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Ultra-fast evolution of sixth-generation (6G) wireless networks promise ultra-low latency,
ultra-massive device connectivity, and energy-efficient communications, and thus become
a basis for Internet of Things (1oT) applications. It is, nonetheless, difficult for these loT
environments to achieve the optimum configuration since there will be heterogeneous
devices, differing workloads, and quality-of-service requirements. Classical schemes of
Rule-Based Optimisation (RBO), Genetic Algorithm Optimisation (GAO), and Particle
Swarm Optimisation (PSO) became extremely popular since RBO will provide
deterministic configurations, though lack of scalability is a weakness; GAO ensures good
exploration, though slow convergence is a major weakness, and for PSO, fast convergence
is ensured, though stagnation is incurred in complex IoT environments at an early stage of
search processes. In order to offset these inadequacies, this paper introduces a Multi-
Algorithm Machine Learning Classification (MAMC) framework of intelligent 6G loT
configuration optimisation. The MAMC method integrates supervised learning classifiers
and ensemble-based decision fusion in a manner such that under varying network
conditions, the most efficient configuration would be adapted and selected. With decision
tree, support vector machine, and deep neural network classifiers, the framework
demonstrates enhanced adaptability, superior classification accuracy, and reduced
computational overhead over conventional schemes. The proposed approach was utilized
in order to minimize latency, optimize energy consumption, and enhance throughput in
large-scale 10T applications. Validation experiments verify that latency is minimized by
18%, energy efficiency is enhanced by 22%, and throughput is enhanced by 15% for
MAMC, respectively, compared to GAO and PSO, and RBO's scalability constraint is
eliminated. As a result, the framework represents a promising avenue toward self-
optimising, autonomous 6G-enabled 10T ecosystem realisation.

1. INTRODUCTION

Applications of smart 6G IoT configuration are multi-scale
and deep. Optimised IoT networks allow real-time, remotely

Sixth-generation (6G) wireless is transforming the IoT
space by promising ultra-low latency, enhanced spectrum
efficiency, massive device connections, and intelligent
resource allocation. With billions of I[oT heterogeneous
devices interconnected, efficient optimisation of configuration
is key in ensuring smooth communications and service
assurance in smart cities, healthcare monitoring, self-driving
automobile, and industrial control use cases [1].

Recent Advancements in 6G-enabled IoT reflect the
integration of artificial intelligence (Al) and machine learning
(ML) for self-learning, adaptation, and context awareness of
systems. Methods of reinforcement learning for adaptive
spectrum scheduling, deep learning for device recognition, and
federated learning for privacy-aware optimisation are gaining
acceptance. Multi-object optimisation approaches are further
used to achieve a compromise among trade-offs between
reduced latency, energy efficiency, and increased throughput
in extremely large-scale deployments [2].
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commanded data transmission with low delay in healthcare.
Adaptive configuration gives Ultra-Reliable and Low-Latency
Communications (URLLC) for Vehicle-to-Everything (V2X)
communication in autonomous vehicular scenarios. Smart
industries derive benefit through intelligent configuration for
predictive maintenance, process control, and energy
administration, and smart cities through advanced urban
mobility, public safety, and green infrastructure. These
applications reflect the requirement of advanced optimisation
frameworks available for use in complex and dynamic IoT
environments driven by 6G [3].

1.1 Research gaps

Although the hypothetical Multi-Algorithm Machine
Learning Classification (MAMC) framework exhibits
encouraging improvements in latency, energy efficiency, and
throughputs for 6G IoT configuration optimization, there are a
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few research gaps left for exploration. First, most of the work,
including this paper, depends on simulation-based evaluation;
there is no real testbed validation available to capture real-life
concerns such as hardware restrictions, interference, and
cross-layer delays. Second, although the framework contains
several classifiers, ultra-massive loT deployments of millions
of devices’ scalability of MAMC is under-explored. Third,
existing schemes optimize latency, energy, and throughputs
primarily, but other performance metrics such as reliability,
fairness, security, and Quality of Experience (QoE) require
cooperative optimization for real-world deployability [4].
Fourth, data privacy and trust administration remain under-
explored; standard schemes assume centralized learning,
although federated or privacy-preserving schemes must be
analyzed. Fifth, most of the models overlook mobility-induced
dynamics, particularly in UAV-aided IoT and vehicular IoT
applications, whereby there is rapidly varying topological
structure drastically altering performance. Finally, although
AI/ML usage is at the heart of the investigation, these
algorithms’ computation overhead and energy consumption at
the edges are rarely measured, and hence there is uncertainty
in their deployability. Addressing these gaps will enable future
work to turn MAMC from a simulation-driven idea into a
deployable, intelligent, and secure solution for 6G-aided IoT
ecosystems [5]. While recent studies discuss enabling
technologies of 6G networks, this work focuses on a concrete
learning-driven  optimization framework—MAMC—that
directly maps network context to actionable configuration
decisions. The discussion of 6G technologies is limited to
contextual relevance and integration with the proposed
framework.

1.2 Related work

Lin et al. [6] proposed a privacy-respecting multiobjective
sanitization framework for 6G IoT networks. It is in embracing
an ant colony optimization (ACO) mechanism via transaction
erasure and Pareto-based solutions for protecting sensitive
data at low computational expense. It ensures superior privacy
preservation over Particle Swarm Optimisation (PSO) and
GA. Its drawback is that the method still requires significant
parameter tuning and may not optimize real-time scalability
across large IoT networks.

Zhang et al. [7] introduced a learning-driven flexible cross-
layer optimizing scheme of ultrareliable and low-latency IoT
services. Its key novelty is the transfer asynchronous
advantage actor—critic (TA3C) algorithm, which is capable of
achieving efficient trade-offs between energy efficiency and
spectral efficiency by dynamical control of TTI, PD, and RB.
Its drawback is that although lowering algorithmic complexity
by over 90%, the scheme is computationally intensive for
highly large-scale IoT networks.

Kellermann et al. [8] researched UE context dissemination
across sparsely populated low Earth orbit (LEO) satellite
constellations for 5G/6G IoT. It is a store-and-forward
operation mode model of future advanced architecture for
multi-satellite constellations of persistent connectivity in
underserved areas. Its drawback is end-to-end delay increase
through sparse constellations, which is undesirable for real-
time IoT usage.

Elgarhy et al. [9] proposed an energy and latency
optimization framework of IoT URLLC and mMTC use cases.
Innovation lies in the use of resource unit configurations
(RUCs) and schedulers such as shortest job first (SJF) in
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optimizing latency and energy efficiency simultaneously. Its
method’s drawback, however, is performance dependence on
the configuration chosen, such that poor RUC choice can
greatly negatively impact efficiency.

Zhou et al. [10] presented a QoE-focused aerial IRS-aided
WPCN network for future 6G IoT. Its originality is exploiting
flying intelligent reflective surfaces (IRS) onboard unmanned
aerial vehicles (UAVs) to optimize time slot, flight trajectory,
and IRS phase through block coordinate descent (BCD). Its
drawback is the overwhelming optimization complication due
to many interdependent variables, which hinders real-time
adaptation. Muhammad et al. [11] studied optimizing
information freshness in RIS-aided NOMA-based IoT
networks. Its novelty is a bi-level optimization framework
optimizing RIS configuration, clustering, and power allocation
simultaneously, and the solutions come in closed forms. Its
shortcoming is the use of approximations for the mixed-
integer non-convex problem, which may constrain accuracy in
highly varying networks.

Khan et al. [12] covered reliability analysis of CRNs of 6G
IoT. Their role was introducing connection availability (CoA)
and service maintainability (SM) and deriving a channel
reservation scheme for enabling efficient spectrum usage. The
weakness is the model, even though it improves reliability,
does not work under high channel failure rates and large
primary user arrival rates.

Kanani et al. [13] proposed a high altitude platform station
(HAPS)-based integrated sensing and communication (ISAC)
system, HAPS-ISAC. It is a concept of advanced MIMO
beamforming for simultaneous improvement of sensing
quality and communications at large scales. Its demerit,
however, is reliance on non-convex optimization, which may

involve computationally expensive and prohibitively
expensive schemes of deployment.
Tang et al. [14] introduced a multiarea on-demand

classification (MOC) constellation framework for Satellite [oT
(SIoT) under the 6G communications system. It is their work
of integrating coverage, quality of communications, and cost
models optimized by the multi objective Manta Ray Foraging
Optimization (MOMRFO) algorithm in order to obtain Pareto-
optimal CubeSat constellation configurations. It enables
adaptive deployment within and beyond cellular base station
regions, reducing spending while increasing reliability of
communications. Its drawback is heightened computational
intensity through the execution of MOMRFO-based
optimization and potential lack of fitness for real-time
adaptation in cases of rapid constellation reconfigurations.
Lee et al. [15] proposed a distributed hybrid NOMA/OMA
user allocation scheme for wireless IoT networks. It is a
development of a distributed algorithm founded on a message-
passing framework that tunes users between nonorthogonal
multiple access (NOMA) and orthogonal multiple access
(OMA) in a dynamical fashion, hence delivering spatial gains
through beamforming while ensuring fairness and
convergence toward a global solution. This kind of hybrid
solution always obtains superior performance than existing
solutions in massive connection scenarios. Its drawback is that
its real implementation in dense networks would be prone to
synchronization overheads and additional signaling costs, thus
reducing efficiency under extremely dynamical conditions.
From the above studies, it is observed that existing 6G IoT
optimization approaches often suffer from single-model
dependency, high computational complexity, limited
adaptability under dynamic traffic conditions, and isolated



optimization of latency, energy, or throughput. Furthermore,
many solutions rely on fixed optimization strategies or
centralized learning, which restrict scalability and real-time
deployment. Motivated by these limitations, the proposed
MAMC framework is designed to dynamically select the most
suitable learning model and jointly optimize configuration
parameters such as TTI, RB, MCS, transmit power, IRS phase,
and edge offloading. Unlike prior works, MAMC explicitly
integrates model adaptability, multi-objective optimization,
and online learning into a unified decision-making framework,
as detailed in the following section.

2. ENABLING TECHNOLOGIES OF 6G FOR SMART
APPLICATIONS

Figure 1 shows the enabling technologies at the heart of the
6G communications ecosystem. At its center, 6G acts as the
enabler, linked to a few advanced technologies. Terahertz
Communications and Optical Wireless make ultra-high speed
data transmission through enhanced spectrum utilization
possible [16]. Massive MIMO (Multiple-Input Multiple-
Output) and IRS (Intelligent Reflecting Surfaces) enhance
spectral efficiency and extend the reach of the signal, and Cell-
Free Communications reduce interference and enhance
connectivity. Al adds smart automation and data-driven
decision-making and self-optimizing networks [17]. In this
work, IRS phase configurations are treated as controllable
parameters optimized by the MAMC policy generator rather
than as standalone architectural elements.

Unmanned Aerial
Vehicle

Mobile Edge
Computing

Terahertz
Communications

Quantum
Communications

Ol

Cell-Free
Communications

®

i

b e
Massive MIMO & IRS Artificial Intelligence

Blockchain

Figure 1. 6G core technologies and applications

Blockchain ensures data security, transparency, and trust
management between [oT and smart applications. At the
application end, Quantum Communications safeguard the
transmission at the physical level, and AR & VR deliver
immersive experiences supported by high-bandwidth and low-
latency [18]. Mobile Edge Computing (MEC) lowers the
latency of computation and brings it closer to the end-user, and
UAVs extend connectivity to distant locations. Together, these
technologies form the basis of 6G-driven smart cities, loT
environments, and future-generation digital infrastructure
[19].

2.1 Objectives

This work's objective is to present 6G's enabler technologies
of future smart cities, loT, and new digital infrastructures.
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They promise swifter connectivity, end-to-end
communications, and smart automation.

To examine the use of future technologies, including
terahertz, optical wireless, and massive MIMO, towards
ultra-high-speed, low-latency communications.
Towards Research on Synergies between Al
blockchain, and Quantum Communications for Secure,
Intelligent, and Adaptive 6G Networks.

To evaluate application-driven technologies such as
UAVs, AR/VR, and MEC for increasing coverage, real-
time processing, and immersive experience for end-
users.

secure

2.2 Methodology for 6G smart network integration

Figure 2 illustrates a stepwise methodology adopted for the
integration of 6G enabling technologies in smart networks.
Technology Identification is the first step, wherein the
principal enablers of terahertz, optical wireless, massive
MIMO, Al, blockchain, and MEC are selected [20].

Integration
Framework Security
Enhancement
Incorporate blockchain
and quantum
communication for
trust, transparency, and
secure transmission.

Develop a 6G-centric
model that
interconnects
csommunication,

Technology

I Optimization
Identification

computation, and Process
application

technologies.

02

Select core enablers
such as terahertz,
optical wireless,
massive MIMO, Al,
blockchain, and
MEC.

Apply Al and machine
learning algorithms for
resource allocation,
latency reduction, and
energy efficiency.

Figure 2. Stepwise methodology for 6G enabling
technologies

Integration framework constitutes the second step, which
formulates a 6G-centered model interlinking the
communication, computation, and application layers so as to
ensure smooth interoperability [21]. Optimization Process, the
third step, applies Al and ML plans for optimizing resource
allocation, reducing latency, and improving energy efficiency.
Security Enhancement, through the addition of blockchain and
quantum communication, ensures trust, transparency, and
secure data transmission in the final step. This systematic
approach delineates the way in which heterogeneous
technologies cooperate for the creation of intelligent,
dependable, and secure 6G networks enabling next-generation
applications [22].

2.2.1 Design and operation of the proposed Multi-Algorithm
Machine Learning Classification framework

The MAMC framework follows an offline—online
workflow. In the offline phase, historical IoT and RAN probe
data are pre-processed into feature vectors (e.g.,
SINR/BLER/RTT, traffic class, device context) and used to
train multiple classifiers (SVM, RF, XGBoost, CNN-LSTM)
to learn the best configuration class. In the online phase, real-
time measurements are converted into the same features, and
all classifiers generate predictions with confidence. The meta-
selector chooses the best-performing classifier (or fuses
outputs) using reward feedback to adapt under changing
conditions. The policy generator converts the selected
prediction into concrete configuration actions (TTI, RB, MCS,
power, IRS phase, edge offload) while balancing latency—
energy—throughput and enforcing QoS constraints.



2.2.2 Edge pre-processor

Eq. (1) covers pre-processing IoT as well as RAN probe
data before actual analysis. It extracts appropriate features
from unprocessed inputs by undertaking filter weights,
normalising through the use of the mean and standard
deviation, and ensures all the values get scaled suitably [23].
The pre-processing thus becomes very critical for stabilising
ML models, reducing the level of noise, as well as aligning the
time windows for proper classification. This acts as the initial
base for all further optimisation steps [24].

Xe—u

Fo = p(X Wp) = (1)

Here, X, represents the input window of raw features at time
t. The parameter Wy denotes the filter weights applied during
the transformation. The vector u is the mean used for
normalization, while o is the standard deviation used for
scaling. The function ¢(-) refers to the feature extraction and
mapping function [25].

2.2.3 Feature drift detection

Eq. (2) identifies data drift occurrences over time, which
indicate the time the model goes out of date or less accurate.
Calculating the Kullback-Leibler divergence between the
widespread feature distribution and the starting baseline
reference gauges the level of change [26]. This lets the system
trigger adaptation or retraining once a significant drift
becomes noticeable. The provision for drift detection provides
robustness and long-run reliability for the changing IoT
environments [27].

Dy = KL(P, Il Py) ()

In this expression, D, denotes the drift score at time t. The
term P, refers to the feature distribution observed at time ¢,
while P, denotes the baseline reference distribution. The
function KL(-) represents the Kullback—Leibler divergence
that quantifies the difference between the two distributions
[28].

2.2.4 Meta-selector (Multi-Algorithm Machine Learning
Classification)

Eq. (3) governs the meta-selector, which adjusts the best-
performing classifier as the network situation changes. The
meta-selector switches between exploration and exploitation
by considering the estimated reward for a given classifier
along with the number of times it has been picked [29]. The
adaptability mechanism prevents the framework from getting
sticky with suboptimal models and adjusts strategies when the
situation changes. The meta-selector constitutes the core of the
multi-algorithm framework's adaptability and efficiency [30].

B = N In t
= arg max | up + -

Here, h* is the classifier selected at time t. The parameter
Uy, represents the estimated performance reward of classifier h
[31]. The variable n; indicates the number of times classifier
h has been selected, while t is the current time index. The
constant f serves as the exploration coefficient in the selection
strategy [32].

€)
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2.2.5 Policy generator (multi-objective)

Eq. (4) is the underlying optimisation function for
determining the best configuration of the IoT system. This
minimises the latency as well as the energy consumption and
maximises the throughput as much as possible, which
demonstrates the multi-objective nature of the optimisation for
the 6G IoT. This allows for balanced weighting between each
of the respective measures of performance so the chosen
configuration optimally balances efficiencies, speed, and
reliability during real-time usage [33].

u* = arg Illllelll} a-Lat(u)+ B -En(u) —y - Thr(u) 4)

In this formulation, u* denotes the optimal configuration
profile chosen. The set U represents all feasible configuration
actions such as transmission time interval, resource block,
modulation coding scheme, and power levels [34]. The term
Lat(u) expresses the latency under configuration u, while
En(u) corresponds to the energy consumption. The function
Thr (u) refers to the throughput achieved by configuration u.
Finally, the coefficients , 8, and y are the trade-off weights
assigned to balance latency, energy consumption, and
throughput [35-37].

3. PROPOSED ARCHITECTURE AND PROCESS FOR
INTELLIGENT 6G 10T CONFIGURATION
OPTIMIZATION

Figure 3 illustrates the delineated 6G IoT configuration
optimization and smart process flow for exploiting MAMC
toward supporting diverse IoT application use-cases and
networks. The framework begins at the Sensing Layer,
wherein IoT device and RAN probe data is collected. It is pre-
processed by the Edge Pre-processor and cached in the Feature
Store for future analysis. Classifier Pool exploits a series of
algorithms such as SVM, Random Forest, XG-Boost, and
CNN-LSTM in an attempt to model heterogencous IoT
contexts [38]. Meta-Selector (MAMC) programmatically
chooses the best classifier for the given situation presented.
Policy Generator then transforms predictions into the optimum
configuration action, which is verified by the Constraint &
Safety Guard for QoS, fairness, and compliance. Finally, the
Orchestrator (RAN + Core) enacts these configurations across
the network [39]. Proposed Process serves the purpose of
filling the gap in the architecture through five major stages:
Offline Training of pre_models, Contextual Selection of the
classifier performing best, Policy Synthesis for producing the
best configurations, Online Adaptation for real-time updates,
and Feedback & Drift Handling for ongoing improvement and
adaptation. Together, this framework facilitates secure,
adaptive, and efficient IoT configuration optimization in 6G
networks [40]. Unlike survey-oriented studies, the proposed
architecture operationalizes 6G concepts through a learning-
centric control loop, where MAMC acts as the decision
intelligence layer governing real-time loT configuration.

3.1 Sensing layer (IoT and RAN probes)

This layer collects raw network and device-level
information including key performance indicators (KPIs), user
context, and environmental parameters from IoT devices and
radio access nodes and it is determined by Eq. (5).



x; = [Ky € €] (5)
where, k; denotes radio KPIs such as SINR, BLER, and RTT,
¢, denotes device and application context such as battery state
of charge, device type, and traffic class, e, denotes
environmental conditions such as line-of-sight status and
blockage by obstacles [41].

Sensing Layer
(loT & RAN
probes)

R

Edge Pre-
processor

I

Feature Store
(Edge/Core)

B

Classifier Pool
(Multi-Algorithm)

.

Meta-Selector
(MAMC)

—

Policy Generator

N

Constraint &
Safety Guard

B

Orchestrator (RAN
+Core)

Proposed Process

Online
Adaptation
Feedback &

Drift Handling

Offline
Training

Contextual
Selection

Policy
Synthesis
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Figure 3. Architecture of intelligent 6G loT-MAMC
framework

3.2 Edge pre-processor

This block filters, windows, and normalizes raw inputs to
create structured features that capture temporal dynamics and
statistical properties of the sensed data and it is determined by

Eq. (6).

ft _ d W - win(X;_p41.)) — (6)

a

where, ¢ (+) denotes the feature mapping function, W denotes
the filter weights used for transformation, win(Xs_j41.¢t)
denotes a sliding temporal window of size L, u denotes the
mean vector used for normalization and o denotes the standard
deviation vector used for scaling [42].

3.3 Feature store (edge/core)

This module organizes normalized features into aligned
sequences, ensures synchronization across sources, and
monitors for feature distribution drift and it is represented by

Eq. (7).
Dy = KL(p¢ || Prer) (7

where, D; denotes the drift score at time t, p; denotes the
feature distribution at time t, p.s denotes the baseline
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reference distribution and KL(:) denotes the Kullback—
Leibler divergence function [43].

3.4 Classifier pool (multi-algorithm)

This block runs multiple machine learning classifiers in
parallel to predict performance classes and their associated
confidence scores [44] and it is represented by Eq. (8).

9o = hn () (8)
where, h,,(-) denotes classifier m such as SVM, Random

Forest, XGBoost, or CNN-LSTM, F; denotes the aligned
feature set at time t, yfm denotes the predicted class by

classifier m and pt(m) denotes the confidence or posterior
probability of classifier m [45].

3.5 Action space and configuration vector

The 6G IoT configuration at time t is represented by an
action vector and it’s determined by equation.

u, = [TTI, RB,, MCS;, Pyy. 1, O1rst, of fload, ]

where, TT1; is the transmission time interval, RB; is the
allocated resource blocks, MCS; is the modulation and coding
scheme, P, . is the transmit power, 8z is the intelligent
reflecting surface phase configuration, and of fload, denotes
the edge or cloud computation offloading decision.

The feasible configuration set is defined as equation.

U=ug|;9r(uy) <0;Vk

where, U denotes the set of admissible configurations, g ()
represents system constraints, k indexes the constraint set, and
t denotes the decision time index.

3.6 Meta-selector (Multi-Algorithm Machine Learning
Classification)

This component adaptively selects the most suitable
classifier or fuses multiple classifiers based on contextual
rewards and confidence values [46] and it is represented by

Eq. (9).

. R Int
mg = arg max | f,(F) + B [—
m Ny,

)

where, m} denotes the chosen classifier at time t, fi,,(F;)
denotes the estimated performance reward of model m, f§
denotes the exploration coefficient in the selection rule, t
denotes the current time index and n,,, denotes the number of
times classifier m has been used [47].

3.7 Coupling of UCB meta-selection with configuration
optimization

The UCB meta selector chooses the most reliable classifier
for the current context and its prediction is used to select the
optimal configuration action and it is determined by the
equation.



u* = arg meilrll; al(w) + BE @) —yT(w)
u

where, the selected classifier provides predicted latency L (u)
energy E(u) and throughput T'(u) which are used by the
policy generator to compute the optimal configuration u*.

3.8 Policy generator

The generator translates classification outputs into specific
network configurations while balancing multiple objectives
such as latency, energy, and throughput [48] and it is
determined by Eq. (10).

u; = arg min a Lat(u) + § En(u) — y Thr(u) (10)
ueu

where, u; denotes the selected optimal configuration profile,

U denotes the set of feasible configuration actions, Lat(u)

denotes the latency function of configuration u, En(u)

denotes the energy consumption of configuration u, Thr(u)

denotes the throughput achieved by configuration u and

a,f,y denote the trade-off weights for each performance
metric [49].

3.9 Constraint and safety guard

This block ensures that candidate configurations satisfy
quality of service (QoS), fairness, and stability constraints
before deployment and it is determined by Eq. (11).

gu) <0 (11

where, g(u;) denotes the vector of constraint functions, the
constraints denote p95 latency thresholds, maximum transmit
power limits, block error rate limits, and fairness indices [50].

3.10 Orchestrator (RAN + Core)

This block applies the validated configurations to the radio
and core network components and logs the performance
outcomes and it is determined by Eq. (12).
where, AKPI; denotes the improvement in KPIs after
configuration and s; denotes the network state at time t, Sy,
denotes the network state after applying configuration and
KPI(+) denotes the function measuring performance such as
latency, energy, or throughput [51].

3.11 Proposed integrated equation for intelligent 6G IoT—
Multi-Algorithm Machine Learning Classification

It includes the entire end-to-end optimizing process. Pre-
processed raw IoT and RAN probe inputs X, through feature
extraction ¢(-) are input into a classifier h,,» chosen by the
meta-selector MAMC, and it predicts the operational class [52,
53]. Finally, the policy generator calculates the optimum u;
configuration by minimizing a weighted multi-objective
function of latency, energy, and throughput and it is
determined by Eq. (13).

u; = arg min[a Lat(hy,; (0(x,))) +

B En(hy: (b(x)) — ¥ Thi(h: (px))] )
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where, X, denotes the raw sensing vector containing KPIs,
context, and environment at time t, ¢(x;) denotes the feature
extraction and normalization process, h,,: denotes the

selected ML classifier chosen by the meta-selector, Lat(-)
denotes the predicted latency cost from the classifier output,
En(-) denotes the predicted energy consumption cost, Thr(-)
denotes the predicted throughput reward, u; denotes the
optimal configuration profile at time ¢, U denotes the feasible
set of configuration actions (TTI, RB, MCS, power, IRS
phase, edge offload) and a, 8, y denote weighting coefficients
balancing latency, energy, and throughput [54, 55].

3.12 Mapping from prediction to configuration action

Using the KPI predictions generated by the selected
classifier, the policy generator evaluates feasible configuration
actions and selects the optimal one.

u* = arg mei?rll; al() + BE @) —yT(w)
u

where, the predicted latency L(u) energy E(uw) and
throughput T'(u) from the selected model are used to search
over the feasible configuration set U and determine the
optimal configuration u* under system constraints.

3.12.1 Algorithm 1. Multi-algorithm IoT optimization process
Algorithm 1 provides an adaptive learning-based
optimisation process for IoT environments for 6G networking.
The algorithm takes and pre-processes features derived from
KPI and context streams as normalized and time-align inputs.
A collection of classifiers (SVM, RF, XGB, CNN-LSTM) is
executed, and the meta-selector actively selects or blends the
best model based on the reward level and confidence
measures. The policy generator produces the preferred
configuration and adds protection mechanisms for maintaining
latency, energy, and throughput specifications. The algorithm
finally deploys the configuration, tracks the KPIs, updates
learning statistics, and triggers mini-retraining when drift
happens, offering robust and scalable real-time capability.

Inputs KPIs and context stream x,; window length L ;
classifier set # = {SVM, RF, XGB, CNN-LSTM}; weights
a, B,y; constraint set C.

Output Optimized configuration wu,.

Step_1: Acquire and engineer features
Form window X; = x;_; ,1.t; compute features F;, =
¢ (X,); normalize and time-align.
Step_2: Run multi-algorithm predictors
For each h € H, get class and confidence (9, pr) =
h(F,).

Meta-selection and fusion
Select model using UCB or context rule; optional soft

fusion y = Y, w,pp.

Step_3:

Step_4: Policy synthesis with safeguards
Compute. If constraints violated then set u; = u;_;
else set.

Step_5: Apply, learn, and adapt



Enforce u, on RAN and core; measure KPIs;
compute reward 7, from gains; update meta-selector
stats (fip, ny); if drift detected then trigger mini-
retraining on recent data.

3.12.2 Pseudocode 1.
optimization

Pseudocode 1 depicts the iteration-based optimization
process for 6G loT environments from the MAMC framework.
It initializes classifiers and a meta-statistic pool, followed by
the processing of context and KPI windows features.
Predictions from classifiers are adapted by the meta-selector
by optimally selecting the model with exploration—
exploitation reasoning. The policy optimizer optimally
configures the settings by balancing latency, energy, and
throughput. The settings are configured, the configuration
rewards for performance are observed, and the model statistics
are updated during each iteration. As soon as drift manifests,
mini-retraining allows adaptability, stability, and resilience
during dynamic IoT environments.

Initialize models H, meta-stats {uh, nh}, previous config u0

fort=1.T do

Xt «— window(x[t-L+1:t])

Ft <« o(Xt) D> features

for h in H: (yh, ph) < h(Ft)

h* « argmax_h (ph + B * sqrt(In t / nh))

u* « argmin_u a-Lat(u,yh*) + B-En(u,yh*) — y-Thr(u,yh*)

u <« u* if constraints satisfied else u_{t-1}

apply(u); measure KPIs — reward rt

update p {h*}, n_{h*} with rt;

mini_retrain(H)
end for

Compact multi-algorithm IoT

if drift(Ft) then

4. RESULTS AND DISCUSSION

It is created to evaluate the optimization framework of the
Intelligent 6G IoT configuration under the MAMC approach
as show in Table 1. It considers communications,
computations, and system variables to predict latency, energy
efficiency, throughput, and reliability under realistic 6G IoT
conditions.

4.1 Latency performance comparison for conventional and
proposed methods

Figure 4 illustrates the variation of latency against the
number of loT nodes for different optimization schemes.
Conventional schemes such as Rule-Based Optimisation
(RBO), Genetic Algorithm Optimisation (GAO), and PSO
register higher latency tendencies, especially under rising node
counts. Of these, PSO registers relatively low latency than
RBO and GAO but does not perform well under dense loT
conditions. Comparatively, the presented MAMC holds
relatively low latency across the board, saving up to 18%
under different network sizes. It thus demonstrates the ability
of MAMC in addressing scalability and dynamic traffic
conditions under 6G loT, ensuring more efficient and reliable
time-driven communication.

4.2 Energy efficiency performance comparison for
conventional and proposed methods

Figure 5 shows the evolution of energy efficiency against

3149

the number of 10T nodes for different optimization schemes.
Traditional RBO, GAO, and PSO schemes display gradual
increases in efficiency according to rising devices but have
their growth limited. By contrast, the proposed herein
approach, MAMC, always demonstrates the optimum
performance, and energy efficiency increases by
approximately 22% compared to traditional schemes.

Such an increase is due to intelligent allocation of resources
and learning schemes utilized for adapting and suppressing
wasteful energy consumption. It is verified by analysis that
MAMC is optimal for optimizing energy efficiency for large-
scale 10T configurations of 6G networks, and thus it is a
promising candidate for energy-constrained applications such
as sensor networks and edge-based 10T systems.

Table 1. Experimental setup for intelligent 6G Internet of
Things (IoT)-Multi-Algorithm Machine Learning
Classification (MAMC)

illc; Parameter Description Value/Range
Network
1 Simulation  simulator with NS-3 +
Environment  integrated ML TensorFlow/PyTorch
models
Internet of Number of
2 Things (IoT)  heterogeneous 100 devices
Devices 10T nodes
. Frequency
2 Efféss band, 140 GHz THz,
Technology modulation, QPSK/16QAM
coding
4 Channel Propagation 3GPP 6G Urban Micro
Model environment (UMi)
Support Vector Machine
(SVM), Random Forest
Machine Classifiers (RF), Extreme Gradient
5 Learning . Boosting (XGB),
used in .
(ML) MAMC Convolutional Neural
Models Network — Long Short-
Term Memory (CNN-
LSTM)
6 Performance  KPIs measured Latency, Energy,
Metrics for evaluation Throughput, BLER
Ultra-Reliable Low
Latency Communication
(URLLC), Enhanced
7 Traffic Application Mobile Broadband
Classes scenarios (eMBB), Massive
Machine Type
Communication
(mMTC)
8 Edge/Cloud Deployment Edge server + Core
Integration environment cloud
. Multi-
Policy objective
9 Generator P ) ti 0=04,=03,y=03
Objectives unction
weights
Iteration Decision
10 Duration update interval 100 ms

4.3 Throughput performance comparison for conventional
and proposed methods

Figure 6 illustrates throughput performance for growing loT
node numbers under different optimization schemes.
Conventional schemes of RBO, GAO, and PSO achieve
moderate throughput gains but exhibit scalability limitations



under rising device density. Conversely, the new method of
MAMC achieves higher throughput, of approximately 15%,
than GAO and PSO. Such a gain is through adaptive resource
allocation, intelligent scheduling, and classifier-based
optimization and allows MAMC to exploit spectrum and
network resources efficiently under intensive traffic situations.
We conclude from analysis that MAMC provides superior
scalability and robustness and, thus, is a good candidate for
large-scale 6G 10T scenarios requiring reliable and fast data
transmission.

—— RBO (Conventional)
80 GAO (Conventional)
—— PSO (Conventional)
| ==- MAMC (Proposed)

Latency (ms)
w a =) ~ ~
W o wn o w

o
o

20 30 40 50 60 70 80 20 100
Number of loT Nodes

Figure 4. Comparative analysis of latency with respect to
number of 10T nodes
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Figure 5. Comparative analysis of energy efficiency with
number of 10T nodes

4.4 Overall performance improvement analysis

Figure 7 gives a general summary of performance
improvements gained through different optimization schemes
in three key metrics: reduced latency, energy efficiency, and
throughput increase. Classical schemes, such as GAO and
PSO, exhibit stepwise improvements over baseline RBO, but
few gains, particularly in throughput performance, remain
over-all. By comparison, the new framework of MAMC
achieves the best gains, up to 18% reduced latency, up to 22%
energy efficiency, and up to 15% throughput increase,
respectively. From this general summary, the advantage of
MAMC in jointly optimizing multiple performance aspects is
manifested, validating its use in large-scale 6G 10T networks,
where reduced latency, enhanced energy efficiency, and
superior throughput become overwhelming needs.
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Figure 6. Comparative analysis of throughput with number
of 10T nodes
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Figure 7. Comparative analysis of latency reduction, energy
efficiency, and throughput improvements

5. CONCLUSION

Optimisation of the intelligent 6G loT configuration
through MAMC was superior in its performance by lowering
latency up to 18%, increasing energy efficiency up to 22%,
and attaining 15% more throughput than conventional
practices such as RBO, GAO, and PSO. By adopting multiple
classifiers and adaptive policy generation, the framework
manages effectively the principal trade-offs of low delay, high
reliability, and efficient resource usage, pivotal for large-scale
6G l0T use cases. Its resilience under heterogeneous devices,
dynamic workloads, and fluctuating traffic demand holds
promise for use in smart cities, healthcare, autonomous
motion, and industrial automation. Future advances of the
framework will arise through incorporation of reinforcement
learning-based  continuous  self-optimisation, federated
learning-based distributed privacy-respecting intelligence, and
guantum-inspired optimisation for tackling massively large
decision spaces. Real-world testbed experiences, security-
sensitive  edge-cloud cooperation, and cross-domain
interoperability will widen its scope and applicability,
securing the future of MAMC as a scalable, intelligent, and
future-proof solution for next-generation loT infrastructure.
This work is not intended as a survey of 6G technologies but
as a solution-oriented optimization framework that concretely
exploits 6G capabilities through multi-algorithm learning.
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NOMENCLATURE

KPI Key Performance Indicator

RAN Radio Access Network

loT Internet of Things

MAMC Multi_—AIgc.Jrithm Machine Learning

Classification

SVM Support Vector Machine

RF Random Forest

XGB Extreme Gradient Boosting

CNN- Convolutional Neural Network — Long Short-

LSTM Term Memory

URLLC  Ultra-Reliable Low Latency Communication

eMBB Enhanced Mobile Broadband

mMTC Massive Machine Type Communication

MEC Mobile Edge Computing

Greek symbols

o Trade-off weight for latency minimization

§ Trade-off weight for energy optimization /

Exploration coefficient

Y Trade-off weight for throughput maximization

1 Estimated reward / Mean value used in

normalization

c Standard deviation used for scaling

o() Feature extraction and mapping function

Subscripts

t Time index

i Classifier index

h Model index (classifier in meta-selection)

u Configuration profile index

k Constraint function index
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