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Restoring broken or degraded handwritten characters is a major obstacle in optical character
recognition (OCR) and the digital preservation of historical manuscripts. In this paper, we
propose a hybrid framework named U-Net + Generative Adversarial Network (GAN) for
Kannada Restoration (UNGAN-KR) for broken handwritten characters. It integrates the
best of both encoder—decoder structural reconstruction and adversarial refinement to ensure
both pixel-level fidelity and perceptual realism. The U-Net restores broken strokes while
ensuring preservation of character structure and the GAN discriminator promotes natural
handwritten textures. We evaluated the framework on a dataset of 71,149 handwritten
Kannada characters using multiple metrics of accuracy. The experimental results show that
our proposed framework achieves an accuracy of 97.8% with improvements in perceptual
quality, and outperforms benchmarks like Convolutional Neural Network (CNN)
autoencoders, standard U-Net, and GAN-based inpainting. Ablation studies show that the
integration of U-Net and GAN provides hybrid enhancements that are important for
reconstruction accuracy. Thus, the framework is suitable for pre-processing data and digital

sustainable archiving and the automated restoration of degraded Kannada manuscripts.

1. INTRODUCTION

Maintaining handwritten documents has served as a key
aspect of digital archiving, cultural heritage preservation, and
smart information retrieval. Handwriting recognition methods
have proven reliable to work with clean datasets. But the
degeneration of the handwriting and the breaking of character
strokes generally is not always resolvable completely reliably.
More recent work focused on deep generative models has
broadened the examination of recovering and enhancing
degraded text images built on top of a wvariable cycle
Generative Adversarial Network (GAN) framework. It learns
to predict the deformation of handwritten text and has shown
that adversarial learning can successfully recover the
conformity of characters in degraded handwritten documents.
Researchers have approached text enhancement for historical
handwritten manuscripts addressing challenges such as ink
bleed, paper degradation, and incomplete strokes. These
investigations remark on bringing attention to two challenges
where recovering or enhancing broken text is not a pre-
processing step. It is a substantive task for providing usability
in downstream tasks of retrieval and recognition of, not to
mention digital archive.

Generative deep learning models have surfaced as good
solutions to solve these issues. Nigam et al. [1] utilized
variable cycle GAN to remove deformity in handwritten text,
proposing a restoration identified by a structural fingerprint of
the original writing style. Alaasam et al. [2] engaged text
enhancement for historical handwritten documents to address
issues such as noise from the background paper on ink and
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partial loss of characters. They also noted that any pre-
processing and restoration of text would be informative for the
downstream tasks of recognition. Rabhi et al. [3] presented a
multilingual recovery framework with a convolutional
denoising autoencoder that incorporated attentional
mechanisms. They illustrated the importance of the focus
mechanism in dealing with different scripts. However, while
their model has some level of cross-linguistic generalization,
it does not address the stroke discontinuities that are
characteristic of Kannada.

Structural complexity is a notable challenge, characters in
Kannada are very curvilinear, and they often have compound
parts. They recognize the limitations of this process are on the
use of incomplete or broken strokes to recognize characters,
meaning that the process can be sensitive to noise degradation.
Gongidi and Jawahar [4] have suggested hybrid
implementations of feature extraction methods and ensemble
learning for Kannada recognition. This increases their
susceptibility to recognition errors when even slightly
degraded. For instance, Ramesh et al. [5] have carried out
Kannada recognition using the combination of manifold
smoothing and label propagation. The methods can classify
strokes similarly assuming a similar representation from the
character, but the methods require complete samples and are
not helpful if the necessary strokes are missing.

Advances in generative models using disentangled
representation learning for handwritten text generation [6]. For
instance, trajectory recovery attributes (AloU and LDTW) [7]
were designed for complicated handwriting. It shows how
trajectory aware evaluations emphasize the importance of
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context in trajectory supported evaluation as a section of
handwriting continuation. Their results clearly showed that
incomplete and broken strokes could not be fully recovered
with image enhancement as a process but required contextual
trajectory prediction of the strokes. The findings of the GAN
study [8] have also established that while adversarial training
is strong on style preservation and realism, the method
struggles with the fine-grained elements of structure fidelity,
an important requirement to restore complex Kannada
characters.

Many studies on written handwriting recovery and
regeneration are multilingual or work mostly on Latin scripts.
There are few models that engage with low-resource scripts
such as Kannada, where stroke recognition can be quite
sensitive to minor differences in stroke details. Elanwar and
Betke [9], proposed a variable attention-based Bi-LSTM
framework for Kannada script recognition which improved
classification. However, it did not propose a restoration
mechanism for degraded inputs. Consequently, there was an
obvious gap in the research, there is currently no robust
pipeline that incorporates structural stroke regeneration and
recognition for Kannada handwritten documents. JokerGAN
[10] outlined advancements for memory resources for
congeniality of text-line aware generation for handwritten text
generation respectively, but in both cases the models are used
for generating new handwritten samples, not repairing broken
ones.

The proposed broken character regeneration framework is
designed as an image-to-image translation method, wherein
incomplete Kannada characters should be regenerated in their
original form prior to recognition. The proposed hybrid
UNGAN-KR framework takes advantage of U-Net’s encoder—
decoder architecture to support a careful and localized
reconstruction of structural features. Those are necessary for
stroke continuity while the GAN discriminator enforces global
realism and stylistic fidelity. The potential of the proposed
UNGAN-KR framework in this regard is its ability to support
the regeneration of Kannada's complexity in morphology,
specifically curvilinear shapes, ligatures, and composites.
Comprehensive experimental work was done in evaluating our
framework against Kannada recognition baselines and state-
of-the-art generative handwriting approaches.

The principal contribution of the paper is summarized as
follows:

e Modeled broken character regeneration as an image-to-
image translation task were generating a broken
character image to its original form using the structural
learning properties of U-Net combined GAN
adversarial refinement (UNGAN-KR).

Designed a Framework using a U-Net backbone
combined with a GAN discriminator ensuring both
stroke-level correctness and contextual realism on each
generated character.

This framework is specifically designed for Kannada,
targeting its complex morphology and compound
character shapes.

Compare the framework against recent Kannada
recognition models and generative handwriting work,
and show that the generated character images with our
methodology have higher accuracy when dividing both
the regeneration accuracy and recognition accuracy.

The rest of this document is organized in the following
manner: In Section 2, we present a thorough survey of the
Related Work on handwritten character restoration, U-Net
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based architectures, and GAN based inpainting approaches.
Section 3 describes the Proposed Method, which includes a
discussion on six step workflows for restoring Kannada
handwritten broken characters along with mathematical
formulations and a hybrid UNGAN-KR framework. The setup
for the experiments is discussed in Section 4, which details the
dataset, metrics for evaluation, implementation details,
followed by Results and Discussion. Lastly, Section 5
concludes the paper and discusses future work on multi-script
handwriting restoration and perceptual enhancement.

2. LITERATURE REVIEW

The number of digitization initiatives has surged in recent
years, leading to a need for accuracy in recognizing and
regenerating handwritten text. However, deciphering
handwritten characters can be challenging, given that they can
have disadvantages such as ink bleeding, pen stroke fading,
and partial degradation arising from aging and writing
inconsistencies. This is particularly true with more
complicated lettering systems, such as Kannada, where stroke
structures can compound the challenges of readability. In
recent years, image inpainting and structure-aware restoration
have propelled the design of stroke regeneration. Dong et al.
[11] have introduced AU-GAN, a U-shaped autoencoder GAN
that directly combines the architectural benefits of U-Net and
adversarial refinement to generate coherent structure and
plausible textures for image inpainting. The AU-GAN
framework represents the potential of a symmetric design for
encoder—decoder with skip connections to preserve fine
structural details while encouraging adversarial loss to
produce outputs consistent with photorealism. These
principles have influenced the use of a U-Net generator and a
Patch-style discriminator as denoted in the last paragraph for
stroke regeneration. Further, transformer paradigms have been
applied to the inpainting problem.

Elharrouss et al. [12] have provided an exhaustive treatment
of transformer-based image and video inpainting by
discussing research success and current limitations while
modeling long-range dependencies with transformers.
Elharrouss et al. [12] suggested that transformer modules
could be incorporated in convolutional encoders when longer
range contextual reasoning across distant stroke fragments is
required. Chen et al. [13] have considered DNNAM, an
attention-augmented deep network for inpainting that directs
the reconstruction capability toward semantically significant
regions with attention mechanisms and their attention design
and loss formulations informed attention gates incorporated
within U-Net skip connections to focus restoration toward
stroke-missing regions. In the area of identity-aware
inpainting, Li et al. [14] have proposed identity-aware
inpainting for occluded face recognition, demonstrating how
domain-specific identity losses (identity-preserving) allows
for the preservation of identity attributes in the reconstructed
images; in a similar vein, we adopt a notion of character-
identity in via skeleton/structure consistency loss to preserve
character topology, thereby ensuring that the regenerated
strokes plausibly exhibit recognizable character identity.

Yeh et al. [15] have proposed a structure-and-texture
splitting paradigm that facilitates the use of separate pathways
and losses to reconstruct the coarse geometry (structure) and
finer texture (ink) independently; this separation inspires our
methodology that allows us to put together the two losses



(stroke-topology / skeleton loss and
texture/perceptual/adversarial losses) to return both continuity
of strokes and appearance of ink back into the restoration. The
generative  handwriting  synthesis and  GAN-based
augmentation literature provides insight on conditioning and
style preservation, and offers GAN-related information for
adversarial stabilization that can inform training restoration
architectures. Chang et al. [16] have demonstrated a case of a
GAN for cross-lingual handwritten text generation, that
showed how the conditioning of the text or style does allow
for generation across scripts and styles; their conditional
synthesis paradigm informs the design of our conditional
discriminator which factors local stroke context and global
style estimates to define the input-output mapping.

Recent work aimed at improving realism in generated
handwriting, specifically the GAN-based enhancement work
by Dubey et al. [17] have provided pragmatic considerations
related to stabilizing GAN training on handwriting images and
generating reasonable stroke textures—Ilessons we apply in
terms of the adversarial vs. reconstruction loss balance.
Studies on stroke trajectories and topology, as represented by
Hanif and Latecki [18] have demonstrated an algorithm and
automatic evaluation metrics for recovering stroke trajectories
in unconstrained handwriting. The trajectory recovery
perspective illustrates that evaluating regenerated outputs
should include not just evaluating pixels (PSNR/SSIM), but
also evaluating trajectory or skeleton fidelity which led to
using skeleton F1 and trajectory alignment metrics for
evaluation in our experiments.

Datasets and domain-specific resources for both Kannada
handwriting data and palm-leaf manuscripts provide an
important substrate for training and evaluation. The
benchmark Kannada handwritten document dataset introduced
by Alaei et al. [19] is still a foundational text and image
resource analyzing isolated and unconstrained Kannada text;
their segmentation and baseline protocols provide important
guidance for our own preprocessing and evaluation splits. To
address the demand for historical corpora, Sajjan et al. [20]
have provided resources that focused on ancient Kannada
materials. It is a well-curated palm-leaf dataset and a
PyTesseract based optical character recognition (OCR)
application study for palm-leaf manuscripts both resources are
a valuable way to assess regeneration on real degraded
samples instead of synthetic corruption. Beyond studies of
inpainting, handwriting, and diffusion-based generation, there
are also advances in font generation from which we can derive
useful lessons about the restoration of strokes and characters.

Kong et al. [21] have presented a one-shot font generation
framework that applies a component-based discriminator to
help a generative model synthesize unseen characters from
very few training examples. Their key contribution in this
work is the use of component-level supervision in which
characters are decomposed into more primitive substructures
(e.g., radicals, strokes, or glyph components) to ensure that
generated fonts not only resemble the global shape but that
they also maintain fine-grained structural integrity. The
component-level discriminator design will be particularly
applicable in the case of handwritten script regeneration where
the characters can be made up of multiple strokes that may be
missing or fragmented. Bannigidad and Sajjan [22] have
researched specific image enhancement pipelines for ancient
Kannada palm-leaf manuscripts and also noted that particular
domain-specific noise patterns (fibrous type, ink fade, and
physical abrasions) would require pdf strengthening; we also
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apply similar degradation simulations when generating
broken-stroke from training pairs. Related to recognition
processes, Parashivamurthy and Rajashekararadhya [23] have
proposed a serial dilated cascade network specializing for
Kannada scripts and reported strong recognition; these
recognition backbones provide downstream evaluators for
regarding quantification of the practical applications of the
OCR on a particular area.

Research of cross script augmentation and heritage
restoration study exhibit the implications of functional utility
of targeted data augmentation and models of cross-domain
transfer for low-resourced scripts. Wang et al. [24] have
proposed an Al-based method for restoring Chinese
manuscripts via contemporary deep models that recover
ancient writing and the outcomes indicate that we can achieve
good restoration on highly worn cultural heritage objects by
utilizing domain-specific  heuristics and multi-stage
restoration pipelines, an idea we modify for historical Kannada
texts. Sareen et al. [25] have found that Convolutional Neural
Network (CNN)-based data augmentation improved
recognition with Gurumukhi (another Indic script) and that
any form of augmenting data such as GAN or synthetic broken
stroke generation would be beneficial for low resource scripts.
They developed a broken-stroke generator as an augmentation
module that incorporates realistic degradation styles based on
Kannada stroke properties.

Recent advances in generative modeling pertaining to
handwriting synthesis and styling have taken the form of
transformers, deformable convolutions, single image
augmenters, diffusion models, and archetype-based
generating, which provide a complement to the restoration and
augmentation. Wang et al. [26] have merged transformers with
deformable convolution to devise like samples of handwriting,
and showed that transformer attention and deformable
convolution receptive fields better capture varied
deformations in handwriting. This implied a hybrid design
may be useful in future additions wherein transformer blocks
could one day be incorporated into the U-Net encoder to
capture long-range styles of strokes. OffSig-SinGAN created
by Hameed et al. [27] and diffusion-based signature generation
by Hong et al. [28] have exemplified powerful single-sample
augmentation methods and handwriting models respectively.
Therefore, OffSig-SinGAN and diffusion models are suitable
ways to enhance infrequent variants of a writer's style or create
even difficult low-quality samples.

Liao et al. [29] have harnessed the power of diffusion
modeling through Calliffusion for Chinese calligraphy style
transfer, further illustrating that diffusion processes are useful
for generating high-quality strokes and styles. Although our
work is based on adversarial refinement, diffusion modeling
presents a viable alternative for examining stroke completion
in the future. Pippi et al. [30] have described handwritten text
generation from visual archetypes at CVPR and presented
archetype-based conditioning. That potentially preserves
structural priors is similar to the archetype idea we propose in
the context of stroke-generate with U-Nets. The canonical
stroke templates or skeletal priors help to drive the
reconstruction of strokes in the region with the U-Net.

Despite considerable developments in image-to-image
translation and character restoration, there are multiple
shortcomings in the existing literature. Most work has focused
on Latin and Chinese scripts with limited research on other
writing systems and particularly with complex scripts, such as
Kannada, researched infrequently. Although U-Net



architectures are able to preserve structural information, they
typically do not preserve fine-grained stroke texture, and while
GAN-based methods improve perceptual realism, they may
induce artifacts. Few studies have proposed combined
methodologies that assure some degree of both structural
fidelity and perceptual quality at once. In addition to this,
examples of quantitative multi-metric evaluation scores are
also limited, and the problem of restoring completely
unrecognizable or occluded characters remains challenging.
Existing frameworks do not generalize across different styles
of handwriting well, which is compounded by high
computational costs, especially for real-time restoration and
deployment on devices with limited resources. Thus, there is
an opportunity to develop a robust, efficient and generalizable
framework for Kannada handwritten character restoration of
high quality.

3. PROPOSED WORK

This work conceptualizes the restoration of damaged
handwritten Kannada characters as an image-to-image
translation problem. The architecture consists of a U-Net
generator and a GAN discriminator to provide structural stroke
restoration combined with texture-level realism. The U-Net
operates as a structural restorer that combines local continuity
and global context through its encoder-decoder with skip
connections. The GAN discriminator works in conjunction
with the U-Net to ensure the restored characters resemble
authentic handwritten samples. This dual approach addresses
both the challenges of restoring missing strokes and improving
the perceptual fidelity of the restored characters.

The suggested workflow for Kannada handwritten broken
character regeneration is structured in the following six steps
also shown in Figure 1.

U-Net
GAN
H><I:| Discriminator
Input )
Preprocessing U-Net Encoder-Decoder
Stroke Reconstruction
A,
: Adversarial
Reconstruction Loss Rofincment L°S$
+ with a GAN Function
Adversarial Loss  Discriminator Integration

Training Objective
(Min-Max Optimization)

Figure 1. Proposed UNGAN-KR model design diagram

Input Pre-processing
U-Net Encoder—Decoder Stroke Reconstruction
Adpversarial Refinement with a GAN Discriminator
Loss Function Integration
Training Objective (Min—Max Optimization)
Validation and Preservation of Character Identity

The proposed method is described as fallows: The
UNGAN-KR framework proposes a new way to restore
broken handwritten text in Kannada through a method called
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image-to-image translation. This new framework solves two
major problems together: 1) recovering the original
handwriting from the damaged image and 2) creating a
realistic-looking final product that mimics genuine
handwritten text. To prepare for image-to-image translation
using our system, the original damaged images are first
undergone a normalizing transformation, followed by
binarization via Otsu Thresholding, then the damaged
characters are processed via morphological closing so that all
stroke pieces are connected, followed by normalization via
image resampling so that all character images are the same
size. Once the original image has been normalized and
transformed, it will become the input into our U-Net generator.

Inside the U-Net generator, the encoder is utilized to extract
hierarchical stroke features from the images. The encoder also
encodes the overall character structure into a compressed
latent representation. The decoder will use multiple up-
sampling layers and skip connections to reconstruct the
missing strokes from the compressed latent representation and
the low-level details of the image to create a complete
representation of the character. Once the U-Net generator has
created an initial version of the character, the initial version is
enhanced via adversarial learning, where a GAN discriminator
attempts to differentiate between the original handwriting and
the newly generated handwriting. This process creates a more
realistic final product in terms of stroke continuity, stroke
texture, and stroke style.

The neural network that we just described uses a composite
loss function to guide its training, which integrates pixel-level
reconstruction loss, structural similarity loss, perceptual
feature loss, and adversarial loss in order to find a good
balance between reconstructing the character's original
appearance while also generating a realistic final product.
Additionally, the GAN discriminator's gradient penalty and
feature-matching losses provide additional stability to the
adversarial optimization process.

A joint training process for both the generator and
discriminator is performed using the Adam optimizer,
applying learning rate decay, dropout regularization, and
gradient clipping to facilitate convergence throughout the
training process. Constraints include class consistency (a
measure of how well samples from the same class can be
classified) based upon prior trains learned by a CNN classifier,
and stroke-level consistency through skeletal representation;
resulting in a restoration of broken handwritten Kannada
characters that maintain structural coherence, appear visually
authentic, and preserve the identity of original Kannada
characters. With this integrated system, UNGAN-KR will
produce high structural accuracy as well as visually authentic
restored handwritten Kannada characters while also
preserving character identity.

3.1 Input preprocessing

The first and fundamental stage in regenerating broken
Kannada handwritten characters is input preprocessing, which
aims to standardize the raw manuscript images and prepare
them for deep learning-based reconstruction. Handwritten
documents often suffer from diverse distortions, including
variable stroke thickness, ink smudges, missing segments, and
uneven illumination, which can significantly degrade the
performance of neural networks. To address these challenges,
the raw character images I (x, y) are initially normalized using
Eq. (1), ensuring pixel intensity values are standardized with



zero mean and unit variance. This normalization mitigates the
impact of variations in lighting and ink density across different
document sources, enabling consistent feature extraction.

I(x,y) —p

Inorm(x'Y) = (1

Here, I(x,y) indicates the original pixel intensity value at
(x,y) of the grayscale image. The term p indicates the mean
pixel intensity across the entire dataset or batch of images,
which indicates that the image is zero-centered. The letter o
indicates the standard deviation of the pixel intensities, which
ensures that the pixel intensities are scaled so that the variance
is normalized. The image is then normalized to yield
Lorm (%, y), where each pixel is subsequently less sensitive to
changes in illumination and the thickness of writing.
Normalization is important for the Kannada handwritten
broken character regeneration framework because it facilitates
the learning of structural patterns by the U-Net encoder—
decoder and GAN discriminator without their learning being
confounded by the raw intensity information.

Subsequently, we apply the binarization step (Eq. (2)) that
uses Otsu’s thresholding to separate foreground strokes from
the background, moving from the normalized grayscale image
to a binary version Ip;, (x,y). This step is crucial to isolate
handwritten strokes from the background while still
maintaining the important structural information of each
character.

1
0

if Inorm (%, ¥) > Totsu

Lyin (%, ) = { otherwise

2

Next, we perform morphological operations, specifically
closing operations (Eq. (3)), to reconnect broken strokes and
fill small gaps within characters. Morphological operations
help to enhance the continuity of strokes in handwriting, which
is especially significant with Kannada characters that naturally
contain many complex curves and ligatures.

Leiosea = (Ipin @ B) © B 3)

Here, Ip,;;, is used to define the binarized input image, where
text pixels are separated from the non-text background. The
symbol @ refers to morphological dilation, while & refers to
morphological erosion, both of which are done using a
structuring element BBB. The image I yseq 1S the
morphologically closed image where gaps in strokes of
Kannada text are filled, and disconnections were minimized.
Eq. (4) describes the process of resizing the input character
image.

I. = Resize(I.,,H X W) 4

Here, I, denotes the character image once cropped, and H
and W represent the desired resized height and width. The
output image I, is the resized image for a standardized
uniform image for input to the U-Net encoder.

3.2 U-Net encoder—decoder stroke reconstruction

The demonstrated framework for regenerating handwritten
broken Kannada characters is built on a U-Net encoder-
decoder architecture, which is responsible for reconstructing
the missing or broken strokes while also duplicating the
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internal structure and style of each character. The U-Net
architecture is well suited for the task because of its symmetric
encoder-decoder architecture with skip connections, which
allows the network to capture local fine-scale stroke features
and the larger structural context.

The encoder sequentially abstracts hierarchical features
from the input image Iresized, which has been preprocessed,
through an encoder-decoder architecture with skip
connections consisting of just convolutional layers (Eq. (5)).

fi=oWy* fi_y +by) (5)

Here, f;_, is the input feature map from the previous layer,
W, and b, are the learnable convolutional weights and bias in
layer [, and * denotes convolution. The activation function o (-
) adds non-linearity, and the resulting feature map f; is a set of
hierarchical representations of the character of Kannada.

Each convolutional layer is followed by a non-linear
activation function, to enable the network to learn complex
stroke features. Down sampling shown in Eq. (6) via
maximum pooling layers reduces spatial dimensions and
increases the size of the receptive field enabling the encoder to
capture dependencies across the character structure.

fEM)) = fii +m,j +m) (6)

Here, f;(i + m,j + n) represents the feature activations in
the local neighborhood {2 around position (i,j). The output
29" (i, j) displays the maximum value in that region that
maintains dominant stroke features but decreases spatial
resolution. In the bottleneck layer, the network produces a
compact latent representation using z in Eq. (7) of the essential
features of the character including stroke orientation,
curvature, and connectivity.

z = Encoder (Iyesizea) (7)

Here, I,45i5¢q 1S the input image of the Kannada character
standardized impostor character, and the encoder generates a
compressed feature embedding. The latent vector z carries the
high-level stroke pattern and graphical structure information
to facilitate decoding and reconstruction. To reconstruct the
character, the decoder up samples the latent representation Eq.

).

£ = Upsample(fis1) ®)
Here, f;,4 is the feature map from a deeper level, and the
Upsample function increases its spatial resolution. The flup
feature map is able to reconstruct the fine stroke details of the
Kannada character while also leveraging the essence of the
encoder f°"¢ feature map. Adding skip connections to the
encoder feature maps congruent to its spatial dimensions Eq.
(9). The skip connection concatenates information regarding
the fine-size details lost during down sampling, enabling the
reconstruction of the strokes accurately.
flfusion — flup o) flenc (9)

Here, f;? is the upsampled decoder feature map and f;°"¢

is the related feature map from the encoder. The fusion
operator @ denotes either concatenation or addition, this
enables the model to mix high-level semantic information with



low-level stroke information to accurately regenerate the
Kannada character. The last convolutional layer produces the
final reconstructed character image I.. Eq. (10) that is a
smooth visual coherence regeneration of the original broken
input.

Lec = 0(Woue * fo + bour) (10)

Here, I, indicates the resulting regenerated image of the
U-Net decoder. fj is the fused feature map of all the features,
W, and b, are the learnable weights and bias for the output
layer, and * indicates convolution. The activation function (-
) ensures the resulting pixel values of I, reside in the desired
ranges, resulting in a regenerated character.

The U-Net reconstruction phase will provide the framework
for subsequent adversarial reconstruction - and while it may
be an approximation and a high-fidelity regeneration of the
Kannada handwritten strokes, it is enough for the next
generation of GAN based learning. The encoder's hierarchical
feature extraction and the decoder's ability to reconstruct
structurally provides assurance that both the macro
employment of character shapes is reconstructed along with
micro punctuations within strokes, allowing realistic character
regeneration in future adversarial GAN stages.

3.3 Adversarial refinement with Generative Adversarial
Network discriminator

Although the U-Net encoder—decoder generates an initial
reconstruction of broken Kannada handwritten characters, it
may still incorporate minor artifacts or unrealistic stroke
connection, especially within complex ligatures or occluded
areas. Therefore, to improve realism and enforce structural
consistency, the generated characters are further refined using
a GAN framework. In this adversarial scenario, the generator
G will correspond to the U-Net reconstruction network and we
introduce an additional discriminator D to assess the realism
of characters generated.

The discriminator D will output a probability score D ()
given an image I, representing the probability that the image
was real from the ground-truth dataset rather than generated.
This can also be formally expressed as Eq. (11).

D) =c(Wy*1+by) (11)

Here W, is the convolutional kernels of the discriminator,
b, is the bias term, * is convolution notation, and o is simply
a non-linear activation. The GAN's adversarial objective is the
usual min—max problem given in Eq. (12).

V(D,G) = E1~pdata [lOgD (1)]
(12)
+ EI(rec~pG) [lOg(l - D(Irec))]

Here, D is the discriminator, G is the generator, [ is the true
images from the true data distribution p;,:, and ... are the
reconstructed images from the U-Net passed to the generator.
This formulation trains G to generate realistic images I, and
D to distinguish real and synthetic samples. Here, Eq. (13) the
generator output.

Igen = G(lyec) 2) (13)

Here, I, is the U-Net reconstructed image and z is the
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latent noise vector used to generate outputs. The output I, is
the adversarial refined Kannada character image that has both
perceptual realism and restored stroke details. To ensure
stability during training and to enhance convergence, we
incorporate extra refinements including a gradient penalty as
shown Eq. (14).

Loy = 27D DI, — 1)° (14)
Here, [ denotes an interpolated image from the real and
generated samples, D(f ) denotes the output from the
discriminator, V; denotes the gradient with respect to I and
A denotes a weighting factor. This loss functions to impose the
Lipschitz constraint so that the discriminator does not become
too powerful, which would create irregularities in adversarial
training. Eq. (15) denotes the feature matching loss, which
matches the intermediate feature maps of the discriminator.

L
Lm =11 )" D) = D' Ugen) 113 (1s)
l

Here, D'Orepresents the feature maps from layer [ of the
discriminator, I is the real image, and I, is the generated
image. This loss promotes the Ij.,to match structural as well
as perceptual similarity to the real character beyond pixel-wise
differences. With these adversarial constraints imposed, the
GAN-based refinement promotes the generator to create
regenerated Kannada characters that are both visually realistic
and structurally faithful in order to mitigate typically observed
reconstruction issues such as broken strokes, awkward
junctions, and overall style inconsistency. At this stage, the
GAN etiquette complements the previously described U-Net-
reconstruction by incorporating a discriminator-driven quality
check that combines the initial coarse reconstruction to derive
a regenerated handwritten character with high fidelity.

3.4 Loss function integration

To ensure that Kannada handwritten characters are
accurately regenerated, our framework uses multiple loss
components that instruct the generator to create visually
coherent, structurally faithful, and identity-preserving
reconstructions of the handwritten characters. These losses
include pixel-level reconstruction loss, structural similarity
loss, perceptual loss, and adversarial loss that together provide
an appropriate balance between fidelity, stroke correctness,
and realism.

The reconstruction loss L,,. encourages the generator to
minimize the pixel-wise difference between original character
l,yig lorig and the regenerated output image Iy, as shown in
Eq. (16).

Lyec =Il Iorig - Igen Iy (16)

In this equation, I, is the ground-truth Kannada character
image and Iy, is the image reconstructed through the hybrid
U-Net + GAN framework. L1 norm ensures that the
regenerated image closely relates to the original strokes which
promote the coherent reconstruction of fragmented characters.
The L1-norm criterion diminishes blur artifacts while retaining
clear details of fine strokes. To preserve the overall structure
fidelity, we additionally use a structural similarity loss,



referred to as SSIM as given Eq. (17).

Lesim =1— SSIM(Iorig'Igen) (17)

Here, I,,i; denotes the ground-truth Kannada character
image while I ., denotes the generated image coming from
the framework. We subtract the SSIM index from 1 to penalize
structural differences in the loss allowing the different stroke
shapes and characters geometric structures to be preserved
upon regeneration. In order to capture higher-level semantic
features as opposed to pixel values. We also define a
perceptual 1oss Ly, over intermediate layers of a pretrained
convolutional network VGG) as Eq. (18).

1
Lperc = Z ”¢i(10rig) - ¢i(1gen)”; (18)

Here, ¢;(+) denotes the feature map from the I layer of a
pretrained CNN. The perceptual loss captures higher-level
semantic divergences to enhance stroke realism. Finally, the
adversarial loss L4, complements these, which also
encourages realism using the discriminator's feedback as
shown in Eq. (19).

Loay = _E[IOQD (Igen)] (19)

Here, D(-) is the discriminator, Iy, is the generated image.
The adversarial loss encourages realistic-looking handwriting
textures with respect to discriminator feedback. In this

synthesis, all of these components combine as follows into the
combined generator loss given in Eq. (20).

Lg = alyec + BLgsim + prerc + 6Lgay (20)
Here, a,f,y,and § are hyperparameters weighting
reconstruction, structural, perceptual, and adversarial

contributions, respectively. L; is the overall generator loss
used to train the U-Net + GAN generator. The discriminator
will have a similar loss set to maximize its ability to
distinguish real characters from generated characters. Lj, is the
discriminator loss defined as Eq. (21).

Lp = —(E[logDU,rig)] + E[log(1 — D(Ugen))]) (21

Here, I,y4 represents the real image while Ige, is
generated. LD maximizes the discriminator's ability to
distinguish real from generated Kannada characters. By
combining reconstruction, structural, perceptual, and
adversarial objectives, this integrated loss is developed to
maximize pixel accuracy of the regenerated Kannada
characters, visual authenticity, and structural validity, in order
to lay a sound optimization and validation framework.

3.5 Training objective with min—max optimization

The UNGAN-KR framework training goal is expressed as
a min-max optimization problem, a classic characteristic of
Generative Adversarial Networks (GANs), where the
generator G and discriminator D are trained jointly to achieve
realistic stroke reconstruction and good preservation of
character identity. More specifically, the generator is trained
to minimize its total loss L, so it generates visually believable

3279

characters while providing structural consistency among all
characters. Meanwhile, the discriminator is trained to
maximize its assessment of the likelihood of identifying a
character as either real or regenerated, which is captured using
the loss L, and represents the two objectives of the
discriminator as Eq. (22).
MNF = (Lg; + Lp) (22)
In more detail, the generator loss L. leverages pixel-level
reconstruction loss, similarity in character structure,
perceptual similarity in character form between the image and
the reconstruction, and adversarial feedback from the
discriminator Ly as given in Eq. (23).

;
T TFite

The discriminator loss simply assesses how well D
differentiates characters as either real or regenerated. To
optimize these objectives, we employed gradient-based
updates using the Adam optimizer as shown in Eq. (24).

06 = 0

(23)

e
T ore

where 6; and 6, are parameters of the generator and
discriminator respectively, n is the learning rate, and m;, U;
are bias-corrected moment estimates. Learning rate decay and
gradient clipping are employed to stabilize training as shown
in Eq. (25).

Op =6p — (24)

1
1+ At

Ny ="Mo- (25)

Here, 1, is the initial learning rate, A is the decay factor, and
t indicates the current training step. Eq. (26) applies a decay to
the learning rate, which reduces 71, across time, and helps
ensure stable convergence to the solution.

drop __
h’l - hl -m,

m ~ Bernoulli(p) (26)

Here, h, is the activation of layer [, and mmm is a Bernoulli
random mask with probability p that indicates dropout
regularization randomly deactivates neurons to mitigate
overfitting. Eq. (27) is referred to as the gradient clipping

mechanism.

_ gt
max (1,11 g¢ ll2 /¢)

It (27)

Here, g, is the gradient at step t, and ccc is the threshold for
clipping. Within gradient clipping, the gradient is clipped to
ensure that the updates remain bounded to prevent exploding
gradients that can occur during training of the generator and
discriminator. Lastly, similar to dropout regularization in the
generator, dropout regularization mitigates common forms of
overfitting and allows the generator to generalize well across
the various handwritten Kannada characters. In addressing this
through a min-max optimization problem, the generator
continues to learn to generate high-fidelity stroke
reconstructions that can fool the discriminator into thinking it
had seen the original, while the discriminator is continually



learning to become better at recognizing real characters.
Overall, this adversarial training occurs at a high frequency
within a loop, ensuring that the recreated characters are
visually representative and also similar to the original
handwritten character, as the first stages of the character
regeneration pipeline.

3.6 Validation and preservation of character identity

An important consideration in the regeneration of Kannada
handwritten characters is the preservation of character identity
such that the regenerated strokes respect the original character
while providing better visual consistency. To support this, the
framework incorporates identity-preserving constraints and
validation metrics that direct the generator to produce
structurally and semantically consistent outputs. First, apply a
character classification constraint to the generator output
Yprea derived from a pre-trained classifier using Eq. (28).

Yprea = Softmax(vvcfgen + bc) (28)

Here, fyen is the feature map of the generated character, and
W, and b, are the classifier weights and bias. The resultant
cross-entropy loss preserves the label of the generated
character using Eq. (29).

1
Lig=— Z YilogYprea,i 29
7

Here, y; corresponds to the ground-truth one-hot label for
class i, and ypreq,; denotes the predicted probability for that
class. This loss guarantees that the regenerated Kannada
character retains its original class identity during training. To
promote stroke-level consistency, a skeletonization operator,
denoted S(-), is utilized, and a stroke consistency loss is
defined as Eq. (30).

Lstroke =l S(Iorig) - S(Igen) ”% (30)

Here, S(-) indicates a stroke extraction function capturing
the skeletal or structural representation of the Kannada
character strokes. This loss guarantees that the regenerated
image Igep reproduces the original strokes from Iy.;q. This
loss guarantees that the regenerated strokes follow the same
trajectory as the original strokes, which is particularly
important for complex Kannada ligatures and diacritics.
Additionally, to prevent jagged and unnatural stroke
connections, curve smoothness is imposed via Eq. (31).

T
2 2
Lonoorn = ) 142%11° + 142 (1)
t

where, (x;,y;) represents a stroke coordinate at time step t,
and 4% computes the second-order differences along the stroke
curve. Lastly, a style consistency loss defined with respect to
Gram matrices G; ensures that the overall visual style of the
handwritten character is preserved using Eq. (32).

]
Lstyle = Z ”Gj (Iorig) - Gj (Igen)”i (32)
j
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Incorporating these criteria, the ultimate generator loss with
respect to identity preservation is expressed as Eq. (33).
L);mal = LG + AidLid + /‘lstrokeLstroke (33)
where, A;gAserokeLia and Lgerore are trade-offs that balance
the importance of each identity preserving criterion. The
training goal now shifts as Eq. (34).
Fope = LE™ + L), (34)
This provides assurance that the generator not only outwits
the discriminator but also produces characters that remain
correct, clear, and visually true to the original handwritten
Kannada characters. Furthermore, aspects of the quality of
regeneration are assessed using quantitative metrics of
reconstruction accuracy, FID score, PSNR, and stroke-level
precision and recall to ensure visual realism and semantic
correctness. By combining these validation processes and
identity preservation processes, the presented framework
facilitates robust regeneration of broken handwritten Kannada
characters while preserving all unique stroke patterns, ligature
structures, and overall handwritten style, which is enormously

important for subsequent applications such as OCR and
historical document digitization.

4. RESULTS AND DISCUSSIONS

The suggested framework for Kannada handwritten broken
character regeneration through a hybrid U-Net and GAN-
based mechanism was executed using the PyTorch 2.0
framework with CUDA support for rapid operation. This
overall experiment was trialed on a workstation equipped with
an NVIDIA RTX 3080 GPU (10 GB VRAM), and Intel i7
processor, and 32 GB RAM running Windows 11(64bits). In
all experiments, the Adam optimizer was employed with an
initial learning rate of le-4, B: = 0.5 and P2 = 0.999. These
hyperparameters have also been established to work
effectively for adversarial training since we trained continually
for up to 200 epochs with a batch size of 64 in order to achieve
convergence without overfitting. As mentioned in Section 4.3,
augmentation techniques were employed i.e. random rotation
(£ 10°), horizontal flipping and Gaussian noise injection to
improve model robustness to the variety of styles of
handwriting and natural distortions according to the scanned
documents.

Datasets were collected from 100 writers represented by a
typical cross-section with varying ages, genders, and
professions. The end data set contained 495 classes with 150
samples per class after the up-sampling process took place.
The data set included base characters as well as types for
Kagunitas of the Kannada script. The data set included some
images that had broken character segments that could not be
removed during the extraction process from the handwritten
work. All images were visually checked manually if any
images had a broken character, they were moved to a different
bin. All characters used for training the model were visually
clear and complete. The dataset was subdivided into training
70%, validation 15%, and testing 15% subsets while
maintaining a fair class distribution in each split. Artificial
noise, partial occlusion, and distortions were added to a subset
of samples to approximate instances of broken characters in a
controlled fashion. This way for the degree of degradation



evaluation, there will be a sample set that can be used to assess
the parameters of the model's capability to regenerate
potentially broken characters. The dataset has all key Kannada
vowels/consonants and compound characters. Therefore, it is
comprehensive to be representative of handwriting-based
tasks addressing document recognition and resultant document
digital archiving tasks.

Training and Validation Loss vs Epoch

— Training Loss
Validation Loss

2000 3000

w00

Epoch
Figure 2. Training and validation loss against epochs

Figure 2 illustrates the training and validation loss against
epochs showcases the consistency of the proposed UNGAN-
KR framework over 5000 training updates. Both the training
and validation losses decrease consistently, suggesting that the
model learns to reconstruct damaged Kannada characters from
sketches while gradually generalizing to other samples. The
distance between the training and validation loss stays small,
demonstrating little overfitting and stable training behavior.
The loss curves, after some number of thousands of epochs,
also began to show an eventual plateau, presenting that the
model has converged with smooth stroke reconstruction and
perceptual quality. This data illustrates the effectiveness of the
chosen architecture, hyperparameters, and adversarial
refinement for stable and accurate regeneration of handwritten
characters.

A U-Net model with four encoder—decoder levels was
utilized with each level of the model consisting of
convolutional layers implemented with batch normalization
and the ReLU activation function. Skip connections were

utilized to maintain fine grain spatial information that would
be necessary to accurately reconstruct stroke movements in
recreating the characters. The GAN part of the model
consisted of a PatchGAN discriminator that refined the output
after stroke extraction, creating sharper, and more accurate
characters. For metrics, both structural accuracy and visual
realism were assessed for using Accuracy (Acc), Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
and Fréchet Inception Distance (FID), consisting of Eqgs. (35)-
(38), respectively.
Acc = NeorrectNiotat (35)
FID evaluates the distributional similarity between real and
generated characters in a deep feature space. Lower FID
values indicate that generated characters have a closer
representation to real handwritten characters in terms of style
and stroke distribution.

1
FID = iy = g W3+ T, (3, + 35 = 25,5)7)  (36)

Peak Signal-to-Noise Ratio: PSNR summarizes the visual
fidelity of regenerated character (i.e., replicated) as a function
of signal strength to reconstruction error. Higher PSNR values
indicate a more accurate regenerated character with less
distortion.

Max}?

‘USE 37

=10

PSNR

MSE calculates the average of the squared difference of
pixel values between original and regenerated characters.
Lower MSE represents higher accuracy in reconstruction,
which is important to maintain the integrity of the stroke of the
character and the overall legibility of the character.
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Figure 3. Result comparison of proposed model with few existing mechanisms

Table 1 and Figure 3 show that the proposed framework
achieved a recognition accuracy of 97.8% that is 8.4% more
than the baseline CNN autoencoder. This confirms the efficacy
of the adversarial refined continuous U-Net encoder decoder
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for fine-grained reconstruction of Kannada strokes. In general,
the MSE dropped to 0.009 with our method suggesting a very
high level of pixel restoration accuracy. Accordingly, the
PSNR improved to 31.6 db indicating that downloadable



characters reconstructed from the model closely resemble
original input characters with minimal noise in the signal. The
FID of 28.9 suggests that the model reconstructed characters
that do not just preserve structure but also appear perceptually
similar to original handwritten characters. Compared to the
standard U-Net of FID 52.7, our framework reduces
perceptual artifacts by nearly 45%.

Table 1. Result comparison of proposed UNGAN-KR model
with few existing mechanisms

misclassification due to visual similarity in Kannada
characters. The recall score of 97.8% reflects the model's
ability to recover nearly all instances of broken characters
across various handwriting styles and minimizes the
possibility of missed reconstructions. The F1 score of 97.6%
captures the balance between precision and recall across
instances of broken characters and signifies overall strong
performance of character regeneration. When compared with
baseline autoencoders and discrete U-Net/GAN models,
encoder-decoder reconstruction paired with adversarial
refinement yields a marked improvement in structural

Model Accrracy MSE PSNR o0 ?estoratlon and recognition reliability regarding the various
(%) (dB) instances of Kannada characters.
U-Net Only 93.8 0.015 27.1 52.7
Generative Table 2. Precision, recall, and F1 score comparison
Adversarial Network 95.6 0.012 294 413
(GAN) iny Precision Recall F1-score
Baseline Model o ° o
: (%) (%) (%)
Convolutional Neural -
89.4 0.021 24.5 68.2 Baseline
Network (CNN) .
A Convolutional Neural
utoencoder Network (CNN 87.5 86.8 87.1
Standard U-Net 938 0015 271 527 etwork (CNN)
GAN-based Autoencoder
Inpaintin 95.6 0.012 29.4 413 Standard U-Net 92.8 93.1 92.9
Pro Ose 4 U_Iﬁet N GAN-based Inpainting 94.9 952 95.0
p GAN 97.8 0.009 31.6 28.9 Proposed U-Net +
Generative
. Adversarial Network 975 97.8 97.6
The proposed UNGAN-KR model has a 97.5% precision (GAN)
meaning that nearly every regenerated character belonging to
the same class is correct. It is important to mitigate
e Comparison of Precision, Recall, and F1-score
== Precision "
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Figure 4. Precision, recall, and F1 score comparison
Table 3. Ablation study result analysis
Configuration Acc (%) Precision (%) Recall (%) F1-score (%) MSE PSNR (dB) FID
U-Net Only 93.8 92.8 93.1 92.9 0.015 27.1 52.7
Generative Adversarial
Network (GAN) Only 95.6 94.9 95.2 95.0 0.012 294 41.3
UNGAN-KR (Proposed) 97.8 97.5 97.8 97.6 0.009 31.6 28.9

The model demonstrates a high level of accuracy as shown
in Table 2 and Figure 4. Specifically, it shows the precision of
97.5% indicates that the model can identify most of the broken
characters that correspond with that particular class of
characters, which is crucial in the assessment given that
Kannada characters sometimes visually appear alike and can
be misclassified. The 97.8% recall metric suggests that the
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proposed model is able to reconstruct almost all of the broken
characters across different styles of handwriting with minimal
missed reconstructions. To study the importance and
contribution of the different components of the proposed
framework. Table 3 shows the ablation studies were conducted
using the Kannada handwritten broken character dataset
looking at three variations: (1) U-Net only, (2) GAN only, and



(3) the proposed combination of U-Net + GAN. Each of the
variations was tested on several metrics: Accuracy (Acc),
Precision (P), Recall, F1-score, Mean Squared Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception
Distance (FID) for a more holistic sense of structural and
perceptual performance. The U-Net only variation was able to
reconstruct almost all individual broken strokes because of the
encoder-decoder structure of the U-Net.

The use of skip connections in the U-Net model retained all
of the spatial information by passing information from the
encoder to decoder. And almost all of the broken strokes were
reconstructed correctly. The quality of reconstruction in U-Net
was due the overall process encoder-decoder architecture for
capturing textural details. But, the lack of adversarial feedback
resulted in fine structural and textural details not being
accurately captured resulting in blurry outputs and an FID
value that was higher (52.7) than the other two models. Thus,
U-Net only demonstrated strong pixel reconstruction, it lacked
perceptual realism, especially for complicated compound
characters and ligatures. The GAN-only configuration was
purely focused on adversarial refinement while the U-Net
based approach included no structural guidance through skip
connections. Although there was some variation in accuracy
metrics and performance, relatively lower FID of 41.3 and
higher PSNR of 29.4 dB scores suggest generally sharper.
However, without structural guidance some minor placement
differences remained for compound characters and
complicated ligatures resulting in a standard accuracy of
95.6% compared to U-Net based defects.

The UNGAN-KR methodology integrated both methods,
resulting in the overall best evaluation metrics. As well as
guaranteeing structural fidelity in reconstructing missing
strokes, U-Net also determined the GAN discriminator
ensured plausible handwriting texture while reducing data loss
and reducing potentially harmful perceptual loss artifacts. The
combined models resulted in 97.8% accuracy score in addition
to the lowest-MSE (0.009), highest-PSNR (31.6 dB), and
lowest-FID (28.9) showing alignment in reducing pixel
fidelity while maintaining higher and better perceptual quality.
Finally, per-character metrics include Precision of 97.5%,
Recall of 97.8%, and F1 score of 97.6%; the model robustly
restored broken characters with no mistakes in classification.
Figure 5 shows an example output of two characters after
restoration using the proposed model.

Model Input (degraded) Model Output (restored)

Model Input (degraded) Model Output (restored)

Figure 5. Example output of two characters after restoration
using proposed model
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The unit level experiments verify that U-Net or GAN alone
are not sufficient to achieve the best hypothesis when
regenerating Kannada characters. The U-Net + GAN
combination is important to substantiate both structural
accuracy and perceptual realism simultaneously, while
providing empirical evidence that the proposed solution is
novel and effective solution for restoring broken handwritten
Kannada characters and can potentially be used for
applications in OCR pre-processing, digital archiving of
manuscripts, and automatic handwriting analysis.

5. CONCLUSION

This paper has introduced a U-Net + GAN hybrid model to
regenerate broken Kannada handwritten characters. It is an
important problem in manuscript preservation as well as for
handwriting capture systems. The proposed UNGAN-KR
model adopts stroke reconstruction based on U-Net encoder—
decoder architecture together with adversarial refinement to
restore missing or degraded strokes while maintaining the
original handwriting style. Experimental results using a
dataset of 71,149 Kannada handwritten character images
demonstrate that the proposed framework consistently
outperforms. A set of base line approaches including CNN
autoencoders, U-Net, and GAN-based inpainting methods.
The framework proposed achieved a recognition accuracy of
97.8%, which is 8.4% more than the baseline mechanisms.
This confirms the efficacy of the adversarial refined
continuous U-Net encoder—decoder for fine-grained
reconstruction of Kannada strokes. In the future, it can be
extended the proposed framework to multi-script handwritten
datasets to test its generalizability across multiple Indian
scripts. The inclusion of transformer-based attention models
and semi-supervised training may improve stroke
reconstruction by reducing reliance on large annotated
datasets. Additionally, employing diffusion-based generative
models may improve the realism and perceptual quality of the
character’s regeneration, especially for more poorly degraded
or visually stylized handwriting.

ACKNOWLEDGEMENT

The authors would like to express my sincere gratitude to
Aditya Rao, Ashay Naik, Ashrit Bharadwaj, and Ajey Bhat for
their valuable support during the coding phase of the research
work. Their dedication and willingness to collaborate played a
crucial role in the successful development and completion of
the work.

REFERENCES

[1] Nigam, S., Behera, A.P., Verma, S. Nagabhushan, P.
(2024). Deformity removal from handwritten text
documents using variable cycle GAN. International
Journal on Document Analysis and Recognition
(IJIDAR), 27: 615.627. https://doi.org/10.1007/s10032-
024-00466-x

Alaasam, R., Madi, B., El-Sana, J. (2024). Text
enhancement for&nbsp;historical handwritten
documents. In Document Analysis and Recognition -



(3]

(3]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

ICDAR 2024. ICDAR 2024. Lecture Notes in Computer
Science, pp. 397-412. https://doi.org/10.1007/978-3-
031-70536-6 24

Rabhi, B., Elbaati, A., Boubaker, H. Pal, U., Alimi, A.M.
(2024). Multi-lingual handwriting recovery framework
based on convolutional denoising autoencoder with
attention model. Multimedia Tools and Applications, 83:
22295-22326. https://doi.org/10.1007/s11042-023-
16499-z

Gongidi, S., Jawahar, C.V. (2021). IIIT-INDIC-HW-
Words: A dataset for Indic handwritten text recognition.
In Document Analysis and Recognition — ICDAR 2021,
pp. 444-459. https://doi.org/10.1007/978-3-030-86337-
1 30

Ramesh, G., Shreyas, J., Balaji, J.M., Sharma, G.N.,
Gururaj, H.L., Srinidhi, N.N., Askar, S.S.,
Abouhawwash, M. (2024). Hybrid manifold smoothing
and label propagation technique for Kannada
handwritten character recognition. Frontiers in
Neuroscience, 18: 1362567.
https://doi.org/10.3389/fnins.2024.1362567

Siddanna, S.R., Kiran, Y.C. (2024). An efficient
recognition of handwritten Kannada script using variable
attention-based Coati integrated Bi directional Long
Short-Term  Memory.  Multimedia  Tools and
Applications, 83: 88981-89002.
https://doi.org/10.1007/s11042-024-18999-y

Liu, X.Y., Meng, G.F., Xiang, S.M., Pan, C.H. (2021).
Handwritten  text generation via disentangled
representations. IEEE Signal Processing Letters, 28:
1838-1842. https://doi.org/10.1109/LSP.2021.3109541
Chen, Z.N., Yang, D.H., Liang, J.L., Liu, X.W., Wang,
Y.Y., Peng, ZH., Huang, S.P. (2022). Complex
handwriting trajectory recovery: Evaluation metrics and
algorithm. In 16th Asian Conference on Computer
Vision, Macao, China, pp- 58-74.
https://doi.org/10.1007/978-3-031-26284-5 4

Elanwar, R., Betke, M. (2025). Generative adversarial
networks for handwriting image generation: A review.
The Visual Computer, 41: 2299-2322.
https://doi.org/10.1007/s00371-024-03534-9

Zdenek, J., Nakayama, H. (2021). JokerGAN: Memory-
efficient model for handwritten text generation with text
line awareness. In Proceedings of the 29th ACM
International Conference on Multimedia, Virtual Event
China, pp- 5655-5663.
https://doi.org/10.1145/3474085.347571

Dong, C.C., Liu, H.M., Wang, X.Y., Bi, X.H. (2024).
Image inpainting method based on AU-GAN.
Multimedia Systems, 30: 101.
https://doi.org/10.1007/s00530-024-01290-3
Elharrouss, O., Damseh, R., Belkacem, A.N., Badidi, E.,
Lakas, A. (2025). Transformer-based image and video
inpainting: Current challenges and future directions.
Artificial Intelligence Review, 58: 124.
https://doi.org/10.1007/s10462-024-11075-9

Chen, Y.T., Xia, R.L.,, Yang, K., Zou, K. (2024).
DNNAM: Image inpainting algorithm via deep neural
networks and attention mechanism. Applied Soft
Computing, 154: 111392.
https://doi.org/10.1016/j.as0c.2024.111392

Li, H.L., Zhang, Y .F., Wang, W.M., Zhang, S.Y., Zhang,
S.X. (2024). Recovery-based occluded face recognition
by identity-guided inpainting. Sensors, 24(2): 394.

3284

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(23]

[24]

[25]

[26]

https://doi.org/10.3390/s24020394

Yeh, C.H., Yang, H.F., Chen, M.J., Kang, L.W. (2024).
Image inpainting based on GAN-driven structure- and
texture-aware learning with application to object
removal. Applied Soft Computing, 161: 111748.
https://doi.org/10.1016/j.as0c.2024.111748

Chang, C.C., Garcia Perera, L.P., Khudanpur, S. (2023).
Crosslingual handwritten text generation using GANSs. In
Document Analysis and Recognition — ICDAR 2023
Workshops, pp. 285-301. https://doi.org/10.1007/978-3-
031-41501-2 20

Dubey, P., Nayak, M., Gehani, H., Kukade, A., Keswani,
V., Dubey, P. (2025). Enhancing realism in handwritten
text images with generative adversarial networks.
Bulletin of Electrical Engineering and Informatics,
14(3): 2370-2379.
https://doi.org/10.11591/eei.v14i3.9190

Hanif, S., Latecki, L.J. (2023). Strokes trajectory
recovery for unconstrained handwritten documents with
automatic evaluation. In Proceedings of the 12th
International Conference on Pattern Recognition
Applications and Methods (ICPRAM 2023), Lisbon,
Portugal, pp- 661-671.
https://doi.org/10.5220/0011700100003411

Alaei, A., Nagabhushan, P., Pal, U. (2011). A benchmark
kannada handwritten document dataset and its
segmentation. In 2011 International Conference on
Document Analysis and Recognition, Beijing, China, pp.
141-145. https://doi.org/10.1109/ICDAR.2011.37
Sajjan, S.P., Bannigidad, P., Domlur, A. (2025). Ancient
kannada handwritten palm leaf dataset. Mendeley Data.
https://doi.org/10.17632/w5px7czbn9.3

Kong, Y.X., Luo, C.J., Ma, W.H., Zhu, Q.Y., Zhu, S.G.,
Yuan, N. (2022). Look closer to supervise better: One-
shot font generation via component-based discriminator.
In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), New Orleans, LA, USA,
pp- 13472-13481.
https://doi.org/10.1109/CVPR52688.2022.01312
Bannigidad, P., Sajjan, S.P. (2023). Restoration of
ancient kannada handwritten palm leaf manuscripts using
image enhancement techniques. In 5th EAI International
Conference on Big Data Innovation for Sustainable
Cognitive Computing. BDCC 2022. EAI/Springer
Innovations in Communication and Computing, pp. 101-
109. https://doi.org/10.1007/978-3-031-28324-6 9
Parashivamurthy, S.P.T., Rajashekararadhya, S.V.
(2024). An efficient kannada handwritten character
recognition framework with serial dilated cascade
network for kannada scripts. Advances in Artificial
Intelligence and Machine Learning, 4(3): 2499-2516.
https://doi.org/10.54364/AAIML.2024.43146

Wang, Z., Li, Y.J.,, Li, H.L. (2025). Chinese inscription
restoration based on artificial intelligent models. npj
Heritage Science, 13: 326.
https://doi.org/10.1038/s40494-025-01900-x

Sareen, B., Ahuja, R., Singh, A. (2024). CNN-based data
augmentation for handwritten gurumukhi text
recognition. Multimedia Tools and Applications, 83:
71035-71053. https://doi.org/10.1007/s11042-024-
18278-w

Wang, Y.M., Wang, H., Sun, S.W., Wei, H.X. (2022).
An approach based on transformer and deformable
convolution for realistic handwriting samples generation.



(27]

In 2022 26th International Conference on Pattern
Recognition (ICPR), Montreal, QC, Canada, pp. 1457-
1463. https://doi.org/10.1109/ICPR56361.2022.9956551
Hameed, M.M., Ahmad, R., Kiah, L.M., Murtaza, G.,
Mazhar, N. (2023). OffSig-SinGAN: A deep learning-
based image augmentation model for offline signature
verification. Computers, Materials and Continua, 76(1):
1267-1289. https://doi.org/10.32604/cmc.2023.035063

Hong, D.J., Chang, W.D., Cha, E.Y. (2024). Handwritten

signature  generation using denoising diffusion
probabilistic models with auxiliary classification
processes.  Applied  Sciences, 14(22):  10233.

3285

[29]

[30]

https://doi.org/10.3390/app142210233

Liao, Q.S., Xia, G., Wang, Z.N. (2023). Calliffusion:
Chinese calligraphy generation and style transfer with
diffusion modeling. arXiv preprint arXiv:2305.19124.
https://doi.org/10.48550/arXiv.2305.19124

Pippi, V., Cascianelli, S., Cucchiara, R. (2023).
Handwritten text generation from visual archetypes. In
2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Vancouver, BC, Canada,
pp- 22458-22467.
https://doi.org/10.1109/CVPR52729.2023.02151





