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Restoring broken or degraded handwritten characters is a major obstacle in optical character 

recognition (OCR) and the digital preservation of historical manuscripts. In this paper, we 

propose a hybrid framework named U-Net + Generative Adversarial Network (GAN) for 

Kannada Restoration (UNGAN-KR) for broken handwritten characters. It integrates the 

best of both encoder–decoder structural reconstruction and adversarial refinement to ensure 

both pixel-level fidelity and perceptual realism. The U-Net restores broken strokes while 

ensuring preservation of character structure and the GAN discriminator promotes natural 

handwritten textures. We evaluated the framework on a dataset of 71,149 handwritten 

Kannada characters using multiple metrics of accuracy. The experimental results show that 

our proposed framework achieves an accuracy of 97.8% with improvements in perceptual 

quality, and outperforms benchmarks like Convolutional Neural Network (CNN) 

autoencoders, standard U-Net, and GAN-based inpainting. Ablation studies show that the 

integration of U-Net and GAN provides hybrid enhancements that are important for 

reconstruction accuracy. Thus, the framework is suitable for pre-processing data and digital 

sustainable archiving and the automated restoration of degraded Kannada manuscripts. 
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1. INTRODUCTION

Maintaining handwritten documents has served as a key 

aspect of digital archiving, cultural heritage preservation, and 

smart information retrieval. Handwriting recognition methods 

have proven reliable to work with clean datasets. But the 

degeneration of the handwriting and the breaking of character 

strokes generally is not always resolvable completely reliably. 

More recent work focused on deep generative models has 

broadened the examination of recovering and enhancing 

degraded text images built on top of a variable cycle 

Generative Adversarial Network (GAN) framework. It learns 

to predict the deformation of handwritten text and has shown 

that adversarial learning can successfully recover the 

conformity of characters in degraded handwritten documents. 

Researchers have approached text enhancement for historical 

handwritten manuscripts addressing challenges such as ink 

bleed, paper degradation, and incomplete strokes. These 

investigations remark on bringing attention to two challenges 

where recovering or enhancing broken text is not a pre-

processing step. It is a substantive task for providing usability 

in downstream tasks of retrieval and recognition of, not to 

mention digital archive. 

Generative deep learning models have surfaced as good 

solutions to solve these issues. Nigam et al. [1] utilized 

variable cycle GAN to remove deformity in handwritten text, 

proposing a restoration identified by a structural fingerprint of 

the original writing style. Alaasam et al. [2] engaged text 

enhancement for historical handwritten documents to address 

issues such as noise from the background paper on ink and 

partial loss of characters. They also noted that any pre-

processing and restoration of text would be informative for the 

downstream tasks of recognition. Rabhi et al. [3] presented a 

multilingual recovery framework with a convolutional 

denoising autoencoder that incorporated attentional 

mechanisms. They illustrated the importance of the focus 

mechanism in dealing with different scripts. However, while 

their model has some level of cross-linguistic generalization, 

it does not address the stroke discontinuities that are 

characteristic of Kannada. 

Structural complexity is a notable challenge, characters in 

Kannada are very curvilinear, and they often have compound 

parts. They recognize the limitations of this process are on the 

use of incomplete or broken strokes to recognize characters, 

meaning that the process can be sensitive to noise degradation. 

Gongidi and Jawahar [4] have suggested hybrid 

implementations of feature extraction methods and ensemble 

learning for Kannada recognition. This increases their 

susceptibility to recognition errors when even slightly 

degraded. For instance, Ramesh et al. [5] have carried out 

Kannada recognition using the combination of manifold 

smoothing and label propagation. The methods can classify 

strokes similarly assuming a similar representation from the 

character, but the methods require complete samples and are 

not helpful if the necessary strokes are missing.  

Advances in generative models using disentangled 

representation learning for handwritten text generation [6]. For 

instance, trajectory recovery attributes (AIoU and LDTW) [7] 

were designed for complicated handwriting. It shows how 

trajectory aware evaluations emphasize the importance of 
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context in trajectory supported evaluation as a section of 

handwriting continuation. Their results clearly showed that 

incomplete and broken strokes could not be fully recovered 

with image enhancement as a process but required contextual 

trajectory prediction of the strokes. The findings of the GAN 

study [8] have also established that while adversarial training 

is strong on style preservation and realism, the method 

struggles with the fine-grained elements of structure fidelity, 

an important requirement to restore complex Kannada 

characters. 

Many studies on written handwriting recovery and 

regeneration are multilingual or work mostly on Latin scripts. 

There are few models that engage with low-resource scripts 

such as Kannada, where stroke recognition can be quite 

sensitive to minor differences in stroke details. Elanwar and 

Betke [9], proposed a variable attention-based Bi-LSTM 

framework for Kannada script recognition which improved 

classification. However, it did not propose a restoration 

mechanism for degraded inputs. Consequently, there was an 

obvious gap in the research, there is currently no robust 

pipeline that incorporates structural stroke regeneration and 

recognition for Kannada handwritten documents. JokerGAN 

[10] outlined advancements for memory resources for 

congeniality of text-line aware generation for handwritten text 

generation respectively, but in both cases the models are used 

for generating new handwritten samples, not repairing broken 

ones. 

The proposed broken character regeneration framework is 

designed as an image-to-image translation method, wherein 

incomplete Kannada characters should be regenerated in their 

original form prior to recognition. The proposed hybrid 

UNGAN-KR framework takes advantage of U-Net’s encoder–

decoder architecture to support a careful and localized 

reconstruction of structural features. Those are necessary for 

stroke continuity while the GAN discriminator enforces global 

realism and stylistic fidelity. The potential of the proposed 

UNGAN-KR framework in this regard is its ability to support 

the regeneration of Kannada's complexity in morphology, 

specifically curvilinear shapes, ligatures, and composites. 

Comprehensive experimental work was done in evaluating our 

framework against Kannada recognition baselines and state-

of-the-art generative handwriting approaches. 

The principal contribution of the paper is summarized as 

follows: 

● Modeled broken character regeneration as an image-to-

image translation task were generating a broken 

character image to its original form using the structural 

learning properties of U-Net combined GAN 

adversarial refinement (UNGAN-KR).  

● Designed a Framework using a U-Net backbone 

combined with a GAN discriminator ensuring both 

stroke-level correctness and contextual realism on each 

generated character. 

● This framework is specifically designed for Kannada, 

targeting its complex morphology and compound 

character shapes.  

● Compare the framework against recent Kannada 

recognition models and generative handwriting work, 

and show that the generated character images with our 

methodology have higher accuracy when dividing both 

the regeneration accuracy and recognition accuracy. 

The rest of this document is organized in the following 

manner: In Section 2, we present a thorough survey of the 

Related Work on handwritten character restoration, U-Net 

based architectures, and GAN based inpainting approaches. 

Section 3 describes the Proposed Method, which includes a 

discussion on six step workflows for restoring Kannada 

handwritten broken characters along with mathematical 

formulations and a hybrid UNGAN-KR framework. The setup 

for the experiments is discussed in Section 4, which details the 

dataset, metrics for evaluation, implementation details, 

followed by Results and Discussion. Lastly, Section 5 

concludes the paper and discusses future work on multi-script 

handwriting restoration and perceptual enhancement. 

 

 

2. LITERATURE REVIEW 

 

The number of digitization initiatives has surged in recent 

years, leading to a need for accuracy in recognizing and 

regenerating handwritten text. However, deciphering 

handwritten characters can be challenging, given that they can 

have disadvantages such as ink bleeding, pen stroke fading, 

and partial degradation arising from aging and writing 

inconsistencies. This is particularly true with more 

complicated lettering systems, such as Kannada, where stroke 

structures can compound the challenges of readability. In 

recent years, image inpainting and structure-aware restoration 

have propelled the design of stroke regeneration. Dong et al. 

[11] have introduced AU-GAN, a U-shaped autoencoder GAN 

that directly combines the architectural benefits of U-Net and 

adversarial refinement to generate coherent structure and 

plausible textures for image inpainting. The AU-GAN 

framework represents the potential of a symmetric design for 

encoder–decoder with skip connections to preserve fine 

structural details while encouraging adversarial loss to 

produce outputs consistent with photorealism. These 

principles have influenced the use of a U-Net generator and a 

Patch-style discriminator as denoted in the last paragraph for 

stroke regeneration. Further, transformer paradigms have been 

applied to the inpainting problem. 

Elharrouss et al. [12] have provided an exhaustive treatment 

of transformer-based image and video inpainting by 

discussing research success and current limitations while 

modeling long-range dependencies with transformers. 

Elharrouss et al. [12] suggested that transformer modules 

could be incorporated in convolutional encoders when longer 

range contextual reasoning across distant stroke fragments is 

required. Chen et al. [13] have considered DNNAM, an 

attention-augmented deep network for inpainting that directs 

the reconstruction capability toward semantically significant 

regions with attention mechanisms and their attention design 

and loss formulations informed attention gates incorporated 

within U-Net skip connections to focus restoration toward 

stroke-missing regions. In the area of identity-aware 

inpainting, Li et al. [14] have proposed identity-aware 

inpainting for occluded face recognition, demonstrating how 

domain-specific identity losses (identity-preserving) allows 

for the preservation of identity attributes in the reconstructed 

images; in a similar vein, we adopt a notion of character-

identity in via skeleton/structure consistency loss to preserve 

character topology, thereby ensuring that the regenerated 

strokes plausibly exhibit recognizable character identity.  

Yeh et al. [15] have proposed a structure-and-texture 

splitting paradigm that facilitates the use of separate pathways 

and losses to reconstruct the coarse geometry (structure) and 

finer texture (ink) independently; this separation inspires our 

methodology that allows us to put together the two losses 
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(stroke-topology / skeleton loss and 

texture/perceptual/adversarial losses) to return both continuity 

of strokes and appearance of ink back into the restoration. The 

generative handwriting synthesis and GAN-based 

augmentation literature provides insight on conditioning and 

style preservation, and offers GAN-related information for 

adversarial stabilization that can inform training restoration 

architectures. Chang et al. [16] have demonstrated a case of a 

GAN for cross-lingual handwritten text generation, that 

showed how the conditioning of the text or style does allow 

for generation across scripts and styles; their conditional 

synthesis paradigm informs the design of our conditional 

discriminator which factors local stroke context and global 

style estimates to define the input-output mapping.  

Recent work aimed at improving realism in generated 

handwriting, specifically the GAN-based enhancement work 

by Dubey et al. [17] have provided pragmatic considerations 

related to stabilizing GAN training on handwriting images and 

generating reasonable stroke textures—lessons we apply in 

terms of the adversarial vs. reconstruction loss balance. 

Studies on stroke trajectories and topology, as represented by 

Hanif and Latecki [18] have demonstrated an algorithm and 

automatic evaluation metrics for recovering stroke trajectories 

in unconstrained handwriting. The trajectory recovery 

perspective illustrates that evaluating regenerated outputs 

should include not just evaluating pixels (PSNR/SSIM), but 

also evaluating trajectory or skeleton fidelity which led to 

using skeleton F1 and trajectory alignment metrics for 

evaluation in our experiments.  

Datasets and domain-specific resources for both Kannada 

handwriting data and palm-leaf manuscripts provide an 

important substrate for training and evaluation. The 

benchmark Kannada handwritten document dataset introduced 

by Alaei et al. [19] is still a foundational text and image 

resource analyzing isolated and unconstrained Kannada text; 

their segmentation and baseline protocols provide important 

guidance for our own preprocessing and evaluation splits. To 

address the demand for historical corpora, Sajjan et al. [20] 

have provided resources that focused on ancient Kannada 

materials. It is a well-curated palm-leaf dataset and a 

PyTesseract based optical character recognition (OCR) 

application study for palm-leaf manuscripts both resources are 

a valuable way to assess regeneration on real degraded 

samples instead of synthetic corruption. Beyond studies of 

inpainting, handwriting, and diffusion-based generation, there 

are also advances in font generation from which we can derive 

useful lessons about the restoration of strokes and characters.  

Kong et al. [21] have presented a one-shot font generation 

framework that applies a component-based discriminator to 

help a generative model synthesize unseen characters from 

very few training examples. Their key contribution in this 

work is the use of component-level supervision in which 

characters are decomposed into more primitive substructures 

(e.g., radicals, strokes, or glyph components) to ensure that 

generated fonts not only resemble the global shape but that 

they also maintain fine-grained structural integrity. The 

component-level discriminator design will be particularly 

applicable in the case of handwritten script regeneration where 

the characters can be made up of multiple strokes that may be 

missing or fragmented. Bannigidad and Sajjan [22] have 

researched specific image enhancement pipelines for ancient 

Kannada palm-leaf manuscripts and also noted that particular 

domain-specific noise patterns (fibrous type, ink fade, and 

physical abrasions) would require pdf strengthening; we also 

apply similar degradation simulations when generating 

broken-stroke from training pairs. Related to recognition 

processes, Parashivamurthy and Rajashekararadhya [23] have 

proposed a serial dilated cascade network specializing for 

Kannada scripts and reported strong recognition; these 

recognition backbones provide downstream evaluators for 

regarding quantification of the practical applications of the 

OCR on a particular area. 

Research of cross script augmentation and heritage 

restoration study exhibit the implications of functional utility 

of targeted data augmentation and models of cross-domain 

transfer for low-resourced scripts. Wang et al. [24] have 

proposed an AI-based method for restoring Chinese 

manuscripts via contemporary deep models that recover 

ancient writing and the outcomes indicate that we can achieve 

good restoration on highly worn cultural heritage objects by 

utilizing domain-specific heuristics and multi-stage 

restoration pipelines, an idea we modify for historical Kannada 

texts. Sareen et al. [25] have found that Convolutional Neural 

Network (CNN)-based data augmentation improved 

recognition with Gurumukhi (another Indic script) and that 

any form of augmenting data such as GAN or synthetic broken 

stroke generation would be beneficial for low resource scripts. 

They developed a broken-stroke generator as an augmentation 

module that incorporates realistic degradation styles based on 

Kannada stroke properties.  

Recent advances in generative modeling pertaining to 

handwriting synthesis and styling have taken the form of 

transformers, deformable convolutions, single image 

augmenters, diffusion models, and archetype-based 

generating, which provide a complement to the restoration and 

augmentation. Wang et al. [26] have merged transformers with 

deformable convolution to devise like samples of handwriting, 

and showed that transformer attention and deformable 

convolution receptive fields better capture varied 

deformations in handwriting. This implied a hybrid design 

may be useful in future additions wherein transformer blocks 

could one day be incorporated into the U-Net encoder to 

capture long-range styles of strokes. OffSig-SinGAN created 

by Hameed et al. [27] and diffusion-based signature generation 

by Hong et al. [28] have exemplified powerful single-sample 

augmentation methods and handwriting models respectively. 

Therefore, OffSig-SinGAN and diffusion models are suitable 

ways to enhance infrequent variants of a writer's style or create 

even difficult low-quality samples. 

Liao et al. [29] have harnessed the power of diffusion 

modeling through Calliffusion for Chinese calligraphy style 

transfer, further illustrating that diffusion processes are useful 

for generating high-quality strokes and styles. Although our 

work is based on adversarial refinement, diffusion modeling 

presents a viable alternative for examining stroke completion 

in the future. Pippi et al. [30] have described handwritten text 

generation from visual archetypes at CVPR and presented 

archetype-based conditioning. That potentially preserves 

structural priors is similar to the archetype idea we propose in 

the context of stroke-generate with U-Nets. The canonical 

stroke templates or skeletal priors help to drive the 

reconstruction of strokes in the region with the U-Net. 

Despite considerable developments in image-to-image 

translation and character restoration, there are multiple 

shortcomings in the existing literature. Most work has focused 

on Latin and Chinese scripts with limited research on other 

writing systems and particularly with complex scripts, such as 

Kannada, researched infrequently. Although U-Net 
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architectures are able to preserve structural information, they 

typically do not preserve fine-grained stroke texture, and while 

GAN-based methods improve perceptual realism, they may 

induce artifacts. Few studies have proposed combined 

methodologies that assure some degree of both structural 

fidelity and perceptual quality at once. In addition to this, 

examples of quantitative multi-metric evaluation scores are 

also limited, and the problem of restoring completely 

unrecognizable or occluded characters remains challenging. 

Existing frameworks do not generalize across different styles 

of handwriting well, which is compounded by high 

computational costs, especially for real-time restoration and 

deployment on devices with limited resources. Thus, there is 

an opportunity to develop a robust, efficient and generalizable 

framework for Kannada handwritten character restoration of 

high quality. 

 

 

3. PROPOSED WORK 

 

This work conceptualizes the restoration of damaged 

handwritten Kannada characters as an image-to-image 

translation problem. The architecture consists of a U-Net 

generator and a GAN discriminator to provide structural stroke 

restoration combined with texture-level realism. The U-Net 

operates as a structural restorer that combines local continuity 

and global context through its encoder-decoder with skip 

connections. The GAN discriminator works in conjunction 

with the U-Net to ensure the restored characters resemble 

authentic handwritten samples. This dual approach addresses 

both the challenges of restoring missing strokes and improving 

the perceptual fidelity of the restored characters. 

The suggested workflow for Kannada handwritten broken 

character regeneration is structured in the following six steps 

also shown in Figure 1. 

 

 
 

Figure 1. Proposed UNGAN-KR model design diagram 

 

● Input Pre-processing 

● U-Net Encoder–Decoder Stroke Reconstruction 

● Adversarial Refinement with a GAN Discriminator 

● Loss Function Integration 

● Training Objective (Min–Max Optimization) 

● Validation and Preservation of Character Identity 

The proposed method is described as fallows: The 

UNGAN-KR framework proposes a new way to restore 

broken handwritten text in Kannada through a method called 

image-to-image translation. This new framework solves two 

major problems together: 1) recovering the original 

handwriting from the damaged image and 2) creating a 

realistic-looking final product that mimics genuine 

handwritten text. To prepare for image-to-image translation 

using our system, the original damaged images are first 

undergone a normalizing transformation, followed by 

binarization via Otsu Thresholding, then the damaged 

characters are processed via morphological closing so that all 

stroke pieces are connected, followed by normalization via 

image resampling so that all character images are the same 

size. Once the original image has been normalized and 

transformed, it will become the input into our U-Net generator. 

Inside the U-Net generator, the encoder is utilized to extract 

hierarchical stroke features from the images. The encoder also 

encodes the overall character structure into a compressed 

latent representation. The decoder will use multiple up-

sampling layers and skip connections to reconstruct the 

missing strokes from the compressed latent representation and 

the low-level details of the image to create a complete 

representation of the character. Once the U-Net generator has 

created an initial version of the character, the initial version is 

enhanced via adversarial learning, where a GAN discriminator 

attempts to differentiate between the original handwriting and 

the newly generated handwriting. This process creates a more 

realistic final product in terms of stroke continuity, stroke 

texture, and stroke style. 

The neural network that we just described uses a composite 

loss function to guide its training, which integrates pixel-level 

reconstruction loss, structural similarity loss, perceptual 

feature loss, and adversarial loss in order to find a good 

balance between reconstructing the character's original 

appearance while also generating a realistic final product. 

Additionally, the GAN discriminator's gradient penalty and 

feature-matching losses provide additional stability to the 

adversarial optimization process.  

A joint training process for both the generator and 

discriminator is performed using the Adam optimizer, 

applying learning rate decay, dropout regularization, and 

gradient clipping to facilitate convergence throughout the 

training process. Constraints include class consistency (a 

measure of how well samples from the same class can be 

classified) based upon prior trains learned by a CNN classifier, 

and stroke-level consistency through skeletal representation; 

resulting in a restoration of broken handwritten Kannada 

characters that maintain structural coherence, appear visually 

authentic, and preserve the identity of original Kannada 

characters. With this integrated system, UNGAN-KR will 

produce high structural accuracy as well as visually authentic 

restored handwritten Kannada characters while also 

preserving character identity. 

 

3.1 Input preprocessing 

 

The first and fundamental stage in regenerating broken 

Kannada handwritten characters is input preprocessing, which 

aims to standardize the raw manuscript images and prepare 

them for deep learning-based reconstruction. Handwritten 

documents often suffer from diverse distortions, including 

variable stroke thickness, ink smudges, missing segments, and 

uneven illumination, which can significantly degrade the 

performance of neural networks. To address these challenges, 

the raw character images 𝐼(𝑥, 𝑦) are initially normalized using 

Eq. (1), ensuring pixel intensity values are standardized with 
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zero mean and unit variance. This normalization mitigates the 

impact of variations in lighting and ink density across different 

document sources, enabling consistent feature extraction. 

 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − 𝜇

𝜎
 (1) 

 

Here, 𝐼(𝑥, 𝑦) indicates the original pixel intensity value at 

(𝑥, 𝑦) of the grayscale image. The term μ indicates the mean 

pixel intensity across the entire dataset or batch of images, 

which indicates that the image is zero-centered. The letter 𝜎 

indicates the standard deviation of the pixel intensities, which 

ensures that the pixel intensities are scaled so that the variance 

is normalized. The image is then normalized to yield 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦), where each pixel is subsequently less sensitive to 

changes in illumination and the thickness of writing. 

Normalization is important for the Kannada handwritten 

broken character regeneration framework because it facilitates 

the learning of structural patterns by the U-Net encoder–

decoder and GAN discriminator without their learning being 

confounded by the raw intensity information. 

Subsequently, we apply the binarization step (Eq. (2)) that 

uses Otsu’s thresholding to separate foreground strokes from 

the background, moving from the normalized grayscale image 

to a binary version 𝐼𝑏𝑖𝑛(𝑥, 𝑦). This step is crucial to isolate 

handwritten strokes from the background while still 

maintaining the important structural information of each 

character.  

 

𝐼bin (𝑥, 𝑦) = {
1  if 𝐼norm (𝑥, 𝑦) > 𝑇otsu 

0  otherwise 
 (2) 

 

Next, we perform morphological operations, specifically 

closing operations (Eq. (3)), to reconnect broken strokes and 

fill small gaps within characters. Morphological operations 

help to enhance the continuity of strokes in handwriting, which 

is especially significant with Kannada characters that naturally 

contain many complex curves and ligatures. 

 

𝐼𝑐𝑙𝑜𝑠𝑒𝑑 = (𝐼𝑏𝑖𝑛 ⊕ 𝐵) ⊖ 𝐵 (3) 

 

Here, 𝐼𝑏𝑖𝑛 is used to define the binarized input image, where 

text pixels are separated from the non-text background. The 

symbol ⊕ refers to morphological dilation, while ⊖ refers to 

morphological erosion, both of which are done using a 

structuring element BBB. The image 𝐼𝑐𝑙𝑜𝑠𝑒𝑑  is the 

morphologically closed image where gaps in strokes of 

Kannada text are filled, and disconnections were minimized. 

Eq. (4) describes the process of resizing the input character 

image. 

 

𝐼𝑟 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐼𝑐 , 𝐻 × 𝑊) (4) 

 

Here, 𝐼𝑐 denotes the character image once cropped, and H 

and W represent the desired resized height and width. The 

output image 𝐼𝑟  is the resized image for a standardized 

uniform image for input to the U-Net encoder. 

 

3.2 U-Net encoder–decoder stroke reconstruction 

 

The demonstrated framework for regenerating handwritten 

broken Kannada characters is built on a U-Net encoder-

decoder architecture, which is responsible for reconstructing 

the missing or broken strokes while also duplicating the 

internal structure and style of each character. The U-Net 

architecture is well suited for the task because of its symmetric 

encoder-decoder architecture with skip connections, which 

allows the network to capture local fine-scale stroke features 

and the larger structural context. 

The encoder sequentially abstracts hierarchical features 

from the input image 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑, which has been preprocessed, 

through an encoder-decoder architecture with skip 

connections consisting of just convolutional layers (Eq. (5)).  

 

𝑓𝑙 = 𝜎(𝑊𝑙 ∗ 𝑓𝑙−1 + 𝑏𝑙) (5) 

 

Here, 𝑓𝑙−1 is the input feature map from the previous layer, 

𝑊𝑙 and 𝑏𝑙 are the learnable convolutional weights and bias in 

layer 𝑙, and ∗ denotes convolution. The activation function 𝜎(⋅
) adds non-linearity, and the resulting feature map 𝑓𝑙 is a set of 

hierarchical representations of the character of Kannada. 

Each convolutional layer is followed by a non-linear 

activation function, to enable the network to learn complex 

stroke features. Down sampling shown in Eq. (6) via 

maximum pooling layers reduces spatial dimensions and 

increases the size of the receptive field enabling the encoder to 

capture dependencies across the character structure.  

 

𝑓𝑙
𝑑𝑜𝑤𝑛(𝑖, 𝑗) = 𝑓𝑙(𝑖 + 𝑚, 𝑗 + 𝑛) (6) 

 

Here, 𝑓𝑙(𝑖 + 𝑚, 𝑗 + 𝑛) represents the feature activations in 

the local neighborhood 𝛺  around position (𝑖, 𝑗). The output 

𝑓𝑙
𝑑𝑜𝑤𝑛(𝑖, 𝑗) displays the maximum value in that region that 

maintains dominant stroke features but decreases spatial 

resolution. In the bottleneck layer, the network produces a 

compact latent representation using z in Eq. (7) of the essential 

features of the character including stroke orientation, 

curvature, and connectivity. 

 

𝑧 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑) (7) 

 

Here, 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑  is the input image of the Kannada character 

standardized impostor character, and the encoder generates a 

compressed feature embedding. The latent vector 𝑧 carries the 

high-level stroke pattern and graphical structure information 

to facilitate decoding and reconstruction. To reconstruct the 

character, the decoder up samples the latent representation Eq. 
(8).  

 

𝑓𝑙
𝑢𝑝

= 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑓𝑙+1) (8) 

 

Here, 𝑓𝑙+1 is the feature map from a deeper level, and the 

Upsample function increases its spatial resolution. The 𝑓𝑙
𝑢𝑝

 

feature map is able to reconstruct the fine stroke details of the 

Kannada character while also leveraging the essence of the 

encoder 𝑓𝑒𝑛𝑐  feature map. Adding skip connections to the 

encoder feature maps congruent to its spatial dimensions Eq. 

(9). The skip connection concatenates information regarding 

the fine-size details lost during down sampling, enabling the 

reconstruction of the strokes accurately. 

 

𝑓𝑙
𝑓𝑢𝑠𝑖𝑜𝑛

= 𝑓𝑙
𝑢𝑝

⊕ 𝑓𝑙
𝑒𝑛𝑐  (9) 

 

Here, 𝑓𝑙
𝑢𝑝

 is the upsampled decoder feature map and 𝑓𝑙
𝑒𝑛𝑐 

is the related feature map from the encoder. The fusion 

operator ⊕  denotes either concatenation or addition, this 

enables the model to mix high-level semantic information with 
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low-level stroke information to accurately regenerate the 

Kannada character. The last convolutional layer produces the 

final reconstructed character image 𝐼𝑟𝑒𝑐  Eq. (10) that is a 

smooth visual coherence regeneration of the original broken 

input. 

 

𝐼𝑟𝑒𝑐 = 𝜎(𝑊𝑜𝑢𝑡 ∗ 𝑓0 + 𝑏𝑜𝑢𝑡) (10) 

 

Here, 𝐼𝑟𝑒𝑐  indicates the resulting regenerated image of the 

U-Net decoder. 𝑓0 is the fused feature map of all the features, 

𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are the learnable weights and bias for the output 

layer, and * indicates convolution. The activation function 𝜎(⋅
) ensures the resulting pixel values of 𝐼𝑟𝑒𝑐  reside in the desired 

ranges, resulting in a regenerated character. 

The U-Net reconstruction phase will provide the framework 

for subsequent adversarial reconstruction - and while it may 

be an approximation and a high-fidelity regeneration of the 

Kannada handwritten strokes, it is enough for the next 

generation of GAN based learning. The encoder's hierarchical 

feature extraction and the decoder's ability to reconstruct 

structurally provides assurance that both the macro 

employment of character shapes is reconstructed along with 

micro punctuations within strokes, allowing realistic character 

regeneration in future adversarial GAN stages. 

 

3.3 Adversarial refinement with Generative Adversarial 

Network discriminator 

 

Although the U-Net encoder–decoder generates an initial 

reconstruction of broken Kannada handwritten characters, it 

may still incorporate minor artifacts or unrealistic stroke 

connection, especially within complex ligatures or occluded 

areas. Therefore, to improve realism and enforce structural 

consistency, the generated characters are further refined using 

a GAN framework. In this adversarial scenario, the generator 

G will correspond to the U-Net reconstruction network and we 

introduce an additional discriminator D to assess the realism 

of characters generated. 

The discriminator 𝐷 will output a probability score 𝐷(𝐼) 

given an image 𝐼, representing the probability that the image 

was real from the ground-truth dataset rather than generated. 

This can also be formally expressed as Eq. (11). 

 

𝐷(𝐼) = 𝜎(𝑊𝑑 ∗ 𝐼 + 𝑏𝑑) (11) 

 

Here 𝑊𝑑 is the convolutional kernels of the discriminator, 

𝑏𝑑 is the bias term, ∗ is convolution notation, and 𝜎 is simply 

a non-linear activation. The GAN's adversarial objective is the 

usual min–max problem given in Eq. (12). 

 

𝑉(𝐷, 𝐺) = 𝐸𝐼∼𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝐼)]

+ 𝐸𝐼(𝑟𝑒𝑐~𝑝𝐺)[log(1 − 𝐷(𝐼𝑟𝑒𝑐))] 
(12) 

 

Here, 𝐷 is the discriminator, G is the generator, 𝐼 is the true 

images from the true data distribution 𝑝𝑑𝑎𝑡𝑎  and 𝐼𝑟𝑒𝑐  are the 

reconstructed images from the U-Net passed to the generator. 

This formulation trains G to generate realistic images 𝐼𝑔𝑒𝑛 and 

𝐷 to distinguish real and synthetic samples. Here, Eq. (13) the 

generator output. 

 

𝐼𝑔𝑒𝑛 = 𝐺(𝐼𝑟𝑒𝑐 , 𝑧) (13) 

 

Here, 𝐼𝑟𝑒𝑐  is the U-Net reconstructed image and z is the 

latent noise vector used to generate outputs. The output 𝐼𝑔𝑒𝑛 is 

the adversarial refined Kannada character image that has both 

perceptual realism and restored stroke details. To ensure 

stability during training and to enhance convergence, we 

incorporate extra refinements including a gradient penalty as 

shown Eq. (14).  

 

𝐿𝑔𝑝 = 𝜆(||𝛻𝐼𝐷(𝐼)||2 − 1)
2
 (14) 

 

Here, 𝐼  denotes an interpolated image from the real and 

generated samples, 𝐷(𝐼)  denotes the output from the 

discriminator, 𝛻𝐼  denotes the gradient with respect to 𝐼  and 

𝜆 denotes a weighting factor. This loss functions to impose the 

Lipschitz constraint so that the discriminator does not become 

too powerful, which would create irregularities in adversarial 

training. Eq. (15) denotes the feature matching loss, which 

matches the intermediate feature maps of the discriminator. 

 

𝐿𝑓𝑚 = ‖ ∑ 𝐷𝑙(𝐼) − 𝐷𝑙(𝐼𝑔𝑒𝑛)

𝐿

𝑙

‖2
2 (15) 

 

Here, 𝐷𝑙(⋅)represents the feature maps from layer 𝑙 of the 

discriminator, 𝐼  is the real image, and 𝐼𝑔𝑒𝑛  is the generated 

image. This loss promotes the 𝐼𝑔𝑒𝑛to match structural as well 

as perceptual similarity to the real character beyond pixel-wise 

differences. With these adversarial constraints imposed, the 

GAN-based refinement promotes the generator to create 

regenerated Kannada characters that are both visually realistic 

and structurally faithful in order to mitigate typically observed 

reconstruction issues such as broken strokes, awkward 

junctions, and overall style inconsistency. At this stage, the 

GAN etiquette complements the previously described U-Net-

reconstruction by incorporating a discriminator-driven quality 

check that combines the initial coarse reconstruction to derive 

a regenerated handwritten character with high fidelity. 

 

3.4 Loss function integration 

 

To ensure that Kannada handwritten characters are 

accurately regenerated, our framework uses multiple loss 

components that instruct the generator to create visually 

coherent, structurally faithful, and identity-preserving 

reconstructions of the handwritten characters. These losses 

include pixel-level reconstruction loss, structural similarity 

loss, perceptual loss, and adversarial loss that together provide 

an appropriate balance between fidelity, stroke correctness, 

and realism. 

The reconstruction loss 𝐿𝑟𝑒𝑐  encourages the generator to 

minimize the pixel-wise difference between original character 

𝐼𝑜𝑟𝑖𝑔 Iorig and the regenerated output image 𝐼𝑔𝑒𝑛 as shown in 

Eq. (16). 

 

𝐿𝑟𝑒𝑐 =∥ 𝐼𝑜𝑟𝑖𝑔 − 𝐼𝑔𝑒𝑛 ∥1 (16) 

 

In this equation, 𝐼𝑜𝑟𝑖𝑔 is the ground-truth Kannada character 

image and 𝐼𝑔𝑒𝑛  is the image reconstructed through the hybrid 

U-Net + GAN framework. L1 norm ensures that the 

regenerated image closely relates to the original strokes which 

promote the coherent reconstruction of fragmented characters. 

The L1-norm criterion diminishes blur artifacts while retaining 

clear details of fine strokes. To preserve the overall structure 

fidelity, we additionally use a structural similarity loss, 
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referred to as SSIM as given Eq. (17). 

𝐿𝑠𝑠𝑖𝑚 = 1 − 𝑆𝑆𝐼𝑀(𝐼𝑜𝑟𝑖𝑔 , 𝐼𝑔𝑒𝑛) (17) 

Here, 𝐼𝑜𝑟𝑖𝑔  denotes the ground-truth Kannada character

image while 𝐼𝑔𝑒𝑛  denotes the generated image coming from

the framework. We subtract the SSIM index from 1 to penalize 

structural differences in the loss allowing the different stroke 

shapes and characters geometric structures to be preserved 

upon regeneration. In order to capture higher-level semantic 

features as opposed to pixel values. We also define a 

perceptual loss 𝐿𝑝𝑒𝑟𝑐 over intermediate layers of a pretrained

convolutional network VGG) as Eq. (18).  

𝐿𝑝𝑒𝑟𝑐 = ∑ ‖𝜙
𝑖
(𝐼𝑜𝑟𝑖𝑔) − 𝜙

𝑖
(𝐼𝑔𝑒𝑛)‖

2

2

𝐼

𝑖

(18) 

Here, 𝜙𝑖(⋅) denotes the feature map from the 𝐼𝑡ℎ layer of a

pretrained CNN. The perceptual loss captures higher-level 

semantic divergences to enhance stroke realism. Finally, the 

adversarial loss 𝐿𝑎𝑑𝑣  complements these, which also

encourages realism using the discriminator's feedback as 

shown in Eq. (19). 

𝐿𝑎𝑑𝑣 = −𝐸[𝑙𝑜𝑔𝐷(𝐼𝑔𝑒𝑛)] (19) 

Here, 𝐷(⋅) is the discriminator, 𝐼𝑔𝑒𝑛  is the generated image.

The adversarial loss encourages realistic-looking handwriting 

textures with respect to discriminator feedback. In this 

synthesis, all of these components combine as follows into the 

combined generator loss given in Eq. (20). 

𝐿𝐺 = 𝛼𝐿𝑟𝑒𝑐 + 𝛽𝐿𝑠𝑠𝑖𝑚 + 𝛾𝐿𝑝𝑒𝑟𝑐 + 𝛿𝐿𝑎𝑑𝑣 (20) 

Here, 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝛿  are hyperparameters weighting 

reconstruction, structural, perceptual, and adversarial 

contributions, respectively. 𝐿𝐺  is the overall generator loss

used to train the U-Net + GAN generator. The discriminator 

will have a similar loss set to maximize its ability to 

distinguish real characters from generated characters. 𝐿𝐷 is the

discriminator loss defined as Eq. (21). 

𝐿𝐷 = −(𝐸[𝑙𝑜𝑔𝐷(𝐼𝑜𝑟𝑖𝑔)] + 𝐸[𝑙𝑜𝑔(1 − 𝐷(𝐼𝑔𝑒𝑛))]) (21) 

Here, 𝐼𝑜𝑟𝑖𝑔  represents the real image while 𝐼𝑔𝑒𝑛  is

generated. LD maximizes the discriminator's ability to 

distinguish real from generated Kannada characters. By 

combining reconstruction, structural, perceptual, and 

adversarial objectives, this integrated loss is developed to 

maximize pixel accuracy of the regenerated Kannada 

characters, visual authenticity, and structural validity, in order 

to lay a sound optimization and validation framework. 

3.5 Training objective with min–max optimization 

The UNGAN-KR framework training goal is expressed as 

a min-max optimization problem, a classic characteristic of 

Generative Adversarial Networks (GANs), where the 

generator 𝐺 and discriminator 𝐷 are trained jointly to achieve 

realistic stroke reconstruction and good preservation of 

character identity. More specifically, the generator is trained 

to minimize its total loss 𝐿𝐺, so it generates visually believable

characters while providing structural consistency among all 

characters. Meanwhile, the discriminator is trained to 

maximize its assessment of the likelihood of identifying a 

character as either real or regenerated, which is captured using 

the loss 𝐿𝐷  and represents the two objectives of the

discriminator as Eq. (22). 

𝑀𝑁𝐹 = (𝐿𝐺 + 𝐿𝐷) (22) 

In more detail, the generator loss 𝐿𝐺 leverages pixel-level

reconstruction loss, similarity in character structure, 

perceptual similarity in character form between the image and 

the reconstruction, and adversarial feedback from the 

discriminator 𝐿𝐷 as given in Eq. (23).

𝜃𝐺 = 𝜃𝐺 − 𝜂 ⋅
𝑚𝑡̂

√𝑣𝑡̂ + 𝜖
(23) 

The discriminator loss simply assesses how well 𝐷 

differentiates characters as either real or regenerated. To 

optimize these objectives, we employed gradient-based 

updates using the Adam optimizer as shown in Eq. (24). 

𝜃𝐷 = 𝜃𝐷 − 𝜂 ⋅
𝑚𝑡̂

√𝑣𝑡̂ + 𝜖
(24) 

where 𝜃𝐺  and 𝜃𝐷  are parameters of the generator and

discriminator respectively, 𝜂 is the learning rate, and 𝑚𝑡̂ , 𝑣𝑡̂

are bias-corrected moment estimates. Learning rate decay and 

gradient clipping are employed to stabilize training as shown 

in Eq. (25). 

𝜂𝑡 = 𝜂0 ⋅
1

1 + 𝜆𝑡
(25) 

Here, 𝜂0 is the initial learning rate, 𝜆 is the decay factor, and

t indicates the current training step. Eq. (26) applies a decay to 

the learning rate, which reduces 𝜂𝑡  across time, and helps

ensure stable convergence to the solution. 

ℎ𝑙
𝑑𝑟𝑜𝑝

= ℎ𝑙 ⋅ 𝑚, 𝑚 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (26) 

Here, ℎ𝑙 is the activation of layer 𝑙, and mmm is a Bernoulli

random mask with probability 𝑝  that indicates dropout 

regularization randomly deactivates neurons to mitigate 

overfitting. Eq. (27) is referred to as the gradient clipping 

mechanism.  

𝑔𝑡 =
𝑔𝑡

max (1, ∥ 𝑔𝑡 ∥2 /𝑐)
(27) 

Here, 𝑔𝑡 is the gradient at step 𝑡, and ccc is the threshold for

clipping. Within gradient clipping, the gradient is clipped to 

ensure that the updates remain bounded to prevent exploding 

gradients that can occur during training of the generator and 

discriminator. Lastly, similar to dropout regularization in the 

generator, dropout regularization mitigates common forms of 

overfitting and allows the generator to generalize well across 

the various handwritten Kannada characters. In addressing this 

through a min-max optimization problem, the generator 

continues to learn to generate high-fidelity stroke 

reconstructions that can fool the discriminator into thinking it 

had seen the original, while the discriminator is continually 
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learning to become better at recognizing real characters. 

Overall, this adversarial training occurs at a high frequency 

within a loop, ensuring that the recreated characters are 

visually representative and also similar to the original 

handwritten character, as the first stages of the character 

regeneration pipeline. 

3.6 Validation and preservation of character identity 

An important consideration in the regeneration of Kannada 

handwritten characters is the preservation of character identity 

such that the regenerated strokes respect the original character 

while providing better visual consistency. To support this, the 

framework incorporates identity-preserving constraints and 

validation metrics that direct the generator to produce 

structurally and semantically consistent outputs. First, apply a 

character classification constraint to the generator output 

𝑦𝑝𝑟𝑒𝑑  derived from a pre-trained classifier using Eq. (28).

𝑦𝑝𝑟𝑒𝑑 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑓𝑔𝑒𝑛 + 𝑏𝑐) (28) 

Here, 𝑓𝑔𝑒𝑛 is the feature map of the generated character, and

𝑊𝑐  and 𝑏𝑐  are the classifier weights and bias. The resultant

cross-entropy loss preserves the label of the generated 

character using Eq. (29). 

𝐿𝑖𝑑 = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑦𝑝𝑟𝑒𝑑,𝑖

𝐼

𝑖

(29) 

Here, 𝑦𝑖  corresponds to the ground-truth one-hot label for

class 𝑖, and 𝑦𝑝𝑟𝑒𝑑,𝑖  denotes the predicted probability for that

class. This loss guarantees that the regenerated Kannada 

character retains its original class identity during training. To 

promote stroke-level consistency, a skeletonization operator, 

denoted S(⋅), is utilized, and a stroke consistency loss is 

defined as Eq. (30). 

𝐿𝑠𝑡𝑟𝑜𝑘𝑒 =∥ 𝑆(𝐼𝑜𝑟𝑖𝑔) − 𝑆(𝐼𝑔𝑒𝑛) ∥2
2 (30) 

Here, 𝑆(⋅) indicates a stroke extraction function capturing 

the skeletal or structural representation of the Kannada 

character strokes. This loss guarantees that the regenerated 

image 𝐼𝑔𝑒𝑛  reproduces the original strokes from 𝐼𝑜𝑟𝑖𝑔 . This

loss guarantees that the regenerated strokes follow the same 

trajectory as the original strokes, which is particularly 

important for complex Kannada ligatures and diacritics. 

Additionally, to prevent jagged and unnatural stroke 

connections, curve smoothness is imposed via Eq. (31). 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ = ∑ ‖𝛥2𝑥𝑡‖
2

+ ‖𝛥2𝑦𝑡‖
2

𝑇

𝑡

(31) 

where, (𝑥𝑡  , 𝑦𝑡) represents a stroke coordinate at time step 𝑡,

and 𝛥2 computes the second-order differences along the stroke

curve. Lastly, a style consistency loss defined with respect to 

Gram matrices 𝐺𝑗 ensures that the overall visual style of the

handwritten character is preserved using Eq. (32). 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑ ‖𝐺𝑗(𝐼𝑜𝑟𝑖𝑔) − 𝐺𝑗(𝐼𝑔𝑒𝑛)‖
𝐹

2

𝐽

𝑗

(32) 

Incorporating these criteria, the ultimate generator loss with 

respect to identity preservation is expressed as Eq. (33). 

𝐿𝐺
𝑓𝑖𝑛𝑎𝑙

= 𝐿𝐺 + 𝜆𝑖𝑑𝐿𝑖𝑑 + 𝜆𝑠𝑡𝑟𝑜𝑘𝑒𝐿𝑠𝑡𝑟𝑜𝑘𝑒 (33) 

where, 𝜆𝑖𝑑𝜆𝑠𝑡𝑟𝑜𝑘𝑒𝐿𝑖𝑑  𝑎𝑛𝑑 𝐿𝑠𝑡𝑟𝑜𝑘𝑒  are trade-offs that balance

the importance of each identity preserving criterion. The 

training goal now shifts as Eq. (34). 

𝐹𝑜𝑝𝑡 = 𝐿𝐺
𝐹𝑖𝑛𝑎𝑙 + 𝐿𝐷 (34) 

This provides assurance that the generator not only outwits 

the discriminator but also produces characters that remain 

correct, clear, and visually true to the original handwritten 

Kannada characters. Furthermore, aspects of the quality of 

regeneration are assessed using quantitative metrics of 

reconstruction accuracy, FID score, PSNR, and stroke-level 

precision and recall to ensure visual realism and semantic 

correctness. By combining these validation processes and 

identity preservation processes, the presented framework 

facilitates robust regeneration of broken handwritten Kannada 

characters while preserving all unique stroke patterns, ligature 

structures, and overall handwritten style, which is enormously 

important for subsequent applications such as OCR and 

historical document digitization. 

4. RESULTS AND DISCUSSIONS

The suggested framework for Kannada handwritten broken 

character regeneration through a hybrid U-Net and GAN-

based mechanism was executed using the PyTorch 2.0 

framework with CUDA support for rapid operation. This 

overall experiment was trialed on a workstation equipped with 

an NVIDIA RTX 3080 GPU (10 GB VRAM), and Intel i7 

processor, and 32 GB RAM running Windows 11(64bits). In 

all experiments, the Adam optimizer was employed with an 

initial learning rate of 1e-4, β₁ = 0.5 and β₂ = 0.999. These 

hyperparameters have also been established to work 

effectively for adversarial training since we trained continually 

for up to 200 epochs with a batch size of 64 in order to achieve 

convergence without overfitting. As mentioned in Section 4.3, 

augmentation techniques were employed i.e. random rotation 

(± 10°), horizontal flipping and Gaussian noise injection to 

improve model robustness to the variety of styles of 

handwriting and natural distortions according to the scanned 

documents. 

Datasets were collected from 100 writers represented by a 

typical cross-section with varying ages, genders, and 

professions. The end data set contained 495 classes with 150 

samples per class after the up-sampling process took place. 

The data set included base characters as well as types for 

Kagunitas of the Kannada script. The data set included some 

images that had broken character segments that could not be 

removed during the extraction process from the handwritten 

work. All images were visually checked manually if any 

images had a broken character, they were moved to a different 

bin. All characters used for training the model were visually 

clear and complete. The dataset was subdivided into training 

70%, validation 15%, and testing 15% subsets while 

maintaining a fair class distribution in each split. Artificial 

noise, partial occlusion, and distortions were added to a subset 

of samples to approximate instances of broken characters in a 

controlled fashion. This way for the degree of degradation 
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evaluation, there will be a sample set that can be used to assess 

the parameters of the model's capability to regenerate 

potentially broken characters. The dataset has all key Kannada 

vowels/consonants and compound characters. Therefore, it is 

comprehensive to be representative of handwriting-based 

tasks addressing document recognition and resultant document 

digital archiving tasks. 

Figure 2. Training and validation loss against epochs 

Figure 2 illustrates the training and validation loss against 

epochs showcases the consistency of the proposed UNGAN-

KR framework over 5000 training updates. Both the training 

and validation losses decrease consistently, suggesting that the 

model learns to reconstruct damaged Kannada characters from 

sketches while gradually generalizing to other samples. The 

distance between the training and validation loss stays small, 

demonstrating little overfitting and stable training behavior. 

The loss curves, after some number of thousands of epochs, 

also began to show an eventual plateau, presenting that the 

model has converged with smooth stroke reconstruction and 

perceptual quality. This data illustrates the effectiveness of the 

chosen architecture, hyperparameters, and adversarial 

refinement for stable and accurate regeneration of handwritten 

characters. 

A U-Net model with four encoder–decoder levels was 

utilized with each level of the model consisting of 

convolutional layers implemented with batch normalization 

and the ReLU activation function. Skip connections were 

utilized to maintain fine grain spatial information that would 

be necessary to accurately reconstruct stroke movements in 

recreating the characters. The GAN part of the model 

consisted of a PatchGAN discriminator that refined the output 

after stroke extraction, creating sharper, and more accurate 

characters. For metrics, both structural accuracy and visual 

realism were assessed for using Accuracy (Acc), Mean 

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), 

and Fréchet Inception Distance (FID), consisting of Eqs. (35)-

(38), respectively. 

𝐴𝑐𝑐 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑡𝑜𝑡𝑎𝑙 (35) 

FID evaluates the distributional similarity between real and 

generated characters in a deep feature space. Lower FID 

values indicate that generated characters have a closer 

representation to real handwritten characters in terms of style 

and stroke distribution.  

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔 ∥2
2+ 𝑇𝑟 (𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)

1
2) (36)

Peak Signal-to-Noise Ratio: PSNR summarizes the visual 

fidelity of regenerated character (i.e., replicated) as a function 

of signal strength to reconstruction error. Higher PSNR values 

indicate a more accurate regenerated character with less 

distortion.  

𝑃𝑆𝑁𝑅 = 10 ⋅
𝑀𝑎𝑥𝐼

2

𝑀𝑆𝐸
(37) 

MSE calculates the average of the squared difference of 

pixel values between original and regenerated characters. 

Lower MSE represents higher accuracy in reconstruction, 

which is important to maintain the integrity of the stroke of the 

character and the overall legibility of the character. 

𝑀𝑆𝐸 =
1

𝐻𝑊
∑ ∑ (𝐼𝑜𝑟𝑖𝑔(𝑖, 𝑗) − 𝐼𝑔𝑒𝑛(𝑖, 𝑗))

2
𝑊

𝑗=1

𝐻

𝑖=1

(38) 

Figure 3. Result comparison of proposed model with few existing mechanisms 

Table 1 and Figure 3 show that the proposed framework 

achieved a recognition accuracy of 97.8% that is 8.4% more 

than the baseline CNN autoencoder. This confirms the efficacy 

of the adversarial refined continuous U-Net encoder decoder 

for fine-grained reconstruction of Kannada strokes. In general, 

the MSE dropped to 0.009 with our method suggesting a very 

high level of pixel restoration accuracy. Accordingly, the 

PSNR improved to 31.6 db indicating that downloadable 
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characters reconstructed from the model closely resemble 

original input characters with minimal noise in the signal. The 

FID of 28.9 suggests that the model reconstructed characters 

that do not just preserve structure but also appear perceptually 

similar to original handwritten characters. Compared to the 

standard U-Net of FID = 52.7, our framework reduces 

perceptual artifacts by nearly 45%. 

Table 1. Result comparison of proposed UNGAN-KR model 

with few existing mechanisms 

Model 
Accuracy 

(%) 
MSE 

PSNR 

(dB) 
FID 

U-Net Only 93.8 0.015 27.1 52.7 

Generative

Adversarial Network 

(GAN) Only 

95.6 0.012 29.4 41.3 

Baseline 

Convolutional Neural 

Network (CNN) 

Autoencoder 

89.4 0.021 24.5 68.2 

Standard U-Net 93.8 0.015 27.1 52.7 

GAN-based 

Inpainting 
95.6 0.012 29.4 41.3 

Proposed U-Net + 

GAN 
97.8 0.009 31.6 28.9 

The proposed UNGAN-KR model has a 97.5% precision 

meaning that nearly every regenerated character belonging to 

the same class is correct. It is important to mitigate 

misclassification due to visual similarity in Kannada 

characters. The recall score of 97.8% reflects the model's 

ability to recover nearly all instances of broken characters 

across various handwriting styles and minimizes the 

possibility of missed reconstructions. The F1 score of 97.6% 

captures the balance between precision and recall across 

instances of broken characters and signifies overall strong 

performance of character regeneration. When compared with 

baseline autoencoders and discrete U-Net/GAN models, 

encoder-decoder reconstruction paired with adversarial 

refinement yields a marked improvement in structural 

restoration and recognition reliability regarding the various 

instances of Kannada characters. 

Table 2. Precision, recall, and F1 score comparison 

Model 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Baseline 

Convolutional Neural 

Network (CNN) 

Autoencoder 

87.5 86.8 87.1 

Standard U-Net 92.8 93.1 92.9 

GAN-based Inpainting 94.9 95.2 95.0 

Proposed U-Net + 

Generative 

Adversarial Network 

(GAN) 

97.5 97.8 97.6 

Figure 4. Precision, recall, and F1 score comparison 

Table 3. Ablation study result analysis 

Configuration Acc (%) Precision (%) Recall (%) F1-score (%) MSE PSNR (dB) FID 

U-Net Only 93.8 92.8 93.1 92.9 0.015 27.1 52.7 

Generative Adversarial 

Network (GAN) Only 
95.6 94.9 95.2 95.0 0.012 29.4 41.3 

UNGAN-KR (Proposed) 97.8 97.5 97.8 97.6 0.009 31.6 28.9 

The model demonstrates a high level of accuracy as shown 

in Table 2 and Figure 4. Specifically, it shows the precision of 

97.5% indicates that the model can identify most of the broken 

characters that correspond with that particular class of 

characters, which is crucial in the assessment given that 

Kannada characters sometimes visually appear alike and can 

be misclassified. The 97.8% recall metric suggests that the 

proposed model is able to reconstruct almost all of the broken 

characters across different styles of handwriting with minimal 

missed reconstructions. To study the importance and 

contribution of the different components of the proposed 

framework. Table 3 shows the ablation studies were conducted 

using the Kannada handwritten broken character dataset 

looking at three variations: (1) U-Net only, (2) GAN only, and 
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(3) the proposed combination of U-Net + GAN. Each of the 

variations was tested on several metrics: Accuracy (Acc), 

Precision (P), Recall, F1-score, Mean Squared Error (MSE), 

Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception 

Distance (FID) for a more holistic sense of structural and 

perceptual performance. The U-Net only variation was able to 

reconstruct almost all individual broken strokes because of the 

encoder-decoder structure of the U-Net. 

The use of skip connections in the U-Net model retained all 

of the spatial information by passing information from the 

encoder to decoder. And almost all of the broken strokes were 

reconstructed correctly. The quality of reconstruction in U-Net 

was due the overall process encoder-decoder architecture for 

capturing textural details. But, the lack of adversarial feedback 

resulted in fine structural and textural details not being 

accurately captured resulting in blurry outputs and an FID 

value that was higher (52.7) than the other two models. Thus, 

U-Net only demonstrated strong pixel reconstruction, it lacked 

perceptual realism, especially for complicated compound 

characters and ligatures. The GAN-only configuration was 

purely focused on adversarial refinement while the U-Net 

based approach included no structural guidance through skip 

connections. Although there was some variation in accuracy 

metrics and performance, relatively lower FID of 41.3 and 

higher PSNR of 29.4 dB scores suggest generally sharper. 

However, without structural guidance some minor placement 

differences remained for compound characters and 

complicated ligatures resulting in a standard accuracy of 

95.6% compared to U-Net based defects. 

The UNGAN-KR methodology integrated both methods, 

resulting in the overall best evaluation metrics. As well as 

guaranteeing structural fidelity in reconstructing missing 

strokes, U-Net also determined the GAN discriminator 

ensured plausible handwriting texture while reducing data loss 

and reducing potentially harmful perceptual loss artifacts. The 

combined models resulted in 97.8% accuracy score in addition 

to the lowest-MSE (0.009), highest-PSNR (31.6 dB), and 

lowest-FID (28.9) showing alignment in reducing pixel 

fidelity while maintaining higher and better perceptual quality. 

Finally, per-character metrics include Precision of 97.5%, 

Recall of 97.8%, and F1 score of 97.6%; the model robustly 

restored broken characters with no mistakes in classification. 

Figure 5 shows an example output of two characters after 

restoration using the proposed model.  

 

 
 

Figure 5. Example output of two characters after restoration 

using proposed model 

 

The unit level experiments verify that U-Net or GAN alone 

are not sufficient to achieve the best hypothesis when 

regenerating Kannada characters. The U-Net + GAN 

combination is important to substantiate both structural 

accuracy and perceptual realism simultaneously, while 

providing empirical evidence that the proposed solution is 

novel and effective solution for restoring broken handwritten 

Kannada characters and can potentially be used for 

applications in OCR pre-processing, digital archiving of 

manuscripts, and automatic handwriting analysis. 

 

 

5. CONCLUSION 

 

This paper has introduced a U-Net + GAN hybrid model to 

regenerate broken Kannada handwritten characters. It is an 

important problem in manuscript preservation as well as for 

handwriting capture systems. The proposed UNGAN-KR 

model adopts stroke reconstruction based on U-Net encoder–

decoder architecture together with adversarial refinement to 

restore missing or degraded strokes while maintaining the 

original handwriting style. Experimental results using a 

dataset of 71,149 Kannada handwritten character images 

demonstrate that the proposed framework consistently 

outperforms. A set of base line approaches including CNN 

autoencoders, U-Net, and GAN-based inpainting methods. 

The framework proposed achieved a recognition accuracy of 

97.8%, which is 8.4% more than the baseline mechanisms. 

This confirms the efficacy of the adversarial refined 

continuous U-Net encoder–decoder for fine-grained 

reconstruction of Kannada strokes. In the future, it can be 

extended the proposed framework to multi-script handwritten 

datasets to test its generalizability across multiple Indian 

scripts. The inclusion of transformer-based attention models 

and semi-supervised training may improve stroke 

reconstruction by reducing reliance on large annotated 

datasets. Additionally, employing diffusion-based generative 

models may improve the realism and perceptual quality of the 

character’s regeneration, especially for more poorly degraded 

or visually stylized handwriting. 
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