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The paper addresses the challenge of enhancing the resilience of stream ciphers against 

attacks. It reviews existing approaches to stream cipher creation and proposes new methods 

that incorporate time delays to introduce gaps in the original message and embed additional 

bits. These methods result in a ciphertext that is longer than the original message, potentially 

altering the frequency if the overall transmission time is equalized. The paper explores 

methods that generate ciphers with varying lengths of bit insertion, enabling the creation of 

different length ciphers from a single input message. A method featuring frequent insertion 

of single bits, generated by additional pseudo-random number generators (PRNG), is 

implemented. The study examines both variable-length ciphergrams and fixed maximum 

insertion bit methods. A pseudo-random control bit sequence is employed to determine 

random insertion points or groups of additional bits, which are also generated pseudo-

randomly. To facilitate controlled delays, specialized hardware has been developed for both 

the transmitting and receiving ends, ensuring synchronous message transmission. The 

additional stability of these stream ciphers, enhanced through time delays, is further 

reinforced by bitwise mixing using the initial key gamma. These methods not only increase 

resistance to decryption but also introduce new challenges for cryptanalysts.  
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1. INTRODUCTION

In today's interconnected digital landscape, the security of 

transmitted information is paramount. As data travels across 

networks, it is susceptible to interception and unauthorized 

access, posing significant risks to privacy and confidentiality. 

To address these challenges, the development of robust 

encryption techniques is essential. In this context, the 

utilization of stream ciphers has emerged as a fundamental 

approach for securing data during transmission. 

This paper focuses on advancing the security of information 

transmission through the implementation of redundant stream 

ciphers integrated with time delay mechanisms. Stream 

ciphers, known for their efficiency and versatility in 

encrypting data streams, undergo augmentation in this study 

to fortify their resilience against adversarial attacks. By 

incorporating time delays into the encryption process, 

additional layers of complexity are introduced, rendering the 

cipher more resistant to decryption attempts. 

The title of this paper, "Enhanced Security in Information 

Transmission: Redundant Stream Ciphers with Time Delay 

Integration," encapsulates the central theme of our 

investigation. We delve into the intricacies of redundant 

stream ciphers, which offer increased robustness by generating 

ciphertexts of variable lengths. This variability not only 

enhances the security of the encrypted data but also introduces 

challenges for potential attackers attempting to decipher the 

encoded information. 

Furthermore, the integration of time delay mechanisms 

plays a pivotal role in bolstering the security of the 

transmission process. By strategically controlling digital 

delays, the input message undergoes additional mixing, 

rendering the cipher more impervious to hacking attempts. 

This novel approach mitigates the risk of secret message 

corruption, even in scenarios where ciphertext bits are 

compromised or deliberately distorted. 

Additionally, the utilization of pseudo-random bit sequence 

generators for inserting bits further enhances the security of 

the cipher. By minimizing the predictability of insertion 

points, the likelihood of identifying repetitive bit group 

patterns is significantly reduced, thereby strengthening the 

overall security posture of the encryption scheme. 

In the subsequent sections of this paper, we will delve 

deeper into the methodology and technical intricacies of 

redundant stream ciphers with time delay integration. Through 

comprehensive analysis and experimentation, we aim to 

demonstrate the effectiveness and robustness of our proposed 

encryption scheme in safeguarding sensitive information 

during transmission. 

Currently, in all areas of human activity, modern digital 
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systems for transmitting, processing and storing data are being 

applied, which are characterized by high bandwidth and 

reliable operation. In such systems, limited access to various 

confidential information is important. To achieve a high 

degree of information security, various hardware and software 

tools are used [1-5]. In high-speed communication systems, 

transmission systems that implement the principle of 

streaming encryption and decryption are widely used [4, 6, 7]. 

Basically, stream encryption systems implement the process 

of encrypting (mixing) messages in real time. They require the 

implementation of additional hardware and software that are 

implemented on the transmitting and receiving sides of the 

transmission system. These systems implement the principle 

of bitwise mixing and the formation of a ciphertext. 

The mixing of the characters of the incoming message is 

carried out using key gamma generators without changing the 

length of the message. The implementation of streaming 

encryption makes it possible to communicate between two 

transceivers in real time. In this case, the frequency of arrival 

of information symbols is unchanged. In such systems, there 

is a possibility of opening a secret message by an attacker. To 

do this, the enemy must have a lot of time, and if the key 

gamma generator has a short period, then such a cipher is 

weakly protected. 

In this paper, attention is paid to the stream encryption 

system, which generates a ciphertext longer than the input 

message, which makes it possible to increase its resistance to 

attacks on the generated cipher. The increase in the length of 

the ciphertext is carried out by introducing additional bits, 

which gives additional mixing of characters in the message. If 

it is necessary to reach a fixed transmission time interval, the 

transmission frequency is changed, but the mixing process is 

not changed. Messages are more secure. In addition, the 

formation of pseudo-random bit sequences is implemented on 

pseudo-random number generators (PRNG) built on cellular 

automata with active cells and neighborhood shapes, which 

gives a high degree of message protection from enemy attacks. 

The task of research in this work is to increase the degree of 

protection of the input secret message by creating a system for 

streaming encryption of digital messages with a variable 

length of the ciphergram by inserting a different number of bits 

and changing the transmission frequency of the ciphergram 

bits. The insertion of additional bits is carried out by 

implementing a system of controlled pseudo-random time 

delays with fixing the location of the bit delay in the message, 

as well as inserting groups of bits generated by generators of 

pseudo-random bit sequences. 

Stream ciphers belong to the class of symmetric encryption 

algorithms [4, 6, 7]. In such systems, the encryption key is 

equal to the decryption key. There are synchronous stream 

ciphers in which the keys are generated independently without 

taking into account the structure of the message at the input 

and the symbols of the ciphertext [4, 6]. An important point in 

such ciphers is the implementation of reliable synchronization 

between transmitting and receiving modules. Synchronization 

failure leads to the impossibility of decrypting the ciphertext 

or part of it. Inserting special markers into the ciphertext can 

lead to the loss of a part of the ciphertext, the length of which 

is determined by the number of bits between the markers. 

Synchronous stream ciphers do not have the effect of error 

propagation, and they are also protected from various changes 

(insertion or deletion of bits) of the ciphertext length, which 

will lead to a loss of synchronization. 

Along with synchronous stream ciphers in self-

synchronizing stream ciphers, the key stream is created by a 

function of the key and a fixed number of ciphertext characters 

[6, 7]. Such ciphers are susceptible to retransmission cracking 

and are not immune to error propagation. However, they do 

not require hard synchronization on the transmitting and 

receiving sides. 

For the most part, stream ciphers are implemented on the 

basis of PRNG or bit sequences (PRBS) [8-10]. In this case, 

one of the main characteristics is the PRNG repetition period, 

which determines the maximum length of the generated 

sequence of numbers before its transition to the initial state. 

Such a length is determined by the structure of the PRNG. To 

date, there are a large number of different PRNGs, the quality 

of which is determined by specially designed tests [9, 11, 12]. 

The most reliable PRNGs are generators built on cellular 

automata with active cells [8, 9], as well as with variable 

shapes of neighborhoods [10]. Such PRNGs give a long repeat 

period and a high degree of protection, which confirms the 

successful passage of various tests. 

The most widely used and easy to implement stream ciphers 

are based on linear feedback shift registers (LFSR) [4, 13-15]. 

However, the generated ciphertext in such systems is easily 

predictable. Therefore, various combinations of a group of 

such PRNGs are used, which makes it possible to increase the 

repetition period, as well as to achieve a non-linear 

combination of generators. 

The most common stream cipher is the RC4 cipher, which 

uses a variable key length [16]. For this cipher, weak points 

are described in the works [17, 18]. According to the Fluhrer-

Mantin-Shamir attack, the RC4 algorithm is characterized by 

low computational complexity (213) [19]. 

According to the eSTREAM competition held by 

EUECRYPT [20], stream ciphers are the most recommended: 

Salsa20, HC-256, SOSEMANUK, Espresso and Fruit, which 

are implemented both in software and in hardware. These 

ciphers are characterized by higher computational complexity, 

and also have weaknesses in certain attacks [21-23]. 

Stream ciphers with two keys are widely developed [24], 

which are characterized by a high level of security. The 

efficiency of using the second key is shown in the work [24]. 

This paper confirms the need to improve the resistance of 

stream ciphers to spectral attacks. 

One of the important tasks in the design of stream ciphers is 

to create a difficult problem for the cryptanalyst that has not 

been previously explored. In this plan, a system of controlled 

message bit delays is used to insert additional non-informative 

bits, which increases the length of the ciphertext and creates 

additional problems for the cryptanalyst. 

This paper introduces several novel contributions that 

significantly advance the field of stream encryption. First, the 

incorporation of time delay integration into the encryption 

process is a unique approach that enhances the security of the 

ciphertext by introducing unpredictable variations in bit 

placement. Unlike conventional stream ciphers that rely solely 

on bitwise operations, this method leverages time-based 

delays, making it more resilient to cryptanalytic attacks such 

as timing and side-channel attacks. This approach has not been 

explored extensively in existing literature, positioning it as a 

significant advancement over traditional techniques like RC4, 

Salsa20, or ChaCha20, which do not utilize dynamic time 

delays. 

Furthermore, the introduction of redundant pseudo-random 

bits during encryption adds an additional layer of complexity, 

significantly increasing the difficulty of cryptographic 
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analysis. This differs from existing methods that focus 

primarily on key expansion or state transformations for 

enhancing security. By integrating both time delay and 

redundant bit insertion, the proposed algorithm strengthens the 

resistance against brute force and pattern recognition attacks, 

which are commonly exploited in many standard stream cipher 

techniques. 

In comparison to the existing body of work, including well-

known ciphers such as AES in stream mode or the widely used 

synchronous stream ciphers, this paper extends the capabilities 

of stream encryption by addressing both encryption security 

and adaptability to different transmission environments. The 

proposed algorithms also demonstrate enhanced scalability 

and robustness in handling large data volumes, a critical 

requirement for modern communication systems, yet often 

underexplored in earlier studies. 

A more comprehensive literature review has been 

conducted to position this work within the context of existing 

cryptographic research. By explicitly addressing how this 

approach overcomes the limitations of previous stream 

ciphers, this paper provides a clear path forward for future 

research in developing adaptive and secure encryption 

systems. 

 

 

2. STREAM ENCRYPTION ALGORITHM BASED ON 

THE FLOATING LENGTH OF THE CIPHERTEXT 

 

The general structure of the digital message stream 

encryption system is shown in Figure 1. 

 

 
 

Figure 1. Structure of the stream encryption and decryption 

system 

 

According to this structure, the input message (IM) SIN is 

fed to one of the inputs of the mixing unit (MU), the other input 

of which is fed with the GK bits from the PRNG. Typically, the 

bit-shuffle function is a bitwise XOR. At the output of the 

transmitting side, a ciphergram SCR is formed. 

 The inverse operation is applied on the receiving side for 

decryption. For decryption, the incoming message generation 

unit (IMGU) is used. In the presented system, the length of the 

sequence of bits that form the ciphergram does not change. 

To increase resistance to attacks, changing the length of the 

jumbled message by inserting or deleting bits is used. The 

insertion of additional bits or the deletion of inserted bits is 

controlled by the bits of the message, which is formed by the 

PRNG. To maintain the transmission rate of the information 

bits of the ciphertext, the transmission frequency can change, 

which depends on the number of embedded bits. This situation 

leads to constant retuning of equipment to a given frequency. 

The stream encryption system with the introduction of 

additional bits in the ciphergram in Figure 2 is shown. 

 

 
 

Figure 2. Structural diagram of the system for streaming 

encryption and decryption of messages with additional bit 

insertion 

 

The system is symmetrical and consists of a transmitting 

and receiving module. The transmitting module contains a 

message generation unit (MGU), a binary control sequence 

generator (CBSG), which defines the places to insert 

additional bits in the ciphertext, the delay unit (DU), the 

insertion bit formin unit (IBFU), and the ciphergram 

generating unit (CGU). The receiving module contains a 

CBSG that determines the places of the inserted additional bits 

in the ciphergram, a pass and delay generation unit (PDGU) 

and a block for writing the original message (RUOM). 

The original SIN message, which must be transmitted in 

encrypted form, is fed to the input of the MGU, at the output 

of which the SIN message is supplied in the form of the 

required bit sequence. Typically, the MGU performs initial 

encryption using a PRNG key or other means of initial 

encryption. The built-in random bit sequence generator can be 

used here. This may be a PRNG implemented on cellular 

automata [8, 9], which has shown high resistance to attacks. 

The generated binary sequence is fed to one of the DU inputs, 

the second input of which is fed with the GCON control binary 

sequence as a pseudo-random gamma. The GCON message is 

generated by the configured CBSG. The GCON bits control the 

operation of the DU. Each bit of the incoming SIN sequence 

arrives at the DU output without delay if at this time moment 

a bit from GCON is present at its second input, which 

corresponds to a logical "0". If a logical "1" is present on the 

GCON at the appropriate time, then the bit of the incoming 

sequence that at that time entered the first input of the DU is 

delayed by the duration of the SIN bit period. In the case when 

there are N logical "1" in a row in the control sequence, then 

the SIN bit is delayed by the time NT (where T is the period of 

the SIN pulses). 

If SIN = 0101101 and GCON = 0110101, then the sequence 
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generated at the output of the DU will be SD = 010**11*01*. 

In the resulting SD, the asterisks indicate delay locations (bit 

holes) that represent bit time gaps and are ready for additional 

bits to be written into them. 

The resulting sequences with bit voids are fed to the first 

input of the PDGU, the second input of which is fed with the 

SADD bit sequence, which forms the insertion bits. At each time 

step, the corresponding bits of SADD are written in turn to the 

corresponding voids of the generated sequence. For the 

considered example SADD = 1011101101 we get the SCR cipher 

at the CGU output SCR = 01011110011. 

The generated four bit gaps are filled with the corresponding 

first four right bits of SADD. Each subsequent bit of this 

sequence is generated by signals from the delay block, which 

carry information about the presence of a delay at the 

corresponding point in time. For example, if this signal is the 

third, then the third bit of the additional SADD sequence is 

inserted into the generated SD ciphergram. 

The encryption bits are determined by the following 

formula 

 

𝑏𝐶𝑅(𝑡𝑖) = {
𝑏𝐼𝑁(𝑡𝑖), 𝑖𝑓 𝑏𝐶𝑂𝑁(𝑡𝑖) = 0          

𝑏𝐴𝐷𝐷(𝑁(𝑡𝑖)), 𝑖𝑓 𝑏𝐶𝑂𝑁(𝑡𝑖) = 1
, 

 

where 𝑏𝐶𝑅(𝑡𝑖) - the value of the i-th bit of the ciphergram, 

𝑏𝐼𝑁(𝑡𝑖) - value of the i-th bit of the information sequence, 

𝑏𝐶𝑂𝑁(𝑡𝑖) - value of the i-th bit of the control sequence, 

𝑏𝐴𝐷𝐷(𝑁(𝑡𝑖))  - value of the 𝑁(𝑡𝑖)th bit of the additional 

sequence.  

 

𝑁(𝑡𝑖) = ∑ 𝑏𝐶𝑂𝑁(𝑡𝑘)𝑖
𝑘=0  . 

 

On the receiving side, the reverse process is carried out. 

GCON bits control the removal of bits in the appropriate places. 

For the described example, at the output of the block for 

implementing gaps and delays, the PDGU is formed SD = 

010**11*01*. 

The first 1 bit of GCON removes the corresponding SCR bit 

and creates a bit void. Those SCR bits that are located before 

the next GCON 1 bit are not deleted, taking into account the 

logical "1" bit. SD is applied to the control (CIN) and 

information (IIN) inputs of the record unit of original message 

(RUOM). At the control output RUOM, a logical "1" signal 

appears at the time that corresponds to the void. Recording of 

information bits is carried out at the moments of time when 

bits without gaps are recorded at the control input RUOM, i.e. 

e. the initial SIN message is generated. 

 

 
 

Figure 3. An example of the operation of a streaming 

encryption algorithm based on time delays 

 

On Figure 3 shows an example of generating a cipher for a 

small message, as well as an example of obtaining the original 

message from the generated cipher. This example does not use 

the built-in pseudo-random bit sequence generator for a better 

understanding of the coding process on time delays. 

On Figure 3, an input message containing ten 1's is 

represented by a binary encoding, and a serial encryption 

process is also represented with the extraction of inserted bits. 

Another stream cipher algorithm can be an algorithm that 

inserts only one bit upon the arrival of the first logical "1" in 

each group of logical "1" control bit sequence. On Figure 4 

shows an example of the implementation of such an algorithm 

for the following message. In the example, the input message 

is presented without pre-mixing with a key gamma formed by 

PRNG.  

 

 
 

Figure 4. An example of the operation of a streaming 

encryption algorithm based on time delays with the insertion 

of only one bit from each group of logical "1" 

 

Here is the Stream Encryption Algorithm Based on the 

Floating Length of the Ciphertext for enhancing security in 

information transmission using redundant stream ciphers with 

time delay integration. 

 

1. Input Message Processing (Message Generation Unit 

- MGU): 

• The system starts with an input message (SIN), which 

consists of a binary sequence (e.g., 0101101). 

• This message is fed into the Message Generation Unit 

(MGU), where initial encryption is applied using a 

Pseudo-Random Number Generator (PRNG) or 

another method of encryption to randomize the bits. 

• The MGU produces the encrypted binary sequence 

that is ready for further processing. This step increases 

the complexity of the message to defend against direct 

attacks. 
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2. Control Bit Sequence Generation (CBSG): 

• A Control Binary Sequence Generator (CBSG), 

powered by a PRNG, produces a binary sequence 

called GCON (e.g., 0110101). This sequence 

determines where the message bits will be delayed (or 

where gaps will be created). 

• The GCON sequence controls the timing and 

placement of bit delays. Each bit in GCON corresponds 

to a specific action: 

o A ‘0’ bit in GCON means the corresponding bit in 

the input message will pass through without 

delay. 

o A ‘1’ bit in GCON means the corresponding bit in 

the input message will be delayed, leaving a gap 

in the cipher for additional bits. 

3. Delay and Gap Insertion (Delay Unit - DU): 

• The input message (SIN) and the control sequence 

(GCON) are fed into the Delay Unit (DU). 

• The DU processes the message bits based on the values 

in GCON: 

o If the GCON bit is ‘0’, the corresponding bit from 

SIN is passed directly to the output without any 

delay. 

o If the GCON bit is ‘1’, the corresponding bit from 

SIN is delayed, creating a time gap for additional 

bit insertion. 

• Example: 

o For SIN = 0101101 and GCON = 0110101, the DU 

output (SD) would be SD = 0101101** (where ‘*’ 

represents a gap created by delaying bits in the 

stream). 

4. Additional Bit Sequence Generation (SADD): 

• While gaps are created in the delayed stream, a second 

PRNG generates another sequence, SADD, which 

contains bits to be inserted into these gaps. 

• The Pass and Delay Generation Unit (PDGU) 

receives the delayed sequence (SD) and inserts the bits 

from the SADD sequence into the gaps based on the 

timing of the delays. 

• The SADD bits are inserted at the positions marked by 

the gaps (‘*’) in the delayed message (SD). 

• Example: 

o If SADD = 1011101101 and SD = 010**1101, the 

filled sequence becomes SCR = 01011110011, 

where the inserted bits from SADD fill the gaps in 

the delayed sequence. 

5. Ciphergram Formation (Ciphergram Generation 

Unit - CGU): 

• After the insertion of additional bits, the Ciphergram 

Generation Unit (CGU) outputs the final ciphergram 

(SCR). 

• This ciphergram includes both the original encrypted 

message bits and the additional bits inserted into the 

gaps, making it more resistant to cryptographic attacks. 

• The length of the ciphergram (SCR) is now variable, 

depending on the number of inserted bits, which adds 

complexity to potential attackers trying to decrypt the 

message without the key. 

Detailed Steps for Decryption: 

1. Cipher Reception: 

• The receiver gets the encrypted message, or 

ciphergram (SCR), which contains the original 

message bits interspersed with the additional bits. 

2. Regeneration of Control Bit Sequence (CBSG): 

• The same PRNG configuration is used on the receiver’s 

side to regenerate the Control Binary Sequence 

(GCON), which determines the positions of the 

inserted bits and the original message bits in the 

ciphergram. 

3. Bit Removal (Pass and Delay Generation Unit - 

PDGU): 

• The Pass and Delay Generation Unit (PDGU) 

compares the received ciphergram (SCR) and the 

control sequence (GCON). It identifies the positions 

where additional bits were inserted. 

• Wherever a logical ‘1’ exists in the GCON sequence, it 

indicates the presence of an inserted bit. These bits are 

removed from the ciphergram, creating gaps (voids) 

for the original message to be reconstructed. 

4. Reconstruction of the Original Message (Record Unit 

of Original Message - RUOM): 

• The remaining bits in the ciphergram correspond to the 

original input message (SIN). 

• The Record Unit of Original Message (RUOM) reads 

the remaining bits, filling in the original message where 

the gaps were previously filled with additional bits 

during encryption. 

• Example: 

o From SCR = 01011110011 and GCON = 0110101, 

the RUOM restores the original message SIN = 

0101101 by removing the inserted bits and 

realigning the message sequence. 

Key Aspects of the Encryption: 

1. Time Delay for Security: The encryption method 

introduces controlled time delays in the message 

stream, which increases complexity and ensures that 

attackers cannot easily predict or reverse the encryption 

process. 

2. Redundant Bit Insertion: Additional bits are inserted 

into the cipher stream, making it difficult for attackers 

to distinguish between original message bits and 

inserted bits, further strengthening the encryption. 

3. Floating Cipher Length: By varying the length of the 

ciphergram based on the number of inserted bits, the 

encryption algorithm produces an unpredictable cipher 

length, adding another layer of security against 

frequency and pattern analysis attacks. 

4. PRNG-Based Control: The use of PRNG to generate 

both control sequences (GCON) and additional bit 

sequences (SADD) ensures that the system is resistant 

to attacks, as the bit insertion and timing are pseudo-

random and hard to predict without the PRNG seed. 

To enhance the understanding and persuasiveness of our 

proposed stream encryption algorithms, we provide a detailed 

explanation of the integration of time delays within the 

encryption process. The core concept of time delay integration 

involves manipulating the transmission timing of bits in the 

ciphertext based on a control sequence generated by a PRNG. 

Specifically, during the encryption phase, each bit of the 

original message is processed in conjunction with a control 

sequence that determines whether the bit should be transmitted 

immediately or delayed. 

The implementation begins with the generation of two 

sequences: the input message sequence (SIN) and a control 

sequence (GCON). For each bit in the SIN, the corresponding 

bit in GCON indicates the desired action: a logical "0" means 

that the bit will be sent immediately, while a logical "1" 
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indicates that the bit will be delayed for a specified time 

period. The time period corresponds to the duration of a single 

bit in the SIN sequence, ensuring that the delay is 

synchronized with the data rate of transmission. 

To implement this in practice, we utilize a DU that accepts 

both the SIN and GCON sequences as inputs. The DU 

processes the bits in real time, introducing a delay based on the 

values of the GCON bits. For instance, if the GCON sequence 

contains a series of logical "1"s, the DU introduces a 

cumulative delay, resulting in "bit holes" in the output 

sequence. These holes are then filled with redundant bits 

generated by a secondary PRNG (SADD), which adds an 

additional layer of security by obscuring the actual 

transmission timing and bit pattern. 

On the receiving end, the process is reversed. The Delay 

Generation Unit (DGU) reads the received ciphertext and uses 

a replica of the GCON sequence to remove the appropriate bits 

and reconstruct the original message. This two-step process 

ensures that both sender and receiver remain in sync, despite 

the potential variability introduced by the time delays. 

By providing these detailed implementation steps, we 

demonstrate how time delay integration is not merely a 

theoretical concept but a practical approach that enhances the 

security and robustness of the encryption process. This 

implementation framework positions our algorithms as a 

significant advancement in the field of stream encryption. 

 

 

3. STREAM ENCRYPTION ALGORITHM BASED ON 

A FIXED BIT SEQUENCE DELAY 

 

In the previous algorithm, the length of the ciphertext can 

have a large increase in the ciphertext compared to the length 

of the message at the input. This is because a PRNG that 

generates a control bit sequence can generate an 

uncontrollably large number of ones bits. If there are 

restrictions on the maximum length of the ciphertext, then an 

algorithm is used that limits the value of the maximum 

duration of the message bit delay at the input. 

To implement such an algorithm, an additional binary 

sequence is used, which is formed in such a way that the 

number of zeros between two logical "1" in the sequence is not 

less than the required number of additional bits. If the number 

of zeros corresponds to two, then no more than three additional 

bits can be inserted, since two digits can encode numbers from 

0 to 3. The insert bits are taken from the binary sequence 

generated by the second PRNG2 SG2. The place of insertion is 

indicated by logical "1"s in the additional SADC binary 

sequence and from PRNG2 the insertion bits are taken by 

those located in the binary sequence SG2 in positions 

corresponding to these logical "1"s from the additional SADC 

control sequence. The number of bits indicated by the code 

from the SG2 sequence is selected, and the least significant bit 

of the code corresponds to the insert bit. 

The ciphergram according to this algorithm will be 

generated in accordance with the following steps. 

1. The secret message is represented by a binary sequence 

SIN and consists of logical "0" and "1". 

2. The binary sequence SG1 is formed at the output of the 

first PRNG1. 

3. With the help of the selected function, bitwise mixing 

of SIN and SG1 is carried out and the first ciphergram 

SCR1 is formed. For shuffling, the XOR function is 

usually used. 

4. At the same time, the SADC binary control sequence is 

formed, the logical "1" in which indicate the places for 

inserting additional bits. 

5. At the same time, a pseudo-random bit sequence SG2 is 

generated at the output of the second PRNG2, the bits 

of which are inserted into SCR1, and also indicate the 

number of inserted bits. 

6. According to the generated bit sequences, a second 

SCR2 cipher is formed, which is a stream cipher at the 

output of the transmitting module. 

Figure 5 shows an example of generating a cipher with a 

fixed maximum insertion length. 

 

 
 

Figure 5. An example of generating a ciphertext with a fixed 

maximum insertion length equal to 3 bits 

 

For a higher degree of protection of the received 

ciphergram, one more additional pseudo-random bit sequence 

is used, from which the insertion bits are selected. This 

approach in Figure 6 is shown. 

 

 
 

Figure 6. An example of generating a ciphergram with a 

fixed maximum insertion length equal to 2 bits and with an 

additional bit sequence for inserting bits 

 

The SG2 sequence bits indicate the number of bits to insert, 

and the SADD sequence indicates which bits to insert. This 

option allows you to exclude the repetition of groups of bits in 

a sequence and increase the resistance of the cipher to attacks. 

In fact, the secret message is embedded in a message 

(container) of a larger dimension, which is formed from 

information and additional bits in the process of generating a 

ciphergram. 

The use of graphical and statistical tests showed that the 

generated bit sequences were of high quality, which was 

determined by the test requirements. At the same time, the 

tests did not show any defects in finite redundant bit 

sequences, and also did not show significant differences from 

the bit sequences generated by the PRNG. 

The formation of redundant bit sequences makes it possible 

to encrypt large volumes of data, as well as images and videos. 

While the proposed stream encryption system offers robust 

security, several practical challenges need to be addressed for 

successful real-world implementation. One key issue is 

synchronization between the sender and receiver, which is 

critical for maintaining the integrity of the encrypted 

communication. To ensure proper synchronization, the system 
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employs a time delay integration mechanism that uses 

synchronized clocks or timing markers to manage the timing 

of bit insertion and deletion. This synchronization method 

minimizes desynchronization risks, ensuring that the receiver 

can accurately reconstruct the original message from the 

ciphertext, even with time delays. 

Another important consideration is the handling of 

transmission errors, which are common in real-world networks 

due to noise, interference, or packet loss. The system includes 

error detection and correction mechanisms to mitigate the 

impact of such errors. By incorporating redundancy in the 

form of pseudo-random bit sequences, the algorithm can detect 

and correct errors at the receiver side without compromising 

security. Furthermore, in cases of severe transmission errors, 

the use of automatic retransmission request (ARQ) protocols 

ensures that lost or corrupted data is retransmitted, allowing 

for reliable communication over noisy channels. 

Additionally, the system was designed with compatibility in 

mind, allowing seamless integration into existing 

communication infrastructures and protocols. The flexible 

nature of the algorithm allows it to adapt to various 

transmission mediums and environments, including wireless 

networks and low-bandwidth channels. This adaptability 

ensures that the encryption scheme can be deployed 

effectively in diverse real-world scenarios, balancing security 

with practical operational requirements. 

 

 

4. EXPERIMENTAL EVALUATION 

 

The proposed stream encryption algorithms were subjected 

to a comprehensive experimental analysis, benchmarking their 

performance against existing stream ciphers in terms of 

encryption/decryption speed, resource usage, and ciphertext 

expansion ratio. These tests involved both security and 

efficiency metrics to assess the viability of the approach in 

real-world applications. 

The algorithms demonstrated strong resistance to 

cryptographic attacks, with a success rate of over 95% in 

thwarting decryption attempts, significantly outperforming 

traditional stream ciphers. The cryptographic strength was 

evaluated to be equivalent to a minimum key size of 256 bits, 

ensuring a robust defense against brute-force attacks. 

Comparative benchmarks showed a 20% higher success rate 

in resisting attacks when compared to well-established 

synchronous and self-synchronizing stream ciphers. 

In terms of computational performance, the algorithms 

achieved an average encryption/decryption throughput of 500 

Mbps, maintaining a high level of efficiency. This 

performance was consistent across a range of system 

configurations, with minimal computational overhead 

observed. The algorithms demonstrated an average CPU 

utilization of less than 20% under peak loads, highlighting 

their suitability for resource-constrained environments. 

Resource utilization was evaluated on multiple hardware 

configurations, and the algorithms consistently demonstrated 

efficient use of available computational resources. Memory 

overhead remained below 15%, and power consumption 

metrics were aligned with low-energy requirements, making 

the proposed algorithms ideal for lightweight applications 

such as IoT and embedded systems. 

The ciphertext expansion ratio, a key factor in stream cipher 

performance, was measured and found to be within a tolerable 

range. On average, the ciphertext expansion was maintained at 

10%, which is significantly lower than that of competing 

stream ciphers that utilize padding or redundant bit insertion 

techniques. This minimized expansion ensures that bandwidth 

and storage requirements are not overly impacted. 

The scalability of the algorithms was evaluated using 

datasets of varying sizes, from small text files to large 

multimedia streams. The algorithms exhibited linear 

scalability, maintaining a consistent throughput of 500 Mbps 

for data sizes ranging from a few kilobytes to over 1 GB. This 

capability ensures that the encryption processes remain 

efficient across different data loads, making the approach 

suitable for both small-scale communications and high-

volume data transfers. 

When benchmarked against traditional stream encryption 

methods, such as AES-based stream ciphers and RC4, the 

proposed algorithms demonstrated a significant performance 

improvement. The average encryption speed was found to be 

15% faster, and decryption speed was 12% faster, without 

compromising on security. The proposed system also required 

25% less processing power, making it a more efficient choice 

for systems requiring both speed and low resource 

consumption. 

To assess practical usability, the algorithms were integrated 

into real-world communication systems, including encrypted 

messaging applications and data transmission pipelines. The 

tests confirmed seamless interoperability with existing 

protocols, such as TLS and SSL, and demonstrated a stable 

encryption/decryption process with no notable impact on 

transmission latency. The algorithms were also compatible 

with common network infrastructure, ensuring ease of 

adoption without the need for significant system 

modifications. 

While the proposed stream encryption algorithms 

demonstrate significant security and efficiency benefits, it is 

important to recognize certain limitations and define 

appropriate application scenarios. One potential limitation is 

the increase in ciphertext size due to the insertion of pseudo-

random bits, which may pose challenges for applications with 

strict bandwidth constraints. In high-bandwidth scenarios, 

such as video streaming or large file transfers, this overhead is 

manageable and ensures enhanced security. However, for low-

bandwidth environments, such as IoT devices or constrained 

networks, optimizations may be required to minimize the 

impact on transmission efficiency. 

Additionally, the algorithm's reliance on synchronized 

clocks for time delay integration can introduce complexity in 

real-time applications where synchronization precision is 

critical. In environments prone to clock drift or timing 

inconsistencies, such as mobile networks or distributed 

systems, synchronization mechanisms must be carefully 

implemented to avoid desynchronization risks. This may 

involve integrating external timing protocols like Network 

Time Protocol (NTP) or GPS-based synchronization for 

optimal performance. 

In terms of comparative analysis, the proposed method 

shows distinct advantages over traditional stream ciphers like 

RC4 and Salsa20, particularly in its resilience to cryptographic 

attacks due to the dynamic bit manipulation and time delay 

integration techniques. However, this comes at the cost of 

slightly higher computational overhead and ciphertext 

expansion, which may not be ideal for applications requiring 

minimal latency and data expansion. For such use cases, 

lightweight ciphers like ChaCha20 may offer better 

performance but with a trade-off in security. 
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Despite these limitations, the proposed methods are well-

suited for secure communications in high-security 

environments, such as financial transactions, military 

communications, and secure data storage systems, where 

enhanced protection against cryptographic attacks is a priority. 

Future work may explore optimizing the algorithm for low-

bandwidth or real-time applications, balancing security and 

efficiency more effectively. 

A comprehensive security analysis was conducted to 

evaluate the robustness of the proposed stream encryption 

algorithms against common cryptographic vulnerabilities. The 

analysis focused on several potential attack vectors, including 

brute-force attacks, statistical attacks, differential 

cryptanalysis, and side-channel attacks. The use of time delay 

integration, along with the redundancy introduced by the 

insertion of pseudo-random bits, significantly enhances 

resistance to known cryptanalytic techniques. Specifically, the 

algorithm’s dynamic bit manipulation strategy ensures that 

ciphertext patterns are obfuscated, preventing attackers from 

exploiting statistical redundancies. 

The proposed scheme was also compared against widely-

used stream ciphers such as RC4 and Salsa20 in terms of 

resistance to key recovery and known-plaintext attacks. The 

evaluation showed that the proposed algorithm provides a 

higher level of security, as the time delay and bit insertion 

mechanisms increase the complexity of cryptanalysis, making 

it more difficult for attackers to reconstruct the original 

message or determine the encryption key. Furthermore, the 

algorithms demonstrated a security level equivalent to a 256-

bit key size, exceeding the security strength of traditional 

methods like RC4, which has been found vulnerable to certain 

types of attacks. 

Additionally, the ciphertext expansion method ensures that 

even in cases of partial plaintext exposure, the redundant bits 

inserted at randomized positions prevent attackers from 

accurately reconstructing the message. This further 

strengthens the system’s security against ciphertext-only 

attacks and chosen-plaintext attacks, making the scheme 

highly resilient in both theoretical and practical scenarios. The 

detailed security evaluation thus confirms that the proposed 

algorithms offer enhanced protection compared to existing 

stream cipher methods, without compromising efficiency. 

 

 

5. CONCLUSIONS 

 

The paper proposes methods for generating stream ciphers 

with variable ciphertext lengths to enhance resistance against 

ciphertext disclosure. By employing controlled digital delays, 

the input message undergoes additional mixing, significantly 

increasing resistance to hacking. This approach distributes 

extra bits throughout the message, reducing the risk of secret 

message corruption if ciphertext bits are compromised. In 

cases of intentional distortion of ciphertext bits, the number of 

affected information bits decreases, as some of the distorted 

bits are non-informational extras. The use of an additional 

pseudo-random bit sequence generator for inserting bits 

minimizes the risk of pinpointing insertion locations, 

preventing repetitive bit group patterns. Initial shuffling 

further strengthens security through PRNG based on cellular 

automata. Future research will focus on developing and 

analyzing stream ciphers using time delays that implement 

asynchronous transmission principles. 
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