 

high accuracy of 80%, surpassing the performance of 

traditional machine learning and deep learning models. 

Healey and Kohane [10] proposed an open-source 

benchmark designed for time-series question-answering tasks, 

specifically focused on continuous glucose monitoring (CGM) 

data in the context of diabetes management. The proposed 

benchmark consists of 30 questions divided into four 

categories. To evaluate its effectiveness, the authors 

implemented three LLM-based frameworks to analyze both 

simulated and real CGM data. The results revealed that the 

LLM-code framework performed best on simpler tasks, while 

the LLM-codechain framework showed better performance in 

handling more complex queries. In contrast, the LLM-text 

framework demonstrated overall poor performance. 

Singhal et al. [11] proposed Med-PaLM 2, a medical 

question-answering system that builds on the PaLM 2 base 

model. The proposed approach combines medical-domain 

fine-tuning with advanced prompting strategies, including 

Ensemble Refinement, to enhance performance. Med-PaLM 2 

achieved state-of-the-art results on medical benchmarks such 

as MedQA and surpassed physicians across several axes of 

clinical utility and safety. 

Yang et al. [12] proposed GatorTron, a large-scale clinical 

language model specifically designed for healthcare 

applications. The model was pretrained using unsupervised 

learning on a corpus containing over 90 billion words, under 

various training configurations, and was later fine-tuned on 

five specific tasks. Using public benchmark datasets, the 

proposed system demonstrated superior performance 

compared to existing clinical and biomedical transformer 
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models, achieving state-of-the-art results in the recognition of 

diverse clinical concepts. 

The presented works focus on the integration of LLMs into 

IoWT systems. These studies cover a wide range of 

application domains and emphasize the joint use of AI and IoT 

technologies. To illustrate this diversity and richness, Table 1 

provides a comparative analysis of the selected works, 

highlighting the LLM model name, dataset, methods used 

within the model, task, performance, and base model. 

Table 1. Summary of related works 

Reference Year Objectives 
Model 

Name 
Dataset Methods Task Performance 

Base 

Model 

[5] 2025

This work is to 

design an enhanced 

LLM pipeline to 

assist in the 

inductive thematic 

analysis of medical 

interview transcripts 

related to AAOCA. 

LLM-TA 

AAOCA 

interview 

transcripts 

Zero-shot 

prompting, few 

shot prompting, 

Reflexion 

prompting, 

thematic analysis 

pipeline  

Thematic 

Analysis 

Jaccard 

Similarity = 

0.41 

GPT 

4o-

mini 

[6] 2024

This work is to 

evaluate different 

LLM architectures 

for health prediction 

using data from 

wearable sensors. 

Health 

Alpaca 

PMData, 

GLOBEM, 

AW_FB, 

LifeSnaps 

Zero-shot 

prompting, Few-

shot Prompting, 

Instruction 

Tuning,Temporal 

Encoding 

Methods, 

parameter efficient 

fine-tuning 

mental health, 

activity 

tracking, 

metabolism, 

sleep 

assessment 

Predicted 8/10 

tasks with 

23.8% 

improved 

performance 

LLaMa 

[7] 2024

This work is to 

evaluate and 

optimize the 

performance of 

several LLMs for 

mental health 

prediction using 

online textual data. 

Mental 

Alpaca 

Dreaddit, 

DepSeverit, 

SDCNL, 

CSSRS 

Suicide 

Instructional 

Finetuning 

Binary Stress 

Prediction, 

Depression 

Prediction, 

Suicide Risk 

Prediction 

81.6% in 

binary stress 

prediction 

LLaMa 

[8] 2024

This work is to 

develop a 

personalized 

language model 

capable of 

interpreting time-

series data from 

wearable sensors to 

provide 

recommendations 

on sleep and 

physical fitness. 

PH-LLM 

Fitbit, Pixel 

Watch 

sensor data, 

expert 

curated case 

studies 

Fine-tuning, 

multimodal 

learning, expert 

evaluation 

Sleep & fitness 

coaching, 

personal health 

Q&A 

79% (Sleep), 

88% (Fitness) 

on Profession 

al Exam 

Question 

Gemini 

Ultra 

1.0 

[9] 2024

This work is to 

explore the use of 

LLMs for zero-shot 

human activity 

recognition using 

raw IMU sensor 

data, without any 

prior training phase. 

HAR 

GPT 

Capture24 

HHAR 

Zero-shot, Chain 

of thoughts 

Human Activity 

Recognition 
80% GPT-4 

[10] 2024

This work is to 

propose an open-

source benchmark 

for evaluating 

LLMs on time-

series question-

answering tasks 

applied to 

continuous glucose 

monitoring data in 

diabetes 

management. 

LLM 

CGM 

Simulated 

Data, Real 

Data 

LLM-Text, LLM- 

Code, LLM- 

CodeChain 

CGM data 

querying for 

Conversational 

Diabetes 

Management 

High 

performance 

on simpler 

tasks 

GPT-4 

[11] 2025
This work is to 

develop Med-PaLM 

Med-

PaLM 2 

MedQA, 

PubMedQA 

instruction 

finetuning Few-

Medical 

Question 

86.5% 

(MedQA) 

PaLM 

2 
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2, a medical 

question-answering 

system that 

combines clinical-

domain fine-tuning 

with advanced 

prompting strategies 

to surpass human 

performance across 

several medical 

criteria. 

MedMCQA 

MMLU, 

MultiMedQ 

A 

shot prompting 

Chain-of-thought 

Self-consistency 

Ensemble 

refinement 

Answering 

[12] 2022

This work is to 

develop GatorTron, 

a large-scale 

clinical language 

model designed for 

healthcare 

applications, aiming 

to achieve state-of-

the-art performance 

in the recognition of 

medical concepts 

from biomedical 

data. 

GatorTron 

UF Health 

IDR 

Pubmed 

Wikipedia 

MIMIC-III 

BERT architecture 

unsupervised 

learning fine-

tuning 

clinical concept 

extraction, 

relation 

extraction, 

semantic textual 

similarity, 

natural 

language 

inference, 

medical Q&A 

90.2% (NLI) - 

Table 1 shows that existing LLM-based healthcare 

approaches are largely limited to task-specific applications, 

rely on cloud-based platforms, or only partially integrate 

physiological data, often outside the cardiovascular domain. In 

contrast, our work adapts an LLM to the cardiovascular domain 

through a conversational assistant for diagnostic reasoning 

support, integrating vital signs and prioritizing privacy-

preserving local deployment, thereby positioning LLM-Cardio 

as a complementary and promising contribution. 

3. SYSTEM ARCHITECTURE

Figure 1. System architecture 

CVD is a set of conditions affecting the heart and blood 

vessels [13], often linked to critical symptoms such as chest 

pain, shortness of breath, fatigue, and irregular heartbeat, as 

well as risk factors including high blood pressure, cholesterol 

levels, obesity, smoking, and family history. The proposed 

approach adapts a large language model (LLM) to cardiology 

through a specialized dataset (symptoms, patient histories, 

ECG, tests, Q&A), enabling precise predictions, relevant 

explanations, and early diagnosis support, as shown in Figure 

1. This system enhances risk assessment, clinical reasoning,

and patient engagement, making digital cardiology more 

personalized and accessible. 

3.1 Data 

This work used medical data from a set of structured, 

unstructured and custom made cardiology related datasets. It 

is beneficial to explore the different data and present it in a 

more understandable way for the model that will be used by 

translating it into an accessible text format. This allows it to be 

interpreted in an appropriate context suitable for LLMs. 

3.1.1 Data collection 

❖ Kaggle Cardiovascular diseases (Cardio): the dataset

consists of 70 000 records of patient’s data, 11 features

like: age, height, weight, vitals, lifestyle factors, etc.

with target that indicates the presence or absence of

heart disease. All of the dataset values were collected at

the moment of medical examination.

❖ UCI Cleveland dataset: this multivariate dataset is

collected from the Cleveland Clinic Foundation,

consisting of 14 attributes (13 features and one target)

and 303 instances, this dataset’s main use is to classify

whether a patient has heart disease based on a variety of

medical attributes.

❖ HealthCareMagic dataset: this dataset consists of 100k

anonymized doctor-patient conversations, each entry

comprises a patient's query and the corresponding

doctor's response. This dataset is particularly valuable

for training medical chatbots providing them with

medical education. In our project, we retrieved the

dataset directly from Hugging Face using their dataset

hub for convenience and standardized access.

❖ Custom Cardiovascular Diseases Knowledge Base: the

dataset includes 105 cardiac conditions that were

collected from Texas Heart and Victor Chang cardiac

institute sites. For each condition we specified its

description, causes, symptoms, diagnosis, tests,

treatment and prevention.

❖ Question and answer dataset: the dataset consists of 700

rows with question and answer pairs about CVD and

general cardiology with many cardiology multiple
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choice questions (MCQS) that were collected from 

multiple cardiology books. 

❖ Clinical cases dataset: the dataset consists of 310

clinical cardiovascular cases which were collected from

different clinical books. It was constructed as a chain of

thought (COT) dataset with reasoning process in disease

diagnosis and its final answer [14, 15].

3.1.2 Data pre-processing 

In this initial phase, data from multiple sources is 

consolidated and cleaned to create a unified dataset. This 

preparation is essential for aligning the data into a format 

suitable for detailed analysis and subsequent processing. 

❖ Data cleaning

- We checked for duplicates and missing values in both

Cleveland and Cardio datasets.

- Removed all rows containing missing or null values

in Cleveland dataset to ensure data quality and avoid

bias during training.

❖ Feature engineering

This is the process of transforming raw data into meaningful

inputs by creating, modifying, or scaling features to improve 

model performance. 

- BMI calculation: We created a new feature for body

mass index (BMI: see Table 2) BMI provides a

reliable indicator of body fat for most people.

Therefore, it is used to screen for weight problems that

may lead to health concerns. Using the formula [16]:

𝐁𝐌𝐈 =
Weight(Kg)

Height(𝑚)2

- Age transformation: We converted the age column

from days to years by dividing by 365.

Table 2. Body mass index [16] 

Body Composition Body Mass Index (BMI) 

Underweight Less than 18.5 

Normal 18.5 – 24.9 

Overweight 25.0 – 29.9 

Obese Greater than 30.0 

❖ Target variable scaling

We converted target variable for Cleveland dataset to:

✓ Value 0 = no disease.

✓ Values 1–4 = disease present.

❖ Data filtering

We applied this method to Healthcare Magic dataset

selecting only records related to cardiology and cardiovascular 

diseases using cardiology keywords matching like: arrhythmia, 

angina and pacemaker, etc. We ended with 19 253 records. 

❖ Data balancing

✓ Target Class Balancing: From the original dataset of

70 000 rows, we sampled 10 000 rows to ensure a

50/50 balance between patients with and without heart

disease, as shown in Figure 2.

✓ Gender Balancing: Further refined the sampled data to

ensure equal representation of genders within each

target class for fair model training.

Figure 2. Balanced cardiovascular dataframe 

❖ Text format conversion

To prepare the UCI Cleveland and Kaggle Cardio datasets

for language model fine tuning, each record was transformed 

from tabular format into descriptive text using natural language 

templates. These representations describe patient attributes, 

medical findings, and diagnostic outcomes in a format suitable 

for instruction-based learning. 

Natural language templates were designed to include all 

clinically relevant attributes in a coherent and medically 

interpretable manner. The process relied exclusively on 

observed data and was implemented deterministically, with 

automated controls ensuring completeness and reproducibility. 

❖ Instruction formatting

All datasets were converted into an Instruction, Input,

Output (IIO) format to enable instruction tuning, a special case 

of supervised fine-tuning of a language model where each 

training example includes a task instruction along with input 

and output, as illustrated in Figure 3. The goal is to make the 

model better at following human instructions. 

For each example: 

✓ The Instruction specifies the task the model should

preform, such as: diagnosis, explanation or prediction.

✓ The Input contains the context or relevant

information, like: patient symptoms, history or

question.

The Output contains the desired model response like: 

diagnosis, answer, or explanation. 

Figure 3. Example of instruction input output data format 

❖ Merging all datasets

All pre-processed datasets were unified into a single dataset

as a JSONL format (Cardiac_10sft) ensuring the instruction 

format for fine-tuning. The jsonl format is ideal for large 

datasets where each line is a separate JSON object and 

compatible with any large language model training tools like 

LoRA and PEFT. 

❖ Prompt template

The final merged dataset was formatted using a custom

prompt template that ensures clinical safety, structured 

reasoning, and multilingual response capability, as shown in 

Figure 4. Its main purpose in fine-tuning is to teach the model 

what the task is, ensure it understands the context and can 

generate a consistent task specific responses especially 

important for medical domain. 

3229



Figure 4. Train dataset prompt template 

❖ Data splitting

The dataset had 30 720 rows. By randomly splitting it into

training and validation sets, with 90% for training (27, 648 

rows) and 10% for validation (3072 rows). The validation data 

is used to evaluate the model’s performance on unseen data 

during fine-tuning to monitor if the model is learning 

effectively without overfitting. 

3.2 Model 

LLMs have shown great success in medical natural language 

processing (NLP) tasks when fine-tuned on domain-specific 

instructions, making them suitable for interpreting medical 

symptoms, generating diagnoses, and responding to health 

related questions in human-like language [17]. 

3.2.1 Llama-3.1 large language models for text generation 

The Meta-Llama-3.1 collection of multilingual LLMs is a 

collection of pretrained and instruction tuned generative 

models in 8B, 70B and 405B sizes (text in/text out). The 

Llama-3.1 instruction tuned text only models are optimized for 

multilingual dialogue use cases and outperform many of the 

available open-source and closed chat models on common 

industry benchmarks [18]. 

3.2.2 Model selection: Meta-Llama-3.1-8B-4bit 

The pre-trained model used as a base is the Meta-Llama-3.1-

8B-Instruct variant, released and optimized by the Unsloth 

project for 4-bit quantized inference and training. This model 

was chosen for its strong instruction following capabilities, 

compact size relative to performance, compatibility with 

quantization and LoRA fine-tuning and its strong performance 

in understanding complex natural language queries, open-

source accessibility. 

3.2.3 Instruction tuning for medical task adaptation 

To adapt the model to the cardiology domain, we performed 

Instruction Tuning, a form of Supervised Fine-Tuning (SFT). 

This involves training the model on curated examples 

formatted as instruction–input–output triples, covering a wide 

range of tasks such as: 

- Symptom based diagnosis.

- Medical explanation generation.

- Disease diagnostic support and risk assessment.

- Cardiology-related questions and answers.

- Interpretation of clinical test data.

3.2.4 Fine-tuning approach 

To efficiently adapt a pre-trained large language model 

(LLM) to our task of cardiac disease diagnostic support and 

risk assessment, we employed a parameter-efficient fine-tuning 

(PEFT) strategy, specifically the LoRA method, in conjunction 

with modern libraries and tools (Transformers, Unsloth, PEFT, 

Hugging Face Hub, LoRA, Runpod, TRL, Weights and biases) 

that support optimized training on limited hardware. 

❖ LoRA and Training Configuration

Training process followed these hyperparameters: total

batch size of 2 per device with gradient accumulation steps = 4 

so the total batch size is 8, learning rate of 2 × 10-4, 2 epochs, 

maximum sequence length of 4096 tokens, and a warmup rate 

of 0.01 with weight decay of 0.01. Optimizer: AdamW (8-bit). 

Quantization: 4-bit. 

- Rank r: 8

- LoRA-Alpha: 16

The LoRA hyperparameters (r = 8, LoRA-Alpha = 16) were

selected based on empirical evaluation and PEFT literature. 

This configuration provides an optimal trade-off between 

model expressiveness and computational efficiency under 4-bit 

quantization. 

❖ Training and Validation Results

The model demonstrated good convergence during training.

➢ Training Loss: showed a consistent and steady decline,

starting around 1.1 and decreasing to below 0.9 by the

end of the second epoch, indicating effective learning

without divergence, as shown in Figure 5.

➢ Validation Loss: decreased from 1.04 after the first

epoch to approximately 0.94 after the second, showing

continued generalization improvement and no signs of

overfitting. The trend suggested that the model might

still benefit from an additional training epoch, as shown

in Figure 6.

➢ Training Time: 4 hours and 47 minutes.

Figure 5. Train loss plot 

Figure 6. Validation loss plot 

3.2.5 Evaluation 

BERTScore is an automatic evaluation metric for text 

generation that computes a similarity score for each token in 

the candidate sentence with each token in the reference 

sentence. It leverages the pre-trained contextual embeddings 

from BERT models and matches words in candidate and 

reference sentences by cosine similarity. Moreover, 

BERTScore computes precision, recall, and F1 measure, which 

can be useful for evaluating different language generation tasks 

[19]. 
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𝑅BERT =
1

|𝑥|
∑  

𝑥𝑖∈𝑥

𝑚𝑎𝑥
𝑥𝑗∈𝑥

 𝐱𝑖
⊤𝐱̂𝑗

1. Token Matching via Cosine Similarity: For each

candidate token, compute cosine similarity with all

reference tokens.

2. Precision: Measures how many tokens in the candidate

have a similar counterpart in the reference.

3. Recall: Measures how many tokens in the reference

have a match in the candidate.

4. F1-score: The F1-score is the harmonic mean of

precision and recall; It provides a single summary value

of overall semantic alignment between the candidate

and the reference.

𝐹BERT = 2
𝑃BERT ⋅ 𝑅BERT
𝑃BERT + 𝑅BERT

We evaluated our fine-tuned model using a test dataset 

structured in an instruction–response format. The records 

combined question–answer pairs, CVD diagnostic support and 

risk assessment data derived from the cardio dataset, as well as 

25 multiple-choice questions drawn from the American Nurses 

Association (ANA) cardiac question bank. Initially, we trained 

two machine learning models on our training dataset; however, 

their accuracy was near zero / very low due to their inability to 

process long text sequences. We subsequently trained these 

models on the pre-processed Cardio dataset (10,000 records), 

compared their performances, and then evaluated them on the 

Cardio test classification records, as shown in Figure 7. The 

comparative evaluation using BERTScore metrics is 

summarized in Table 3. 

Table 3. Model evaluation comparison 

BERTScore Metric Base Model Naïve Bayes Logistic Regression BioGPT LLM-Cardio 

Precision 0.7494 0.5500 0.6151 0.8501 0.9463 

Recall 0.8909 0.5504 0.6129 0.8566 0.9527 

F1-score 0.8095 0.5495 0.6133 0.8537 0.9493 

Traditional machine learning models (Naïve Bayes and 

Logistic Regression) are included in the evaluation solely as 

non-generative reference baselines to illustrate the limitations 

of discriminative classifiers when applied to long-form 

medical instruction-following tasks. Their BERTScore results 

are not intended to represent competitive generative 

performance but to contextualize the necessity of generative 

language models for conversational diagnostic reasoning. 

Example responses 

Figure 7. Comparison of base and fine-tuned models 

responses 

The low BERTScore values observed for traditional 

machine learning models reflect their inability to generate 

free-form text. In contrast, LLM-Cardio demonstrates stronger 

semantic coherence and medical accuracy compared to 

BioGPT and the base LLaMA-3.1 model. 

4. IMPLEMENTATION

Technology plays an increasingly important role in 

healthcare, specifically in prevention, surveillance and early 

diagnosis. CVD is a major concern for global health, requiring 

constant attention and effective tools to support both medical 

providers and patients. LLM-Cardio system is a smart heart 

assistant combining artificial intelligence, mobile technology 

and real-time data to provide custom support. It analyses 

patient symptoms, vital signs, and medical history using 

locally hosted large language model to ensure privacy and 

independence from cloud-based services. In this section 

presents the implementation of the LLM-Cardio system, 

covering the mobile application, the backend server, and the 

health wearable data simulation. It outlines the system 

architecture and describes the key components that enable its 

functionality. 

4.1 System implementation 

'LLM-Cardio' is a healthcare application designed to 

provide LLM-based real-time cardiovascular diagnostic 

support and symptom analysis; the system integrates 

simulated wearable data with LLMs to generate personalized 

symptom analysis and provide answers to cardiology 

questions. The system architecture flows from simulating 

wearable data that feeds patient’s vital signs into a firebase 

database, which is connected to a flutter interface serving as 

the user’s interface. When users input queries or symptoms 

into the flutter interface the app communicates with a flask 

backend connected to the Ollama server running the LLM-

Cardio LLM model, the model finally provides helpful 

personalized guidance while taking into account the user’s 

medical history and current vital signs, as illustrated in Figure 

8, that is displayed on the user’s Chat Screen interface. 

4.2 Frontend development 

The frontend of the application was developed using Flutter. 

The frontend serves as the primary interface between the user 

and the backend AI diagnostic engine. It allows users to input 

their symptoms (see Figure 9), edit their profile (see Figure 

10), review their medical history (see Figure 11), monitor 
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simulated vital signs (see Figure 12), and receive structured 

clinical diagnosis generated by our 'LLM-Cardio' (see Figure 

13). 

Figure 8. System implementation 

Figure 9. Home screen 

Figure 10. Edit profile screen 

Figure 11. Medical history screen 

Figure 12. Vital signs screen 

Figure 13. Chatbot screen 

4.3 Wearable device data simulation 

We simulated real world wearable device data like 

smartwatches to test the system’s ability to process and 

respond to dynamic vitals. We focused on metrics that impact 

heart diseases such as: heart rate (HR), blood pressure (BP), 

oxygen saturation (SpO₂), and temperature. The wearable 

simulation framework replicates real-world cardiac 

monitoring scenarios, enabling robust testing of the system’s 
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real-time responsiveness without dependency on physical 

hardware. Synthetic datasets incorporate medically validated 

patterns and anomalies to validate cardiovascular risk 

assessment and diagnostic support mechanisms under 

controlled conditions. 

❖ Test Chatbot responses

➢ Symptom diagnosis chat: LLM-Cardio analyzes the

user’s medical history and vital-sign data to generate

a clinically oriented response consistent with the

prompt, as shown in Figure 14.

➢ General chat: LLM-Cardio provides a response to

the asked question with multilingual capacities, as

shown in Figure 15.

Figure 14. Symptom diagnosis chatbot response 

Figure 15. General Chat response 

5. CONCLUSION

CVD remains one of the leading causes of death globally, 

with early diagnostic support and monitoring systems still 

presenting major challenges [20], particularly in remote or 

underserved areas. Our work aimed to develop an intelligent 

cardiology assistant that leverages real-time wearable data and 

integrates it with a locally hosted model to create a private, 

scalable, and smart diagnostic system. The pre-trained 

LLaMA-3.1 8B model was fine-tuned using instruction tuning 

on a custom cardiology-specific dataset, developed with 

ethical considerations and an accompanying disclaimer. The 

resulting system, LLM-Cardio, was evaluated using the 

BERTScore metric to assess the quality of its generated 

diagnostic responses. As a result, our fine-tuned model 

outperformed traditional machine learning models such as 

Naïve Bayes and logistic regression in cardiovascular disease 

diagnostic support and risk assessment, due to their limited 

capacity to handle long-form medical text. Compared with 

BioGPT and the base LLaMA model, the fine-tuned LLM-

Cardio excelled in cardiovascular disease diagnosis 

generation, achieving a precision of 0.9463 and thereby 

demonstrating its effectiveness in producing accurate and 

relevant cardiology diagnostics. 

Despite these promising results, our work remains at the 

proof-of-concept stage due to the use of simulated data, the 

absence of clinical validation, and limited multimodality. 

Looking ahead, future work will focus on integrating real-

world wearable data, conducting diagnostic evaluations in 

collaboration with healthcare professionals, and extending the 

system toward full multimodality, including medical image 

processing, in order to enhance its clinical robustness. With 

these enhancements, LLM-Cardio has the potential to become 

a valuable everyday health assistant, particularly in remote or 

underserved areas. 
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