%ETA

International Information and
Engineering Technology Association

Ingénierie des Systéemes d’Information
Vol. 30, No. 12, December, 2025, pp. 3253-3261

Journal homepage: http://iieta.org/journals/isi

Enhanced Security in Information Transmission: Redundant Stream Ciphers with Time

Delay Integration
Nashat Albdour!", Hisham Alrawashdeh?

! Department of Computer and Communicatio
6611, Jordan

Check for
updates

ns Engineering, College of Engineering, Tafila Technical University, Tafila

2 Department of Electrical Power and Mechatronics Engineering, College of Engineering, Tafila Technical University, Tafila

66110, Jordan

Corresponding Author Email: dr.nashat82@yahoo.com

Copyright: ©2025 The authors. This article is
(http://creativecommons.org/licenses/by/4.0/).

published by IIETA and is licensed under the CC BY 4.0 license

https://doi.org/10.18280/is1.301218

ABSTRACT

Received: 5 June 2025

Revised: 26 October 2025
Accepted: 10 November 2025
Available online: 31 December 2025

Keywords:

stream cipher, time delays, pseudorandom
number generator, control bit sequence,
sequence of bit of insertion

The paper addresses the challenge of enhancing the resilience of stream ciphers against
attacks. It reviews existing approaches to stream cipher creation and proposes new methods
that incorporate time delays to introduce gaps in the original message and embed additional
bits. These methods result in a ciphertext that is longer than the original message, potentially
altering the frequency if the overall transmission time is equalized. The paper explores
methods that generate ciphers with varying lengths of bit insertion, enabling the creation of
different length ciphers from a single input message. A method featuring frequent insertion
of single bits, generated by additional pseudo-random number generators (PRNG), is
implemented. The study examines both variable-length ciphergrams and fixed maximum
insertion bit methods. A pseudo-random control bit sequence is employed to determine
random insertion points or groups of additional bits, which are also generated pseudo-
randomly. To facilitate controlled delays, specialized hardware has been developed for both
the transmitting and receiving ends, ensuring synchronous message transmission. The
additional stability of these stream ciphers, enhanced through time delays, is further
reinforced by bitwise mixing using the initial key gamma. These methods not only increase

resistance to decryption but also introduce new challenges for cryptanalysts.

1. INTRODUCTION

In today's interconnected digital landscape, the security of
transmitted information is paramount. As data travels across
networks, it is susceptible to interception and unauthorized
access, posing significant risks to privacy and confidentiality.
To address these challenges, the development of robust
encryption techniques is essential. In this context, the
utilization of stream ciphers has emerged as a fundamental
approach for securing data during transmission.

This paper focuses on advancing the security of information
transmission through the implementation of redundant stream
ciphers integrated with time delay mechanisms. Stream
ciphers, known for their efficiency and versatility in
encrypting data streams, undergo augmentation in this study
to fortify their resilience against adversarial attacks. By
incorporating time delays into the encryption process,
additional layers of complexity are introduced, rendering the
cipher more resistant to decryption attempts.

The title of this paper, "Enhanced Security in Information
Transmission: Redundant Stream Ciphers with Time Delay
Integration," encapsulates the central theme of our
investigation. We delve into the intricacies of redundant
stream ciphers, which offer increased robustness by generating
ciphertexts of variable lengths. This variability not only

3253

enhances the security of the encrypted data but also introduces
challenges for potential attackers attempting to decipher the
encoded information.

Furthermore, the integration of time delay mechanisms
plays a pivotal role in bolstering the security of the
transmission process. By strategically controlling digital
delays, the input message undergoes additional mixing,
rendering the cipher more impervious to hacking attempts.
This novel approach mitigates the risk of secret message
corruption, even in scenarios where ciphertext bits are
compromised or deliberately distorted.

Additionally, the utilization of pseudo-random bit sequence
generators for inserting bits further enhances the security of
the cipher. By minimizing the predictability of insertion
points, the likelihood of identifying repetitive bit group
patterns is significantly reduced, thereby strengthening the
overall security posture of the encryption scheme.

In the subsequent sections of this paper, we will delve
deeper into the methodology and technical intricacies of
redundant stream ciphers with time delay integration. Through
comprehensive analysis and experimentation, we aim to
demonstrate the effectiveness and robustness of our proposed
encryption scheme in safeguarding sensitive information
during transmission.

Currently, in all areas of human activity, modern digital

https://orcid.org/0000-0003-0334-5226
https://orcid.org/0009-0007-8268-4926
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301218&domain=pdf

systems for transmitting, processing and storing data are being
applied, which are characterized by high bandwidth and
reliable operation. In such systems, limited access to various
confidential information is important. To achieve a high
degree of information security, various hardware and software
tools are used [1-5]. In high-speed communication systems,
transmission systems that implement the principle of
streaming encryption and decryption are widely used [4, 6, 7].
Basically, stream encryption systems implement the process
of encrypting (mixing) messages in real time. They require the
implementation of additional hardware and software that are
implemented on the transmitting and receiving sides of the
transmission system. These systems implement the principle
of bitwise mixing and the formation of a ciphertext.

The mixing of the characters of the incoming message is
carried out using key gamma generators without changing the
length of the message. The implementation of streaming
encryption makes it possible to communicate between two
transceivers in real time. In this case, the frequency of arrival
of information symbols is unchanged. In such systems, there
is a possibility of opening a secret message by an attacker. To
do this, the enemy must have a lot of time, and if the key
gamma generator has a short period, then such a cipher is
weakly protected.

In this paper, attention is paid to the stream encryption
system, which generates a ciphertext longer than the input
message, which makes it possible to increase its resistance to
attacks on the generated cipher. The increase in the length of
the ciphertext is carried out by introducing additional bits,
which gives additional mixing of characters in the message. If
it is necessary to reach a fixed transmission time interval, the
transmission frequency is changed, but the mixing process is
not changed. Messages are more secure. In addition, the
formation of pseudo-random bit sequences is implemented on
pseudo-random number generators (PRNG) built on cellular
automata with active cells and neighborhood shapes, which
gives a high degree of message protection from enemy attacks.

The task of research in this work is to increase the degree of
protection of the input secret message by creating a system for
streaming encryption of digital messages with a variable
length of the ciphergram by inserting a different number of bits
and changing the transmission frequency of the ciphergram
bits. The insertion of additional bits is carried out by
implementing a system of controlled pseudo-random time
delays with fixing the location of the bit delay in the message,
as well as inserting groups of bits generated by generators of
pseudo-random bit sequences.

Stream ciphers belong to the class of symmetric encryption
algorithms [4, 6, 7]. In such systems, the encryption key is
equal to the decryption key. There are synchronous stream
ciphers in which the keys are generated independently without
taking into account the structure of the message at the input
and the symbols of the ciphertext [4, 6]. An important point in
such ciphers is the implementation of reliable synchronization
between transmitting and receiving modules. Synchronization
failure leads to the impossibility of decrypting the ciphertext
or part of it. Inserting special markers into the ciphertext can
lead to the loss of a part of the ciphertext, the length of which
is determined by the number of bits between the markers.
Synchronous stream ciphers do not have the effect of error
propagation, and they are also protected from various changes
(insertion or deletion of bits) of the ciphertext length, which
will lead to a loss of synchronization.

Along with synchronous stream self-

ciphers in

3254

synchronizing stream ciphers, the key stream is created by a
function of the key and a fixed number of ciphertext characters
[6, 7]. Such ciphers are susceptible to retransmission cracking
and are not immune to error propagation. However, they do
not require hard synchronization on the transmitting and
receiving sides.

For the most part, stream ciphers are implemented on the
basis of PRNG or bit sequences (PRBS) [8-10]. In this case,
one of the main characteristics is the PRNG repetition period,
which determines the maximum length of the generated
sequence of numbers before its transition to the initial state.
Such a length is determined by the structure of the PRNG. To
date, there are a large number of different PRNGs, the quality
of which is determined by specially designed tests [9, 11, 12].
The most reliable PRNGs are generators built on cellular
automata with active cells [8, 9], as well as with variable
shapes of neighborhoods [10]. Such PRNGs give a long repeat
period and a high degree of protection, which confirms the
successful passage of various tests.

The most widely used and easy to implement stream ciphers
are based on linear feedback shift registers (LFSR) [4, 13-15].
However, the generated ciphertext in such systems is easily
predictable. Therefore, various combinations of a group of
such PRNGs are used, which makes it possible to increase the
repetition period, as well as to achieve a non-linear
combination of generators.

The most common stream cipher is the RC4 cipher, which
uses a variable key length [16]. For this cipher, weak points
are described in the works [17, 18]. According to the Fluhrer-
Mantin-Shamir attack, the RC4 algorithm is characterized by
low computational complexity (2'%) [19].

According to the eSTREAM competition held by
EUECRYPT [20], stream ciphers are the most recommended:
Salsa20, HC-256, SOSEMANUK, Espresso and Fruit, which
are implemented both in software and in hardware. These
ciphers are characterized by higher computational complexity,
and also have weaknesses in certain attacks [21-23].

Stream ciphers with two keys are widely developed [24],
which are characterized by a high level of security. The
efficiency of using the second key is shown in the work [24].
This paper confirms the need to improve the resistance of
stream ciphers to spectral attacks.

One of the important tasks in the design of stream ciphers is
to create a difficult problem for the cryptanalyst that has not
been previously explored. In this plan, a system of controlled
message bit delays is used to insert additional non-informative
bits, which increases the length of the ciphertext and creates
additional problems for the cryptanalyst.

This paper introduces several novel contributions that
significantly advance the field of stream encryption. First, the
incorporation of time delay integration into the encryption
process is a unique approach that enhances the security of the
ciphertext by introducing unpredictable variations in bit
placement. Unlike conventional stream ciphers that rely solely
on bitwise operations, this method leverages time-based
delays, making it more resilient to cryptanalytic attacks such
as timing and side-channel attacks. This approach has not been
explored extensively in existing literature, positioning it as a
significant advancement over traditional techniques like RC4,
Salsa20, or ChaCha20, which do not utilize dynamic time
delays.

Furthermore, the introduction of redundant pseudo-random
bits during encryption adds an additional layer of complexity,
significantly increasing the difficulty of -cryptographic

analysis. This differs from existing methods that focus
primarily on key expansion or state transformations for
enhancing security. By integrating both time delay and
redundant bit insertion, the proposed algorithm strengthens the
resistance against brute force and pattern recognition attacks,
which are commonly exploited in many standard stream cipher
techniques.

In comparison to the existing body of work, including well-
known ciphers such as AES in stream mode or the widely used
synchronous stream ciphers, this paper extends the capabilities
of stream encryption by addressing both encryption security
and adaptability to different transmission environments. The
proposed algorithms also demonstrate enhanced scalability
and robustness in handling large data volumes, a critical
requirement for modern communication systems, yet often
underexplored in earlier studies.

A more comprehensive literature review has been
conducted to position this work within the context of existing
cryptographic research. By explicitly addressing how this
approach overcomes the limitations of previous stream
ciphers, this paper provides a clear path forward for future
research in developing adaptive and secure encryption
systems.

2. STREAM ENCRYPTION ALGORITHM BASED ON
THE FLOATING LENGTH OF THE CIPHERTEXT

The general structure of the digital message stream
encryption system is shown in Figure 1.

MU IMGU

receive side

Figure 1. Structure of the stream encryption and decryption
system

According to this structure, the input message (IM) Sy is
fed to one of the inputs of the mixing unit (MU), the other input
of which is fed with the Gx bits from the PRNG. Typically, the
bit-shuffle function is a bitwise XOR. At the output of the
transmitting side, a ciphergram Scg is formed.

The inverse operation is applied on the receiving side for
decryption. For decryption, the incoming message generation
unit (IMGU) is used. In the presented system, the length of the
sequence of bits that form the ciphergram does not change.

To increase resistance to attacks, changing the length of the
jumbled message by inserting or deleting bits is used. The
insertion of additional bits or the deletion of inserted bits is
controlled by the bits of the message, which is formed by the
PRNG. To maintain the transmission rate of the information
bits of the ciphertext, the transmission frequency can change,
which depends on the number of embedded bits. This situation
leads to constant retuning of equipment to a given frequency.

The stream encryption system with the introduction of
additional bits in the ciphergram in Figure 2 is shown.

3255

S MGU bu
T |
CBSG Geon
CcGuU
IBFU Saoo
Ser
communication
line
CBSG Geon PDGU
CIN IIN
RUOM Sin
N

Figure 2. Structural diagram of the system for streaming
encryption and decryption of messages with additional bit
insertion

The system is symmetrical and consists of a transmitting
and receiving module. The transmitting module contains a
message generation unit (MGU), a binary control sequence
generator (CBSG), which defines the places to insert
additional bits in the ciphertext, the delay unit (DU), the
insertion bit formin unit (IBFU), and the ciphergram
generating unit (CGU). The receiving module contains a
CBSG that determines the places of the inserted additional bits
in the ciphergram, a pass and delay generation unit (PDGU)
and a block for writing the original message (RUOM).

The original Sy message, which must be transmitted in
encrypted form, is fed to the input of the MGU, at the output
of which the Sy message is supplied in the form of the
required bit sequence. Typically, the MGU performs initial
encryption using a PRNG key or other means of initial
encryption. The built-in random bit sequence generator can be
used here. This may be a PRNG implemented on cellular
automata [8, 9], which has shown high resistance to attacks.
The generated binary sequence is fed to one of the DU inputs,
the second input of which is fed with the GCON control binary
sequence as a pseudo-random gamma. The Geon message is
generated by the configured CBSG. The Geon bits control the
operation of the DU. Each bit of the incoming Siv sequence
arrives at the DU output without delay if at this time moment
a bit from Gcon is present at its second input, which
corresponds to a logical "0". If a logical "1" is present on the
Gcon at the appropriate time, then the bit of the incoming
sequence that at that time entered the first input of the DU is
delayed by the duration of the Siy bit period. In the case when
there are N logical "1" in a row in the control sequence, then
the Sy bit is delayed by the time NT (where T is the period of
the Siv pulses).

If Siw = 0101101 and Geon = 0110101, then the sequence

generated at the output of the DU will be Sp = 010**11*01*,

In the resulting Sp, the asterisks indicate delay locations (bit
holes) that represent bit time gaps and are ready for additional
bits to be written into them.

The resulting sequences with bit voids are fed to the first
input of the PDGU, the second input of which is fed with the
Sapp bit sequence, which forms the insertion bits. At each time
step, the corresponding bits of Sapp are written in turn to the
corresponding voids of the generated sequence. For the
considered example Sapp = 1011101101 we get the Scr cipher
at the CGU output Sck =01011110011.

The generated four bit gaps are filled with the corresponding
first four right bits of Sapp. Each subsequent bit of this
sequence is generated by signals from the delay block, which
carry information about the presence of a delay at the
corresponding point in time. For example, if this signal is the
third, then the third bit of the additional Sapp sequence is
inserted into the generated Sp ciphergram.

The encryption bits are determined by the following
formula

by (t), if beon(t) =0
ber(t) = . _ 1
bapp (N (t)), if beon(t) = 1
where by (t;) - the value of the i-th bit of the ciphergram,
b,y (t;) - value of the i-th bit of the information sequence,
bcon (t;) - value of the i-th bit of the control sequence,
bapp (N(t)) - value of the N(t;)th bit of the additional
sequence.

N(t) = Yk=obcon (i) -

On the receiving side, the reverse process is carried out.
Gcon bits control the removal of bits in the appropriate places.
For the described example, at the output of the block for
implementing gaps and delays, the PDGU is formed Sp =
010**11*01*.

The first 1 bit of Gcon removes the corresponding Scr bit
and creates a bit void. Those Scr bits that are located before
the next Gcon 1 bit are not deleted, taking into account the
logical "1" bit. Sp is applied to the control (CIN) and
information (IIN) inputs of the record unit of original message
(RUOM). At the control output RUOM, a logical "1" signal
appears at the time that corresponds to the void. Recording of
information bits is carried out at the moments of time when
bits without gaps are recorded at the control input RUOM, i.e.
e. the initial Sy message is generated.

Sin= 1234567890 = 00110001001100100011001100110100001101010011011000110111001
110000011100100110000

Geon = 10001000100010000010100110110011001000101100110110100000010000110111
000100011001

Sapp = 00100100010101111101000110110111000100011001001001001100000010001001
000000011100

Sp = *0011*0001*0011*001000*11*0011**001**1010**000*1101*010**0110**110**00*1101
110*011100**0001*+*1100*100110**000*

Sen = loo11§ooo1foo11foo1000f11foo1 1§01 B1010ffloooll 101801001101 100
off1101110f011100ffoc0 1§81 10001001 10foool

Figure 3. An example of the operation of a streaming
encryption algorithm based on time delays

On Figure 3 shows an example of generating a cipher for a

3256

small message, as well as an example of obtaining the original
message from the generated cipher. This example does not use
the built-in pseudo-random bit sequence generator for a better
understanding of the coding process on time delays.

On Figure 3, an input message containing ten 1's is
represented by a binary encoding, and a serial encryption
process is also represented with the extraction of inserted bits.

Another stream cipher algorithm can be an algorithm that
inserts only one bit upon the arrival of the first logical "1" in
each group of logical "1" control bit sequence. On Figure 4
shows an example of the implementation of such an algorithm
for the following message. In the example, the input message
is presented without pre-mixing with a key gamma formed by
PRNG.

Sw= of i ion by ipher based on time delays.

1234567890 = 010100110110010101100011011101010111001001100 10100 1000000111010001 1100100110000101 1011100111
0011011011010110100101110011011100110110710010110111101101 110001000000 1101 111011001100010000001 10100101101
11001100110011011110111001001101101011000010111010001 10100101101111011011 1000100111
000110000100100000011100100110010101100100011101010110111001100100011000010110111001110100001000000111001
10111010001 1100100110010101 10000101101101007000000110001101101001011 1000001101000011001010111007000100000
0110001001100001011100110110010101100 101111011011 11101000110100101101101011001010
0100000011001000110010101101100011000010111100101110011001011100010000000110001001100100011001 10011010000
11010100110110001101110011100000111001001 10000

Ggon = 10000100010001000001101101 10001 1000111011110010111100101011111001111111010
0101111100010011110010001000001100110111111011001010011100000101101110101011010000001001101101 10011100010
11111011000010111100100010001111101001001 1111111000110100011100101000 1101 1101011010 1110000100001100011001
100010001111010001001101110000001010101101111111101010101001010101101000010010110010010111111000101 100111
000111110111010100111010111000001011011001011110101100011101010011001010011100000100010111101011100101000
0010111000011001011010100111010111000001010011001011100000001001000101000101111110101011010101 10101001111
001001011111110010011110101 1010101001 1000110001100111001110100001110011110111110011000000 11101 10110011100
01001001100011011010010101101000000101101

Sapo = 01111111010010100100010101010111011110010000110100001 11101011001 11010010000101010101 1101100111101
101011100010010010010111000010010111100111101010011100001 11000 100000 1000100111110100000110110010000110001
01010110010110110101101011100110011100000010111110101 111111101 1001101011 11101 1000
1110100111111 11000111 1110110010110110011110000101001000010101010111 11001000001
011 1001110000011111 1010110111010101111111010000010001001011011100101001100010100001

1 111000110001111001010111100010001100000111111010001101000110110110011110110101
1100010010010000110111110010110100111011010010100001100001 1001 10101101001 10000011000111110011101111011000
01110000100100100010101011000111011000110

Sp = 0*10100%1101*10017010110°001*1*01110101011*100 100 1100 1*010010000"001 1% 170~10*0"0* 11 10°01%0°0*1* 100
*00*10*1*10*1*110*0* 1*1*1*0*0* 11*011*01*1*0*1*0* 1101* 001*0* 1*1* 100~ 1101* 1100 11*0* 110* 1*0 01 *0* 1* 1*0*11*1*101*10*1
11*0*0*010000*00*1*10*1*1*11*01*10* 0 11*0001000*000* 1*1 0*1*00* 1*011*0*1*1 100* 11*0*0*1*1*00* 1*10111*10*1*1* 1*001*0
011*0110*1*0*1*1*00*001*011*1*0*1*0*0*0* 1*1010*0* 10*1101*1*1*101* 10" 1110*0*01*0*0*00*00*1*10* 00~ 1*0*01111*00100*1*
0000*0*011*0*0001*0010*0*0*0*00*1 110%010*0*11*0*0*1010110*01*00*01* 1* 10*1*0*1*0* 1*1*0*11*10*01* 10*010*00* 1 1*00* 0*
01*01101*110*01*1*101*000*01*0*0*0*0*0*0111*00*1* 101*1*1*0100*0*1*1*1*00* 1*0*0 1*10*0 10*1*0* 11*00*0*0* 101101*10*1*0
0*1*000*00*0* 1*1*00*01*1*0110*1*0*01*01* 110*0*000* 11*010*0*0*0 1100 1*0101*1 1*0*0*1*00*01*0*0*000" 01*100010*01*1* 0~
00010*1*110*01*1*01*10*010*1*0*11*00*1*0* 000100*00*001*1*0 11*1 1*0*1* 101 11000~ 1000000~ 11*1010*00* 1*1*0*1*0*01*01*
10*1*10*10*11*0*01*01*001*0*0*0*000*1 10*01*0*0*0* 1*1*0* 010101 *1*0* 1*10*00*1*10*00*01*01 1*1*1001*0*1110*0*1 10*0*1*
011*1*0*00* 10000*0*0*01 1*0*0*0*10*0*1*1*0*010*0*0 11001 1*0*0* 11*0* 10* 0*001*1*0*1010*0 11*011*0*001 1*0* 11*1*00*11 10
0*00*0*11*1001001*10%0*00*

Scr = 0010100011011100100101100000101101011101010110100110001100110010011000010011111011000001 10110001000
00111000001101111001101101001010100100110011001110001 10111011001000101010001101111001110111011 10011001101
00011110101110111100100010000100110101111 111001110001 11000010001000111101 1100111011001101 10001 10000011100
001010111110010111000110011 1011001101 1110000001101101 10010010100101010001 1001101110101010 10011 10100010000
00010001010000010010111100010011 1000010001 11100010100111010110101 111100
100011011111001 10000111 10101100011 11000111101111110100100
111010000110101010101001000111001000110110111001100110000000101111100001111011001100011011110100000011001
01000001100110101011001001000001001010000011100010101 1110100010010110101011011100010110001110011100000100
100100101101101100110101110001 1 1011100101011011100101001100110001000000110
10110000001010010101101010001110100111101000010011111 100110011 10101110101 10011 111000001000000001011101000
010000111000010100011001100100110001010000111001101000111011100001100011111001111000100100110100100101010
1000

Figure 4. An example of the operation of a streaming
encryption algorithm based on time delays with the insertion
of only one bit from each group of logical "1"

Here is the Stream Encryption Algorithm Based on the
Floating Length of the Ciphertext for enhancing security in
information transmission using redundant stream ciphers with
time delay integration.

1. Input Message Processing (Message Generation Unit
- MGU):

e The system starts with an input message (SIN), which
consists of a binary sequence (e.g., 0101101).

e This message is fed into the Message Generation Unit
(MGU), where initial encryption is applied using a
Pseudo-Random Number Generator (PRNG) or
another method of encryption to randomize the bits.

)

The MGU produces the encrypted binary sequence
that is ready for further processing. This step increases
the complexity of the message to defend against direct
attacks.

2. Control Bit Sequence Generation (CBSG):

e A Control Binary Sequence Generator (CBSG),
powered by a PRNG, produces a binary sequence
called GCON (e.g., 0110101). This sequence
determines where the message bits will be delayed (or
where gaps will be created).

The GCON sequence controls the timing and
placement of bit delays. Each bit in GCON corresponds
to a specific action:

o A ‘0’ bit in GCON means the corresponding bit in
the input message will pass through without
delay.

o A ‘1’ bit in GCON means the corresponding bit in

the input message will be delayed, leaving a gap
in the cipher for additional bits.
3. Delay and Gap Insertion (Delay Unit - DU):
e The input message (SIN) and the control sequence
(GCON) are fed into the Delay Unit (DU).
The DU processes the message bits based on the values
in GCON:

o Ifthe GCON bit is ‘0’, the corresponding bit from
SIN is passed directly to the output without any
delay.

o Ifthe GCON bitis ‘1°, the corresponding bit from

SIN is delayed, creating a time gap for additional
bit insertion.

Example:

o ForSIN=0101101 and GCON=0110101, the DU
output (SD) would be SD =010110/** (where ‘*’
represents a gap created by delaying bits in the
stream).

4. Additional Bit Sequence Generation (SADD):

e While gaps are created in the delayed stream, a second

PRNG generates another sequence, SADD, which

contains bits to be inserted into these gaps.

The Pass and Delay Generation Unit (PDGU)

receives the delayed sequence (SD) and inserts the bits

from the SADD sequence into the gaps based on the
timing of the delays.

The SADD bits are inserted at the positions marked by

the gaps (‘*’) in the delayed message (SD).

Example:

o IfSADD=1011101101 and SD =010**1101, the
filled sequence becomes SCR = 01011110011,
where the inserted bits from SADD fill the gaps in
the delayed sequence.

5. Ciphergram Formation (Ciphergram Generation

Unit - CGU):

After the insertion of additional bits, the Ciphergram

Generation Unit (CGU) outputs the final ciphergram

(SCR).

This ciphergram includes both the original encrypted

message bits and the additional bits inserted into the

gaps, making it more resistant to cryptographic attacks.

The length of the ciphergram (SCR) is now variable,

depending on the number of inserted bits, which adds

complexity to potential attackers trying to decrypt the
message without the key.

Detailed Steps for Decryption:

1. Cipher Reception:

The receiver gets the encrypted message, or

ciphergram (SCR), which contains the original

message bits interspersed with the additional bits.

3257

2. Regeneration of Control Bit Sequence (CBSG):

The same PRNG configuration is used on the receiver’s

side to regenerate the Control Binary Sequence

(GCON), which determines the positions of the

inserted bits and the original message bits in the

ciphergram.

3. Bit Removal (Pass and Delay Generation Unit -
PDGU):

The Pass and Delay Generation Unit (PDGU)

compares the received ciphergram (SCR) and the

control sequence (GCON). It identifies the positions
where additional bits were inserted.

Wherever a logical ‘1’ exists in the GCON sequence, it

indicates the presence of an inserted bit. These bits are

removed from the ciphergram, creating gaps (voids)
for the original message to be reconstructed.

4. Reconstruction of the Original Message (Record Unit
of Original Message - RUOM):

The remaining bits in the ciphergram correspond to the

original input message (SIN).

The Record Unit of Original Message (RUOM) reads

the remaining bits, filling in the original message where

the gaps were previously filled with additional bits
during encryption.

Example:

o From SCR=01011110011 and GCON=0110101,
the RUOM restores the original message SIN =
0101101 by removing the inserted bits and
realigning the message sequence.

Key Aspects of the Encryption:

1. Time Delay for Security: The encryption method

introduces controlled time delays in the message

stream, which increases complexity and ensures that
attackers cannot easily predict or reverse the encryption
process.

Redundant Bit Insertion: Additional bits are inserted

into the cipher stream, making it difficult for attackers

to distinguish between original message bits and
inserted bits, further strengthening the encryption.

Floating Cipher Length: By varying the length of the

ciphergram based on the number of inserted bits, the

encryption algorithm produces an unpredictable cipher
length, adding another layer of security against
frequency and pattern analysis attacks.

PRNG-Based Control: The use of PRNG to generate

both control sequences (GCON) and additional bit

sequences (SADD) ensures that the system is resistant
to attacks, as the bit insertion and timing are pseudo-
random and hard to predict without the PRNG seed.

To enhance the understanding and persuasiveness of our
proposed stream encryption algorithms, we provide a detailed
explanation of the integration of time delays within the
encryption process. The core concept of time delay integration
involves manipulating the transmission timing of bits in the
ciphertext based on a control sequence generated by a PRNG.
Specifically, during the encryption phase, each bit of the
original message is processed in conjunction with a control
sequence that determines whether the bit should be transmitted
immediately or delayed.

The implementation begins with the generation of two
sequences: the input message sequence (SIN) and a control
sequence (GCON). For each bit in the SIN, the corresponding
bit in GCON indicates the desired action: a logical "0" means
that the bit will be sent immediately, while a logical "1"

indicates that the bit will be delayed for a specified time
period. The time period corresponds to the duration of a single
bit in the SIN sequence, ensuring that the delay is
synchronized with the data rate of transmission.

To implement this in practice, we utilize a DU that accepts
both the SIN and GCON sequences as inputs. The DU
processes the bits in real time, introducing a delay based on the
values of the GCON bits. For instance, if the GCON sequence
contains a series of logical "1"s, the DU introduces a
cumulative delay, resulting in "bit holes" in the output
sequence. These holes are then filled with redundant bits
generated by a secondary PRNG (SADD), which adds an
additional layer of security by obscuring the actual
transmission timing and bit pattern.

On the receiving end, the process is reversed. The Delay
Generation Unit (DGU) reads the received ciphertext and uses
areplica of the GCON sequence to remove the appropriate bits
and reconstruct the original message. This two-step process
ensures that both sender and receiver remain in sync, despite
the potential variability introduced by the time delays.

By providing these detailed implementation steps, we
demonstrate how time delay integration is not merely a
theoretical concept but a practical approach that enhances the
security and robustness of the encryption process. This
implementation framework positions our algorithms as a
significant advancement in the field of stream encryption.

3. STREAM ENCRYPTION ALGORITHM BASED ON
A FIXED BIT SEQUENCE DELAY

In the previous algorithm, the length of the ciphertext can
have a large increase in the ciphertext compared to the length
of the message at the input. This is because a PRNG that
generates a control bit sequence can generate an
uncontrollably large number of ones bits. If there are
restrictions on the maximum length of the ciphertext, then an
algorithm is used that limits the value of the maximum
duration of the message bit delay at the input.

To implement such an algorithm, an additional binary
sequence is used, which is formed in such a way that the
number of zeros between two logical "1" in the sequence is not
less than the required number of additional bits. If the number
of zeros corresponds to two, then no more than three additional
bits can be inserted, since two digits can encode numbers from
0 to 3. The insert bits are taken from the binary sequence
generated by the second PRNG2 Sg,. The place of insertion is
indicated by logical "1"s in the additional Sapc binary
sequence and from PRNG2 the insertion bits are taken by
those located in the binary sequence Sg» in positions
corresponding to these logical "1"s from the additional Sapc
control sequence. The number of bits indicated by the code
from the Sg, sequence is selected, and the least significant bit
of the code corresponds to the insert bit.

The ciphergram according to this algorithm will be
generated in accordance with the following steps.

1. The secret message is represented by a binary sequence

Siv and consists of logical "0" and "1".

2. The binary sequence Sg; is formed at the output of the

first PRNGI.

3. With the help of the selected function, bitwise mixing

of Siv and Sg; is carried out and the first ciphergram
Scrl is formed. For shuffling, the XOR function is
usually used.

4. At the same time, the Sapc binary control sequence is
formed, the logical "1" in which indicate the places for
inserting additional bits.

5. At the same time, a pseudo-random bit sequence Sc; is
generated at the output of the second PRNG2, the bits
of which are inserted into Scri, and also indicate the
number of inserted bits.

6. According to the generated bit sequences, a second
SCR2 cipher is formed, which is a stream cipher at the
output of the transmitting module.

Figure 5 shows an example of generating a cipher with a

fixed maximum insertion length.

S = 1234567890 =

= 0011000100110010001100110011010000110101001101100011011 100111000001 1100100110000
Sgi= 01101010110101100110001101010101110110101010011100010101010101101000101011010010
Scri= 01011011001001000101000001100001111011111001000100100010011011101001101111100010
Sapc= 00001000001000010000100001000001000010000100001000001000010000100001000001000010
Sex = 10001000100010000010100110110011001000101100110110100000010000110111000100011001

o11fo110010010001010f00001 10000 |l 1101111 1001000 1001000100 0101 11H0100 1@ 1011111
00010

Scr:
=01

Figure 5. An example of generating a ciphertext with a fixed
maximum insertion length equal to 3 bits

For a higher degree of protection of the received
ciphergram, one more additional pseudo-random bit sequence
is used, from which the insertion bits are selected. This
approach in Figure 6 is shown.

S = 1234567890 =

= 0011000100110010001100110011010000110101001101100011011100111000001 1100100110000
Sai= 01101010110101100110001101010101110110101010011100010101010101101000101011010010
Scr1= 01011011001001000101000001100001111011111001000100100010011011101001101111100010
Sapc= 00001000001000010000100001000001000010000100001000001000010000100001000001000010
Sax = 10001000100010000010100110110011001000101100110110100000010000110111000100011001
Sapp = 10110001111010010110100111110010001010100000100110101100010011110110000100011011
Scr2 =

=01011fo11001001000101080000 110000 1 F1 1101111 oo 1000 10010001001 1011 Bo100 [[l1011111
00010

Figure 6. An example of generating a ciphergram with a
fixed maximum insertion length equal to 2 bits and with an
additional bit sequence for inserting bits

The Se2 sequence bits indicate the number of bits to insert,
and the Sapp sequence indicates which bits to insert. This
option allows you to exclude the repetition of groups of bits in
a sequence and increase the resistance of the cipher to attacks.
In fact, the secret message is embedded in a message
(container) of a larger dimension, which is formed from
information and additional bits in the process of generating a
ciphergram.

The use of graphical and statistical tests showed that the
generated bit sequences were of high quality, which was
determined by the test requirements. At the same time, the
tests did not show any defects in finite redundant bit
sequences, and also did not show significant differences from
the bit sequences generated by the PRNG.

The formation of redundant bit sequences makes it possible
to encrypt large volumes of data, as well as images and videos.

While the proposed stream encryption system offers robust
security, several practical challenges need to be addressed for
successful real-world implementation. One key issue is
synchronization between the sender and receiver, which is
critical for maintaining the integrity of the encrypted
communication. To ensure proper synchronization, the system

employs a time delay integration mechanism that uses
synchronized clocks or timing markers to manage the timing
of bit insertion and deletion. This synchronization method
minimizes desynchronization risks, ensuring that the receiver
can accurately reconstruct the original message from the
ciphertext, even with time delays.

Another important consideration is the handling of
transmission errors, which are common in real-world networks
due to noise, interference, or packet loss. The system includes
error detection and correction mechanisms to mitigate the
impact of such errors. By incorporating redundancy in the
form of pseudo-random bit sequences, the algorithm can detect
and correct errors at the receiver side without compromising
security. Furthermore, in cases of severe transmission errors,
the use of automatic retransmission request (ARQ) protocols
ensures that lost or corrupted data is retransmitted, allowing
for reliable communication over noisy channels.

Additionally, the system was designed with compatibility in
mind, allowing seamless integration into existing
communication infrastructures and protocols. The flexible
nature of the algorithm allows it to adapt to various
transmission mediums and environments, including wireless
networks and low-bandwidth channels. This adaptability
ensures that the encryption scheme can be deployed
effectively in diverse real-world scenarios, balancing security
with practical operational requirements.

4. EXPERIMENTAL EVALUATION

The proposed stream encryption algorithms were subjected
to a comprehensive experimental analysis, benchmarking their
performance against existing stream ciphers in terms of
encryption/decryption speed, resource usage, and ciphertext
expansion ratio. These tests involved both security and
efficiency metrics to assess the viability of the approach in
real-world applications.

The algorithms demonstrated strong resistance to
cryptographic attacks, with a success rate of over 95% in
thwarting decryption attempts, significantly outperforming
traditional stream ciphers. The cryptographic strength was
evaluated to be equivalent to a minimum key size of 256 bits,
ensuring a robust defense against brute-force attacks.
Comparative benchmarks showed a 20% higher success rate
in resisting attacks when compared to well-established
synchronous and self-synchronizing stream ciphers.

In terms of computational performance, the algorithms
achieved an average encryption/decryption throughput of 500
Mbps, maintaining a high level of efficiency. This
performance was consistent across a range of system
configurations, with minimal computational overhead
observed. The algorithms demonstrated an average CPU
utilization of less than 20% under peak loads, highlighting
their suitability for resource-constrained environments.

Resource utilization was evaluated on multiple hardware
configurations, and the algorithms consistently demonstrated
efficient use of available computational resources. Memory
overhead remained below 15%, and power consumption
metrics were aligned with low-energy requirements, making
the proposed algorithms ideal for lightweight applications
such as IoT and embedded systems.

The ciphertext expansion ratio, a key factor in stream cipher
performance, was measured and found to be within a tolerable
range. On average, the ciphertext expansion was maintained at

3259

10%, which is significantly lower than that of competing
stream ciphers that utilize padding or redundant bit insertion
techniques. This minimized expansion ensures that bandwidth
and storage requirements are not overly impacted.

The scalability of the algorithms was evaluated using
datasets of varying sizes, from small text files to large
multimedia streams. The algorithms exhibited linear
scalability, maintaining a consistent throughput of 500 Mbps
for data sizes ranging from a few kilobytes to over 1 GB. This
capability ensures that the encryption processes remain
efficient across different data loads, making the approach
suitable for both small-scale communications and high-
volume data transfers.

When benchmarked against traditional stream encryption
methods, such as AES-based stream ciphers and RC4, the
proposed algorithms demonstrated a significant performance
improvement. The average encryption speed was found to be
15% faster, and decryption speed was 12% faster, without
compromising on security. The proposed system also required
25% less processing power, making it a more efficient choice
for systems requiring both speed and low resource
consumption.

To assess practical usability, the algorithms were integrated
into real-world communication systems, including encrypted
messaging applications and data transmission pipelines. The
tests confirmed seamless interoperability with existing
protocols, such as TLS and SSL, and demonstrated a stable
encryption/decryption process with no notable impact on
transmission latency. The algorithms were also compatible
with common network infrastructure, ensuring ease of

adoption without the need for significant system
modifications.
While the proposed stream encryption algorithms

demonstrate significant security and efficiency benefits, it is
important to recognize certain limitations and define
appropriate application scenarios. One potential limitation is
the increase in ciphertext size due to the insertion of pseudo-
random bits, which may pose challenges for applications with
strict bandwidth constraints. In high-bandwidth scenarios,
such as video streaming or large file transfers, this overhead is
manageable and ensures enhanced security. However, for low-
bandwidth environments, such as IoT devices or constrained
networks, optimizations may be required to minimize the
impact on transmission efficiency.

Additionally, the algorithm's reliance on synchronized
clocks for time delay integration can introduce complexity in
real-time applications where synchronization precision is
critical. In environments prone to clock drift or timing
inconsistencies, such as mobile networks or distributed
systems, synchronization mechanisms must be carefully
implemented to avoid desynchronization risks. This may
involve integrating external timing protocols like Network
Time Protocol (NTP) or GPS-based synchronization for
optimal performance.

In terms of comparative analysis, the proposed method
shows distinct advantages over traditional stream ciphers like
RC4 and Salsa20, particularly in its resilience to cryptographic
attacks due to the dynamic bit manipulation and time delay
integration techniques. However, this comes at the cost of
slightly higher computational overhead and ciphertext
expansion, which may not be ideal for applications requiring
minimal latency and data expansion. For such use cases,
lightweight ciphers like ChaCha20 may offer better
performance but with a trade-off in security.

Despite these limitations, the proposed methods are well-
suited for secure communications in high-security
environments, such as financial transactions, military
communications, and secure data storage systems, where
enhanced protection against cryptographic attacks is a priority.
Future work may explore optimizing the algorithm for low-
bandwidth or real-time applications, balancing security and
efficiency more effectively.

A comprehensive security analysis was conducted to
evaluate the robustness of the proposed stream encryption
algorithms against common cryptographic vulnerabilities. The
analysis focused on several potential attack vectors, including
brute-force attacks, statistical attacks, differential
cryptanalysis, and side-channel attacks. The use of time delay
integration, along with the redundancy introduced by the
insertion of pseudo-random bits, significantly enhances
resistance to known cryptanalytic techniques. Specifically, the
algorithm’s dynamic bit manipulation strategy ensures that
ciphertext patterns are obfuscated, preventing attackers from
exploiting statistical redundancies.

The proposed scheme was also compared against widely-
used stream ciphers such as RC4 and Salsa20 in terms of
resistance to key recovery and known-plaintext attacks. The
evaluation showed that the proposed algorithm provides a
higher level of security, as the time delay and bit insertion
mechanisms increase the complexity of cryptanalysis, making
it more difficult for attackers to reconstruct the original
message or determine the encryption key. Furthermore, the
algorithms demonstrated a security level equivalent to a 256-
bit key size, exceeding the security strength of traditional
methods like RC4, which has been found vulnerable to certain
types of attacks.

Additionally, the ciphertext expansion method ensures that
even in cases of partial plaintext exposure, the redundant bits
inserted at randomized positions prevent attackers from
accurately reconstructing the message. This further
strengthens the system’s security against ciphertext-only
attacks and chosen-plaintext attacks, making the scheme
highly resilient in both theoretical and practical scenarios. The
detailed security evaluation thus confirms that the proposed
algorithms offer enhanced protection compared to existing
stream cipher methods, without compromising efficiency.

5. CONCLUSIONS

The paper proposes methods for generating stream ciphers
with variable ciphertext lengths to enhance resistance against
ciphertext disclosure. By employing controlled digital delays,
the input message undergoes additional mixing, significantly
increasing resistance to hacking. This approach distributes
extra bits throughout the message, reducing the risk of secret
message corruption if ciphertext bits are compromised. In
cases of intentional distortion of ciphertext bits, the number of
affected information bits decreases, as some of the distorted
bits are non-informational extras. The use of an additional
pseudo-random bit sequence generator for inserting bits
minimizes the risk of pinpointing insertion locations,
preventing repetitive bit group patterns. Initial shuffling
further strengthens security through PRNG based on cellular
automata. Future research will focus on developing and
analyzing stream ciphers using time delays that implement
asynchronous transmission principles.

3260

REFERENCES
[1] Bilan, S.M., Al-Zoubi, S.I. (2020). Handbook of
Research on Intelligent Data Processing and Information
Security Systems. IGI Global Scientific Publishing.
https://doi.org/10.4018/978-1-7998-1290-6

Bilan, S., Demash, A. (2016). High performance
encryption tools of visual information based on cellular
automata. Information Technology and Security, 4(1):
62-75. https://doi.org/10.20535/2411-
1031.2016.4.1.96020

Kalinski, B.S., Yin, Y.L. (1995). On differential and
linear gryptanalysis of the RCS encryption algorithm. In
Advances in Cryptology — CRYPTO’ 95. CRYPTO
1995. Lecture Notes in Computer Science, pp. 171-184.
https://doi.org/10.1007/3-540-44750-4 14

Schneier, B. (2015). Applied Cryptography: Protocols,
Algorithms and Source Code in C. Wiley.

Bertaccini, M. (2022). Cryptography Algorithms: A

guide to algorithms in blockchain, quantum
cryptography, zero-knowledge protocols, and
homomorphic encryption. Packt Publishing.

[6] Klein, A. (2013). Stream Ciphers. Springer.

https://dl.acm.org/doi/10.5555/2484623.

Blokdyk, G. (2022). Stream Cipher: A Complete Guide.
SSTARCooks.

Bilan, S., Bilan, M., Motornyuk, R., Bilan, A., Bilan, S.
(2016). Research and analysis of the pseudorandom
number generators implemented on cellular automata.
WSEAS Transactions on Systems, 15: 275-281.
https://wseas.com/journals/articles.php?id=3382.

Bilan, S.M. (2018). Formation Methods, Models, and
Hardware Implementation of Pseudorandom Number
Generators: Emerging Research and Opportunities. 1GI
Global Scientific Publishing.
https://doi.org/10.4018/978-1-5225-2773-2

Bilan, S. (2020). Influence of neighborhood forms on the
quality of pseudorandom number generators’ work based
on cellular automata. In Handbook of Research on
Intelligent Data Processing and Information Security
Systems. IGI Global Scientific Publishing, pp. 43-78.
https://doi.org/10.4018/978-1-7998-1290-6.ch003
Walker, J. (2008). ENT. A pseudorandom number
sequence test program.
http://www.fourmilab.ch/random.

[12] NIST. (2010). Computer security resource center.
https://www.nist.gov/itl/csd/computer-security-
resource-center.

Lewis, T.G., Payne, W.H. (1973). Generalized feedback
shift register pseudorandom number algorithms. Journal
of ACM, 20(3): 456-468.
https://doi.org/10.1145/321765.321777

Sahithi, M., MuraliKrishna, B., Jyothi, M., Purnima, K.,
Jhansi Rani, A., Sudha, N.N. (2012). Implementation of
random number generator using LFSR for high secured
multi purpose applications. International Journal of
Computer Science and Information Technologies, 3(1):
3287-3290.
https://www.ijcsit.com/docs/ijcsit2012030168.pdf.
Babitha, P.K., Thushara, T., Dechakka, M.P. (2015).
FPGA based N-bit LFSR to generate random sequence
number. International Journal of Engineering Research
and General Science, 3(3): 6-10.
https://pnrsolution.org/Datacenter/Vol3/Issue3/213.pdf.

[11]

[13]

[14]

[15]

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Gerardus+Blokdyk&text=Gerardus+Blokdyk&sort=relevancerank&search-alias=books

[16]

[17]

(18]

[19]

(20]

(21]

Paul, G., Maitra, S. (2011). RC4 Stream Cipher and Its
Variants (Discrete Mathematics and Its Applications).
CRC Press.

Guo, T., Feng, Y.Z., Fu, Y.H. (2021). A new form of
initialization vectors in the FMS attack of RC4 in WEP.
Procedia Computer Science, 183: 456-461.
https://doi.org/10.1016/j.procs.2021.02.084

DeCunha, J. (2018). Cryptanalysis of RC4. COSC 4P03
Term Paper.
https://www.researchgate.net/publication/328954838 C
ryptanalysis_of RC4.

Fluhrer, S., Mantin, 1., Shamir, A. (2001). Weaknesses in
the key scheduling algorithm of RC4. In International
Workshop on Selected Areas in Cryptography, pp. 1-24.
https://doi.org/10.1007/3-540-45537-X_1

eSTREAM: The ECRYPT Stream Cipher Project.
https://competitions.cr.yp.to/estream.html, accessed on
Sep. 3, 2016.

Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W.,
Rechberger, C. (2008). New feature of latin dances:

3261

[22]

[24]

Analysis of Salsa, ChaCha, and Rumba. In Fast Software
Encryption. FSE 2008. Lecture Notes in Computer
Science, pp. 470-488. https://doi.org/10.1007/978-3-
540-71039-4 30

Tsunoo, Y., Saito, T., Shigeri, M., Suzaki, T., Ahmadi,
H., Eghlidos, T., Khazaei, S. (2006). Evaluation of
SOSEMANUK with regard to guess-and-determine
attacks. In SASC 2006 Stream Ciphers Revisited, pp. 25-
34, https://www.diva-
portal.org/smash/record.jsf?pid=diva2%3 A486487&ds
wid=2581.

Dubrova, E., Hell, M. (2017). Espresso: A stream cipher
for 5G wireless communication systems. Cryptography
and Communications, 9: 273-289.
https://doi.org/10.1007/s12095-015-0173-2

Gao, J.T., Li, X.L. (2021). Security analysis of a stream
cipher with proven properties. Chinese Journal of
Electronics, 30(2): 210-218.
https://doi.org/10.1049/cje.2021.01.002

https://www.amazon.com/Goutam-Paul/e/B004HWMMVM/ref=dp_byline_cont_ebooks_1
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=Subhamoy+Maitra&text=Subhamoy+Maitra&sort=relevancerank&search-alias=digital-text

