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Ultra-fast evolution of sixth-generation (6G) wireless networks promise ultra-low latency, 

ultra-massive device connectivity, and energy-efficient communications, and thus become 

a basis for Internet of Things (IoT) applications. It is, nonetheless, difficult for these IoT 

environments to achieve the optimum configuration since there will be heterogeneous 

devices, differing workloads, and quality-of-service requirements. Classical schemes of 

Rule-Based Optimisation (RBO), Genetic Algorithm Optimisation (GAO), and Particle 

Swarm Optimisation (PSO) became extremely popular since RBO will provide 

deterministic configurations, though lack of scalability is a weakness; GAO ensures good 

exploration, though slow convergence is a major weakness, and for PSO, fast convergence 

is ensured, though stagnation is incurred in complex IoT environments at an early stage of 

search processes. In order to offset these inadequacies, this paper introduces a Multi-

Algorithm Machine Learning Classification (MAMC) framework of intelligent 6G IoT 

configuration optimisation. The MAMC method integrates supervised learning classifiers 

and ensemble-based decision fusion in a manner such that under varying network 

conditions, the most efficient configuration would be adapted and selected. With decision 

tree, support vector machine, and deep neural network classifiers, the framework 

demonstrates enhanced adaptability, superior classification accuracy, and reduced 

computational overhead over conventional schemes. The proposed approach was utilized 

in order to minimize latency, optimize energy consumption, and enhance throughput in 

large-scale IoT applications. Validation experiments verify that latency is minimized by 

18%, energy efficiency is enhanced by 22%, and throughput is enhanced by 15% for 

MAMC, respectively, compared to GAO and PSO, and RBO's scalability constraint is 

eliminated. As a result, the framework represents a promising avenue toward self-

optimising, autonomous 6G-enabled IoT ecosystem realisation. 
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1. INTRODUCTION

Sixth-generation (6G) wireless is transforming the IoT 

space by promising ultra-low latency, enhanced spectrum 

efficiency, massive device connections, and intelligent 

resource allocation. With billions of IoT heterogeneous 

devices interconnected, efficient optimisation of configuration 

is key in ensuring smooth communications and service 

assurance in smart cities, healthcare monitoring, self-driving 

automobile, and industrial control use cases [1]. 

Recent Advancements in 6G-enabled IoT reflect the 

integration of artificial intelligence (AI) and machine learning 

(ML) for self-learning, adaptation, and context awareness of

systems. Methods of reinforcement learning for adaptive

spectrum scheduling, deep learning for device recognition, and

federated learning for privacy-aware optimisation are gaining

acceptance. Multi-object optimisation approaches are further

used to achieve a compromise among trade-offs between

reduced latency, energy efficiency, and increased throughput

in extremely large-scale deployments [2].

Applications of smart 6G IoT configuration are multi-scale 

and deep. Optimised IoT networks allow real-time, remotely 

commanded data transmission with low delay in healthcare. 

Adaptive configuration gives Ultra-Reliable and Low-Latency 

Communications (URLLC) for Vehicle-to-Everything (V2X) 

communication in autonomous vehicular scenarios. Smart 

industries derive benefit through intelligent configuration for 

predictive maintenance, process control, and energy 

administration, and smart cities through advanced urban 

mobility, public safety, and green infrastructure. These 

applications reflect the requirement of advanced optimisation 

frameworks available for use in complex and dynamic IoT 

environments driven by 6G [3]. 

1.1 Research gaps 

Although the hypothetical Multi-Algorithm Machine 

Learning Classification (MAMC) framework exhibits 

encouraging improvements in latency, energy efficiency, and 

throughputs for 6G IoT configuration optimization, there are a 
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few research gaps left for exploration. First, most of the work, 

including this paper, depends on simulation-based evaluation; 

there is no real testbed validation available to capture real-life 

concerns such as hardware restrictions, interference, and 

cross-layer delays. Second, although the framework contains 

several classifiers, ultra-massive IoT deployments of millions 

of devices’ scalability of MAMC is under-explored. Third, 

existing schemes optimize latency, energy, and throughputs 

primarily, but other performance metrics such as reliability, 

fairness, security, and Quality of Experience (QoE) require 

cooperative optimization for real-world deployability [4]. 

Fourth, data privacy and trust administration remain under-

explored; standard schemes assume centralized learning, 

although federated or privacy-preserving schemes must be 

analyzed. Fifth, most of the models overlook mobility-induced 

dynamics, particularly in UAV-aided IoT and vehicular IoT 

applications, whereby there is rapidly varying topological 

structure drastically altering performance. Finally, although 

AI/ML usage is at the heart of the investigation, these 

algorithms’ computation overhead and energy consumption at 

the edges are rarely measured, and hence there is uncertainty 

in their deployability. Addressing these gaps will enable future 

work to turn MAMC from a simulation-driven idea into a 

deployable, intelligent, and secure solution for 6G-aided IoT 

ecosystems [5]. While recent studies discuss enabling 

technologies of 6G networks, this work focuses on a concrete 

learning-driven optimization framework—MAMC—that 

directly maps network context to actionable configuration 

decisions. The discussion of 6G technologies is limited to 

contextual relevance and integration with the proposed 

framework. 

 

1.2 Related work 

 

Lin et al. [6] proposed a privacy-respecting multiobjective 

sanitization framework for 6G IoT networks. It is in embracing 

an ant colony optimization (ACO) mechanism via transaction 

erasure and Pareto-based solutions for protecting sensitive 

data at low computational expense. It ensures superior privacy 

preservation over Particle Swarm Optimisation (PSO) and 

GA. Its drawback is that the method still requires significant 

parameter tuning and may not optimize real-time scalability 

across large IoT networks. 

Zhang et al. [7] introduced a learning-driven flexible cross-

layer optimizing scheme of ultrareliable and low-latency IoT 

services. Its key novelty is the transfer asynchronous 

advantage actor–critic (TA3C) algorithm, which is capable of 

achieving efficient trade-offs between energy efficiency and 

spectral efficiency by dynamical control of TTI, PD, and RB. 

Its drawback is that although lowering algorithmic complexity 

by over 90%, the scheme is computationally intensive for 

highly large-scale IoT networks. 

Kellermann et al. [8] researched UE context dissemination 

across sparsely populated low Earth orbit (LEO) satellite 

constellations for 5G/6G IoT. It is a store-and-forward 

operation mode model of future advanced architecture for 

multi-satellite constellations of persistent connectivity in 

underserved areas. Its drawback is end-to-end delay increase 

through sparse constellations, which is undesirable for real-

time IoT usage. 

Elgarhy et al. [9] proposed an energy and latency 

optimization framework of IoT URLLC and mMTC use cases. 

Innovation lies in the use of resource unit configurations 

(RUCs) and schedulers such as shortest job first (SJF) in 

optimizing latency and energy efficiency simultaneously. Its 

method’s drawback, however, is performance dependence on 

the configuration chosen, such that poor RUC choice can 

greatly negatively impact efficiency. 

Zhou et al. [10] presented a QoE-focused aerial IRS-aided 

WPCN network for future 6G IoT. Its originality is exploiting 

flying intelligent reflective surfaces (IRS) onboard unmanned 

aerial vehicles (UAVs) to optimize time slot, flight trajectory, 

and IRS phase through block coordinate descent (BCD). Its 

drawback is the overwhelming optimization complication due 

to many interdependent variables, which hinders real-time 

adaptation. Muhammad et al. [11] studied optimizing 

information freshness in RIS-aided NOMA-based IoT 

networks. Its novelty is a bi-level optimization framework 

optimizing RIS configuration, clustering, and power allocation 

simultaneously, and the solutions come in closed forms. Its 

shortcoming is the use of approximations for the mixed-

integer non-convex problem, which may constrain accuracy in 

highly varying networks. 

Khan et al. [12] covered reliability analysis of CRNs of 6G 

IoT. Their role was introducing connection availability (CoA) 

and service maintainability (SM) and deriving a channel 

reservation scheme for enabling efficient spectrum usage. The 

weakness is the model, even though it improves reliability, 

does not work under high channel failure rates and large 

primary user arrival rates. 

Kanani et al. [13] proposed a high altitude platform station 

(HAPS)-based integrated sensing and communication (ISAC) 

system, HAPS-ISAC. It is a concept of advanced MIMO 

beamforming for simultaneous improvement of sensing 

quality and communications at large scales. Its demerit, 

however, is reliance on non-convex optimization, which may 

involve computationally expensive and prohibitively 

expensive schemes of deployment. 

Tang et al. [14] introduced a multiarea on-demand 

classification (MOC) constellation framework for Satellite IoT 

(SIoT) under the 6G communications system. It is their work 

of integrating coverage, quality of communications, and cost 

models optimized by the multi objective Manta Ray Foraging 

Optimization (MOMRFO) algorithm in order to obtain Pareto-

optimal CubeSat constellation configurations. It enables 

adaptive deployment within and beyond cellular base station 

regions, reducing spending while increasing reliability of 

communications. Its drawback is heightened computational 

intensity through the execution of MOMRFO-based 

optimization and potential lack of fitness for real-time 

adaptation in cases of rapid constellation reconfigurations. 

Lee et al. [15] proposed a distributed hybrid NOMA/OMA 

user allocation scheme for wireless IoT networks. It is a 

development of a distributed algorithm founded on a message-

passing framework that tunes users between nonorthogonal 

multiple access (NOMA) and orthogonal multiple access 

(OMA) in a dynamical fashion, hence delivering spatial gains 

through beamforming while ensuring fairness and 

convergence toward a global solution. This kind of hybrid 

solution always obtains superior performance than existing 

solutions in massive connection scenarios. Its drawback is that 

its real implementation in dense networks would be prone to 

synchronization overheads and additional signaling costs, thus 

reducing efficiency under extremely dynamical conditions. 

From the above studies, it is observed that existing 6G IoT 

optimization approaches often suffer from single-model 

dependency, high computational complexity, limited 

adaptability under dynamic traffic conditions, and isolated 
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optimization of latency, energy, or throughput. Furthermore, 

many solutions rely on fixed optimization strategies or 

centralized learning, which restrict scalability and real-time 

deployment. Motivated by these limitations, the proposed 

MAMC framework is designed to dynamically select the most 

suitable learning model and jointly optimize configuration 

parameters such as TTI, RB, MCS, transmit power, IRS phase, 

and edge offloading. Unlike prior works, MAMC explicitly 

integrates model adaptability, multi-objective optimization, 

and online learning into a unified decision-making framework, 

as detailed in the following section. 

 

 

2. ENABLING TECHNOLOGIES OF 6G FOR SMART 

APPLICATIONS 

 

Figure 1 shows the enabling technologies at the heart of the 

6G communications ecosystem. At its center, 6G acts as the 

enabler, linked to a few advanced technologies. Terahertz 

Communications and Optical Wireless make ultra-high speed 

data transmission through enhanced spectrum utilization 

possible [16]. Massive MIMO (Multiple-Input Multiple-

Output) and IRS (Intelligent Reflecting Surfaces) enhance 

spectral efficiency and extend the reach of the signal, and Cell-

Free Communications reduce interference and enhance 

connectivity. AI adds smart automation and data-driven 

decision-making and self-optimizing networks [17]. In this 

work, IRS phase configurations are treated as controllable 

parameters optimized by the MAMC policy generator rather 

than as standalone architectural elements. 

 

 
 

Figure 1. 6G core technologies and applications 

 

Blockchain ensures data security, transparency, and trust 

management between IoT and smart applications. At the 

application end, Quantum Communications safeguard the 

transmission at the physical level, and AR & VR deliver 

immersive experiences supported by high-bandwidth and low-

latency [18]. Mobile Edge Computing (MEC) lowers the 

latency of computation and brings it closer to the end-user, and 

UAVs extend connectivity to distant locations. Together, these 

technologies form the basis of 6G-driven smart cities, IoT 

environments, and future-generation digital infrastructure 

[19]. 

 

2.1 Objectives 

 

This work's objective is to present 6G's enabler technologies 

of future smart cities, IoT, and new digital infrastructures. 

They promise swifter connectivity, end-to-end secure 

communications, and smart automation. 

• To examine the use of future technologies, including 

terahertz, optical wireless, and massive MIMO, towards 

ultra-high-speed, low-latency communications. 

• Towards Research on Synergies between AI, 

blockchain, and Quantum Communications for Secure, 

Intelligent, and Adaptive 6G Networks. 

• To evaluate application-driven technologies such as 

UAVs, AR/VR, and MEC for increasing coverage, real-

time processing, and immersive experience for end-

users. 

 

2.2 Methodology for 6G smart network integration 

 

Figure 2 illustrates a stepwise methodology adopted for the 

integration of 6G enabling technologies in smart networks. 

Technology Identification is the first step, wherein the 

principal enablers of terahertz, optical wireless, massive 

MIMO, AI, blockchain, and MEC are selected [20].  

 

 
 

Figure 2. Stepwise methodology for 6G enabling 

technologies 

 

Integration framework constitutes the second step, which 

formulates a 6G-centered model interlinking the 

communication, computation, and application layers so as to 

ensure smooth interoperability [21]. Optimization Process, the 

third step, applies AI and ML plans for optimizing resource 

allocation, reducing latency, and improving energy efficiency. 

Security Enhancement, through the addition of blockchain and 

quantum communication, ensures trust, transparency, and 

secure data transmission in the final step. This systematic 

approach delineates the way in which heterogeneous 

technologies cooperate for the creation of intelligent, 

dependable, and secure 6G networks enabling next-generation 

applications [22]. 

 

2.2.1 Design and operation of the proposed Multi-Algorithm 

Machine Learning Classification framework 

The MAMC framework follows an offline–online 

workflow. In the offline phase, historical IoT and RAN probe 

data are pre-processed into feature vectors (e.g., 

SINR/BLER/RTT, traffic class, device context) and used to 

train multiple classifiers (SVM, RF, XGBoost, CNN-LSTM) 

to learn the best configuration class. In the online phase, real-

time measurements are converted into the same features, and 

all classifiers generate predictions with confidence. The meta-

selector chooses the best-performing classifier (or fuses 

outputs) using reward feedback to adapt under changing 

conditions. The policy generator converts the selected 

prediction into concrete configuration actions (TTI, RB, MCS, 

power, IRS phase, edge offload) while balancing latency–

energy–throughput and enforcing QoS constraints. 

3145



2.2.2 Edge pre-processor 

Eq. (1) covers pre-processing IoT as well as RAN probe 

data before actual analysis. It extracts appropriate features 

from unprocessed inputs by undertaking filter weights, 

normalising through the use of the mean and standard 

deviation, and ensures all the values get scaled suitably [23]. 

The pre-processing thus becomes very critical for stabilising 

ML models, reducing the level of noise, as well as aligning the 

time windows for proper classification. This acts as the initial 

base for all further optimisation steps [24]. 

 

𝐹𝑡 = 𝜙(𝑋𝑡;𝑊𝑓) =
𝑋𝑡 − 𝜇

𝜎
 (1) 

 

Here, 𝑋𝑡 represents the input window of raw features at time 

𝑡. The parameter 𝑊𝑓 denotes the filter weights applied during 

the transformation. The vector 𝜇  is the mean used for 

normalization, while 𝜎  is the standard deviation used for 

scaling. The function 𝜙(⋅) refers to the feature extraction and 

mapping function [25]. 

 

2.2.3 Feature drift detection 

Eq. (2) identifies data drift occurrences over time, which 

indicate the time the model goes out of date or less accurate. 

Calculating the Kullback–Leibler divergence between the 

widespread feature distribution and the starting baseline 

reference gauges the level of change [26]. This lets the system 

trigger adaptation or retraining once a significant drift 

becomes noticeable. The provision for drift detection provides 

robustness and long-run reliability for the changing IoT 

environments [27]. 

 

𝐷𝑡 = 𝐾𝐿(𝑃𝑡 ∥ 𝑃0) (2) 

 

In this expression, 𝐷𝑡  denotes the drift score at time 𝑡. The 

term 𝑃𝑡  refers to the feature distribution observed at time 𝑡, 
while 𝑃0  denotes the baseline reference distribution. The 

function 𝐾𝐿(⋅)  represents the Kullback–Leibler divergence 

that quantifies the difference between the two distributions 

[28]. 

 

2.2.4 Meta-selector (Multi-Algorithm Machine Learning 

Classification) 

Eq. (3) governs the meta-selector, which adjusts the best-

performing classifier as the network situation changes. The 

meta-selector switches between exploration and exploitation 

by considering the estimated reward for a given classifier 

along with the number of times it has been picked [29]. The 

adaptability mechanism prevents the framework from getting 

sticky with suboptimal models and adjusts strategies when the 

situation changes. The meta-selector constitutes the core of the 

multi-algorithm framework's adaptability and efficiency [30]. 

 

ℎ∗ = arg⁡max
ℎ

 (𝜇ℎ + 𝛽√
ln⁡ 𝑡

𝑛ℎ
) (3) 

 

Here, ℎ∗ is the classifier selected at time 𝑡. The parameter 

𝜇ℎ represents the estimated performance reward of classifier ℎ 

[31]. The variable 𝑛ℎ indicates the number of times classifier 

ℎ  has been selected, while 𝑡  is the current time index. The 

constant 𝛽 serves as the exploration coefficient in the selection 

strategy [32]. 

 

2.2.5 Policy generator (multi-objective) 

Eq. (4) is the underlying optimisation function for 

determining the best configuration of the IoT system. This 

minimises the latency as well as the energy consumption and 

maximises the throughput as much as possible, which 

demonstrates the multi-objective nature of the optimisation for 

the 6G IoT. This allows for balanced weighting between each 

of the respective measures of performance so the chosen 

configuration optimally balances efficiencies, speed, and 

reliability during real-time usage [33]. 

 

𝑢∗ = arg⁡min
𝑢∈𝑈

 ⁡𝛼 ⋅ 𝐿𝑎𝑡(𝑢) + 𝛽 ⋅ 𝐸𝑛(𝑢) − 𝛾 ⋅ 𝑇ℎ𝑟(𝑢) (4) 

 

In this formulation, 𝑢∗  denotes the optimal configuration 

profile chosen. The set 𝑈 represents all feasible configuration 

actions such as transmission time interval, resource block, 

modulation coding scheme, and power levels [34]. The term 

𝐿𝑎𝑡(𝑢)  expresses the latency under configuration 𝑢 , while 

𝐸𝑛(𝑢) corresponds to the energy consumption. The function 

𝑇ℎ𝑟(𝑢) refers to the throughput achieved by configuration 𝑢. 

Finally, the coefficients 𝛼, 𝛽, and 𝛾 are the trade-off weights 

assigned to balance latency, energy consumption, and 

throughput [35-37]. 

 

 

3. PROPOSED ARCHITECTURE AND PROCESS FOR 

INTELLIGENT 6G IOT CONFIGURATION 

OPTIMIZATION 

 

Figure 3 illustrates the delineated 6G IoT configuration 

optimization and smart process flow for exploiting MAMC 

toward supporting diverse IoT application use-cases and 

networks. The framework begins at the Sensing Layer, 

wherein IoT device and RAN probe data is collected. It is pre-

processed by the Edge Pre-processor and cached in the Feature 

Store for future analysis. Classifier Pool exploits a series of 

algorithms such as SVM, Random Forest, XG-Boost, and 

CNN-LSTM in an attempt to model heterogeneous IoT 

contexts [38]. Meta-Selector (MAMC) programmatically 

chooses the best classifier for the given situation presented. 

Policy Generator then transforms predictions into the optimum 

configuration action, which is verified by the Constraint & 

Safety Guard for QoS, fairness, and compliance. Finally, the 

Orchestrator (RAN + Core) enacts these configurations across 

the network [39]. Proposed Process serves the purpose of 

filling the gap in the architecture through five major stages: 

Offline Training of pre_models, Contextual Selection of the 

classifier performing best, Policy Synthesis for producing the 

best configurations, Online Adaptation for real-time updates, 

and Feedback & Drift Handling for ongoing improvement and 

adaptation. Together, this framework facilitates secure, 

adaptive, and efficient IoT configuration optimization in 6G 

networks [40]. Unlike survey-oriented studies, the proposed 

architecture operationalizes 6G concepts through a learning-

centric control loop, where MAMC acts as the decision 

intelligence layer governing real-time IoT configuration. 

 

3.1 Sensing layer (IoT and RAN probes) 

 

This layer collects raw network and device-level 

information including key performance indicators (KPIs), user 

context, and environmental parameters from IoT devices and 

radio access nodes and it is determined by Eq. (5). 
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𝐱𝑡 = [𝐤𝑡 , 𝐜𝑡 , 𝐞𝑡] (5) 

 

where, k𝑡 denotes radio KPIs such as SINR, BLER, and RTT, 

c𝑡 denotes device and application context such as battery state 

of charge, device type, and traffic class, e𝑡  denotes 

environmental conditions such as line-of-sight status and 

blockage by obstacles [41]. 

 

 
 

Figure 3. Architecture of intelligent 6G IoT–MAMC 

framework 

 

3.2 Edge pre-processor 

 

This block filters, windows, and normalizes raw inputs to 

create structured features that capture temporal dynamics and 

statistical properties of the sensed data and it is determined by 

Eq. (6). 

 

𝐟𝑡 =
𝜙⁡(𝑊 ⋅ win(𝐱𝑡−𝐿+1:𝑡)) − 𝝁

𝝈
 (6) 

 

where, 𝜙(⋅) denotes the feature mapping function, 𝑊 denotes 

the filter weights used for transformation, win(x𝑡−𝐿+1:𝑡) 
denotes a sliding temporal window of size 𝐿, 𝜇 denotes the 

mean vector used for normalization and 𝜎 denotes the standard 

deviation vector used for scaling [42]. 

 

3.3 Feature store (edge/core) 

 

This module organizes normalized features into aligned 

sequences, ensures synchronization across sources, and 

monitors for feature distribution drift and it is represented by 

Eq. (7). 

 

𝐷𝑡 = KL(𝑝𝑡 ⁡‖⁡𝑝ref) (7) 

 

where, 𝐷𝑡  denotes the drift score at time 𝑡 , 𝑝𝑡  denotes the 

feature distribution at time 𝑡 , 𝑝ref  denotes the baseline 

reference distribution and KL(⋅)  denotes the Kullback–

Leibler divergence function [43]. 

 

3.4 Classifier pool (multi-algorithm) 

 

This block runs multiple machine learning classifiers in 

parallel to predict performance classes and their associated 

confidence scores [44] and it is represented by Eq. (8). 

 

𝑦̂𝑡
(𝑚)

, 𝑝𝑡
(𝑚)

= ℎ𝑚(𝐅𝑡) (8) 

 

where, ℎ𝑚(⋅)  denotes classifier 𝑚  such as SVM, Random 

Forest, XGBoost, or CNN-LSTM, 𝐅𝑡  denotes the aligned 

feature set at time 𝑡 , 𝑦̂𝑡
(𝑚)

 denotes the predicted class by 

classifier 𝑚  and 𝑝𝑡
(𝑚)

 denotes the confidence or posterior 

probability of classifier 𝑚 [45]. 

 

3.5 Action space and configuration vector 

 

The 6G IoT configuration at time 𝑡  is represented by an 

action vector and it’s determined by equation. 

 

𝑢𝑡 = [𝑇𝑇𝐼𝑡 , 𝑅𝐵𝑡 , 𝑀𝐶𝑆𝑡 , 𝑃𝑡𝑥,𝑡 , 𝜃𝐼𝑅𝑆,𝑡 , 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑡] 
 

where, 𝑇𝑇𝐼𝑡  is the transmission time interval, 𝑅𝐵𝑡  is the 

allocated resource blocks, 𝑀𝐶𝑆𝑡 is the modulation and coding 

scheme, 𝑃𝑡𝑥,𝑡  is the transmit power, 𝜃𝐼𝑅𝑆,𝑡  is the intelligent 

reflecting surface phase configuration, and 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑡 denotes 

the edge or cloud computation offloading decision. 

The feasible configuration set is defined as equation. 

 

𝒰 = 𝑢𝑡; |; 𝑔𝑘(𝑢𝑡) ≤ 0; ∀𝑘 

 

where, 𝒰 denotes the set of admissible configurations, 𝑔𝑘(⋅) 
represents system constraints, 𝑘 indexes the constraint set, and 

𝑡 denotes the decision time index. 

 

3.6 Meta-selector (Multi-Algorithm Machine Learning 

Classification) 

 

This component adaptively selects the most suitable 

classifier or fuses multiple classifiers based on contextual 

rewards and confidence values [46] and it is represented by 

Eq. (9). 

 

𝑚𝑡
⋆ = arg⁡max

𝑚
 (𝜇̂𝑚(𝐅𝑡) + 𝛽√

ln⁡ 𝑡

𝑛𝑚
) (9) 

 

where, 𝑚𝑡
⋆  denotes the chosen classifier at time 𝑡 , 𝜇̂𝑚(F𝑡) 

denotes the estimated performance reward of model 𝑚 , 𝛽 

denotes the exploration coefficient in the selection rule, 𝑡 
denotes the current time index and 𝑛𝑚 denotes the number of 

times classifier 𝑚 has been used [47]. 

 

3.7 Coupling of UCB meta-selection with configuration 

optimization 

 

The UCB meta selector chooses the most reliable classifier 

for the current context and its prediction is used to select the 

optimal configuration action and it is determined by the 

equation. 
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𝑢∗ = arg⁡min
𝑢∈𝒰

 ; 𝛼𝐿̂(𝑢) + 𝛽𝐸̂(𝑢) − 𝛾𝑇̂(𝑢) 

 

where, the selected classifier provides predicted latency 𝐿̂(𝑢) 

energy 𝐸̂(𝑢)  and throughput 𝑇̂(𝑢)  which are used by the 

policy generator to compute the optimal configuration 𝑢∗. 
 

3.8 Policy generator 

 

The generator translates classification outputs into specific 

network configurations while balancing multiple objectives 

such as latency, energy, and throughput [48] and it is 

determined by Eq. (10). 

 

𝐮𝑡
⋆ = arg⁡min

𝐮∈𝒰
 ⁡𝛼⁡Lat(𝐮) + 𝛽⁡En(𝐮) − 𝛾⁡Thr(𝐮) (10) 

 

where, u𝑡
⋆ denotes the selected optimal configuration profile, 

𝒰  denotes the set of feasible configuration actions, Lat(u) 
denotes the latency function of configuration u , En(u) 
denotes the energy consumption of configuration u, Thr(u) 
denotes the throughput achieved by configuration u  and 

𝛼, 𝛽, 𝛾  denote the trade-off weights for each performance 

metric [49]. 

 

3.9 Constraint and safety guard 

 

This block ensures that candidate configurations satisfy 

quality of service (QoS), fairness, and stability constraints 

before deployment and it is determined by Eq. (11). 

 

𝐠(𝐮𝑡
⋆) ≤ 𝟎 (11) 

 

where, g(u𝑡
⋆) denotes the vector of constraint functions, the 

constraints denote p95 latency thresholds, maximum transmit 

power limits, block error rate limits, and fairness indices [50]. 

 

3.10 Orchestrator (RAN + Core) 

 

This block applies the validated configurations to the radio 

and core network components and logs the performance 

outcomes and it is determined by Eq. (12). 

 

ΔKPI𝑡 = KPI(𝐬𝑡+1) − KPI(𝐬𝑡) (12) 

 

where, ΔKPI𝑡  denotes the improvement in KPIs after 

configuration and 𝐬𝑡 denotes the network state at time 𝑡, 𝐬𝑡+1 

denotes the network state after applying configuration and 

KPI(⋅) denotes the function measuring performance such as 

latency, energy, or throughput [51]. 

 

3.11 Proposed integrated equation for intelligent 6G IoT–

Multi-Algorithm Machine Learning Classification 

 

It includes the entire end-to-end optimizing process. Pre-

processed raw IoT and RAN probe inputs 𝐱𝑡 through feature 

extraction ϕ(⋅) are input into a classifier ℎ𝑚𝑡
⋆  chosen by the 

meta-selector MAMC, and it predicts the operational class [52, 

53]. Finally, the policy generator calculates the optimum 𝐮𝑡
⋆ 

configuration by minimizing a weighted multi-objective 

function of latency, energy, and throughput and it is 

determined by Eq. (13). 

 

𝐮𝑡
⋆ = arg⁡min

𝐮∈𝒰
 [𝛼⁡Lat(ℎ𝑚𝑡

⋆(𝜙(𝐱𝑡))) +

𝛽⁡En(ℎ𝑚𝑡
⋆(𝜙(𝐱𝑡))) − 𝛾⁡Thr(ℎ𝑚𝑡

⋆(𝜙(𝐱𝑡)))]  
(13) 

where, x𝑡  denotes the raw sensing vector containing KPIs, 

context, and environment at time 𝑡, 𝜙(x𝑡) denotes the feature 

extraction and normalization process, ℎ𝑚𝑡
⋆  denotes the 

selected ML classifier chosen by the meta-selector, Lat(⋅) 
denotes the predicted latency cost from the classifier output, 

En(⋅) denotes the predicted energy consumption cost, Thr(⋅) 
denotes the predicted throughput reward, u𝑡

⋆  denotes the 

optimal configuration profile at time 𝑡, 𝒰 denotes the feasible 

set of configuration actions (TTI, RB, MCS, power, IRS 

phase, edge offload) and 𝛼, 𝛽, 𝛾 denote weighting coefficients 

balancing latency, energy, and throughput [54, 55]. 

 

3.12 Mapping from prediction to configuration action 

 

Using the KPI predictions generated by the selected 

classifier, the policy generator evaluates feasible configuration 

actions and selects the optimal one. 

 

𝑢∗ = arg⁡min
𝑢∈𝒰

 ; 𝛼𝐿̂(𝑢) + 𝛽𝐸̂(𝑢) − 𝛾𝑇̂(𝑢) 

 

where, the predicted latency 𝐿̂(𝑢)  energy 𝐸̂(𝑢)  and 

throughput 𝑇̂(𝑢) from the selected model are used to search 

over the feasible configuration set 𝒰  and determine the 

optimal configuration 𝑢∗ under system constraints. 

 

3.12.1 Algorithm 1. Multi-algorithm IoT optimization process 

Algorithm 1 provides an adaptive learning-based 

optimisation process for IoT environments for 6G networking. 

The algorithm takes and pre-processes features derived from 

KPI and context streams as normalized and time-align inputs. 

A collection of classifiers (SVM, RF, XGB, CNN-LSTM) is 

executed, and the meta-selector actively selects or blends the 

best model based on the reward level and confidence 

measures. The policy generator produces the preferred 

configuration and adds protection mechanisms for maintaining 

latency, energy, and throughput specifications. The algorithm 

finally deploys the configuration, tracks the KPIs, updates 

learning statistics, and triggers mini-retraining when drift 

happens, offering robust and scalable real-time capability. 

 

Inputs KPIs and context stream 𝑥𝑡 ; window length 𝐿 ; 

classifier set ℋ = {SVM, RF, XGB, CNN-LSTM}; weights 

𝛼, 𝛽, 𝛾; constraint set 𝒞. 

 

Output Optimized configuration 𝑢𝑡. 
 

Step_1: Acquire and engineer features 

Form window 𝑋𝑡 = 𝑥𝑡−𝐿+1:𝑡; compute features 𝐹𝑡 =
𝜙(𝑋𝑡); normalize and time-align. 

 

Step_2: Run multi-algorithm predictors 

For each ℎ ∈ ℋ, get class and confidence (𝑦̂ℎ, 𝑝ℎ) =
ℎ(𝐹𝑡). 
 

Step_3: Meta-selection and fusion 

Select model using UCB or context rule; optional soft 

fusion 𝑦‾ = ∑ℎ  𝑤ℎ𝑝ℎ. 

 

Step_4: Policy synthesis with safeguards 

Compute. If constraints violated then set 𝑢𝑡 = 𝑢𝑡−1 

else set. 

 

Step_5: Apply, learn, and adapt 
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Enforce 𝑢𝑡  on RAN and core; measure KPIs; 

compute reward 𝑟𝑡 from gains; update meta-selector 

stats (𝜇̂ℎ, 𝑛ℎ) ; if drift detected then trigger mini-

retraining on recent data. 

 

3.12.2 Pseudocode 1. Compact multi-algorithm IoT 

optimization 

Pseudocode 1 depicts the iteration-based optimization 

process for 6G IoT environments from the MAMC framework. 

It initializes classifiers and a meta-statistic pool, followed by 

the processing of context and KPI windows features. 

Predictions from classifiers are adapted by the meta-selector 

by optimally selecting the model with exploration–

exploitation reasoning. The policy optimizer optimally 

configures the settings by balancing latency, energy, and 

throughput. The settings are configured, the configuration 

rewards for performance are observed, and the model statistics 

are updated during each iteration. As soon as drift manifests, 

mini-retraining allows adaptability, stability, and resilience 

during dynamic IoT environments. 

Initialize models H, meta-stats {μh, nh}, previous config u0 

for t = 1..T do 

Xt ← window(x[t-L+1:t]) 

Ft ← φ(Xt) ▷ features 

for h in H: (ŷh, ph) ← h(Ft) 

h* ← argmax_h (μh + β * sqrt(ln t / nh)) 

u* ← argmin_u α·Lat(u,ŷh*) + β·En(u,ŷh*) − γ·Thr(u,ŷh*) 

u ← u* if constraints satisfied else u_{t-1} 

apply(u); measure KPIs → reward rt 

update μ_{h*}, n_{h*} with rt; if drift(Ft) then 

mini_retrain(H) 

end for 

 

 

4. RESULTS AND DISCUSSION 

 

It is created to evaluate the optimization framework of the 

Intelligent 6G IoT configuration under the MAMC approach 

as show in Table 1. It considers communications, 

computations, and system variables to predict latency, energy 

efficiency, throughput, and reliability under realistic 6G IoT 

conditions. 

 

4.1 Latency performance comparison for conventional and 

proposed methods 

 

Figure 4 illustrates the variation of latency against the 

number of IoT nodes for different optimization schemes. 

Conventional schemes such as Rule-Based Optimisation 

(RBO), Genetic Algorithm Optimisation (GAO), and PSO 

register higher latency tendencies, especially under rising node 

counts. Of these, PSO registers relatively low latency than 

RBO and GAO but does not perform well under dense IoT 

conditions. Comparatively, the presented MAMC holds 

relatively low latency across the board, saving up to 18% 

under different network sizes. It thus demonstrates the ability 

of MAMC in addressing scalability and dynamic traffic 

conditions under 6G IoT, ensuring more efficient and reliable 

time-driven communication. 

 

4.2 Energy efficiency performance comparison for 

conventional and proposed methods 

 

Figure 5 shows the evolution of energy efficiency against 

the number of IoT nodes for different optimization schemes. 

Traditional RBO, GAO, and PSO schemes display gradual 

increases in efficiency according to rising devices but have 

their growth limited. By contrast, the proposed herein 

approach, MAMC, always demonstrates the optimum 

performance, and energy efficiency increases by 

approximately 22% compared to traditional schemes.  

Such an increase is due to intelligent allocation of resources 

and learning schemes utilized for adapting and suppressing 

wasteful energy consumption. It is verified by analysis that 

MAMC is optimal for optimizing energy efficiency for large-

scale IoT configurations of 6G networks, and thus it is a 

promising candidate for energy-constrained applications such 

as sensor networks and edge-based IoT systems. 

 

Table 1. Experimental setup for intelligent 6G Internet of 

Things (IoT)–Multi-Algorithm Machine Learning 

Classification (MAMC) 

 
SI. 

No 
Parameter Description Value/Range 

1 
Simulation 

Environment 

Network 

simulator with 

integrated ML 

models 

NS-3 + 

TensorFlow/PyTorch 

2 

Internet of 

Things (IoT) 

Devices 

Number of 

heterogeneous 

IoT nodes 

100 devices 

3 

Radio 

Access 

Technology 

Frequency 

band, 

modulation, 

coding 

140 GHz THz, 

QPSK/16QAM 

4 
Channel 

Model 

Propagation 

environment 

3GPP 6G Urban Micro 

(UMi) 

5 

Machine 

Learning 

(ML) 

Models 

Classifiers 

used in 

MAMC 

Support Vector Machine 

(SVM), Random Forest 

(RF), Extreme Gradient 

Boosting (XGB), 

Convolutional Neural 

Network – Long Short-

Term Memory (CNN-

LSTM) 

6 
Performance 

Metrics 

KPIs measured 

for evaluation 

Latency, Energy, 

Throughput, BLER 

7 
Traffic 

Classes 

Application 

scenarios 

Ultra-Reliable Low 

Latency Communication 

(URLLC), Enhanced 

Mobile Broadband 

(eMBB), Massive 

Machine Type 

Communication 

(mMTC) 

8 
Edge/Cloud 

Integration 

Deployment 

environment 

Edge server + Core 

cloud 

9 

Policy 

Generator 

Objectives 

Multi-

objective 

function 

weights 

α = 0.4, β = 0.3, γ = 0.3 

10 
Iteration 

Duration 

Decision 

update interval 
100 ms 

 

4.3 Throughput performance comparison for conventional 

and proposed methods 

 

Figure 6 illustrates throughput performance for growing IoT 

node numbers under different optimization schemes. 

Conventional schemes of RBO, GAO, and PSO achieve 

moderate throughput gains but exhibit scalability limitations 
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under rising device density. Conversely, the new method of 

MAMC achieves higher throughput, of approximately 15%, 

than GAO and PSO. Such a gain is through adaptive resource 

allocation, intelligent scheduling, and classifier-based 

optimization and allows MAMC to exploit spectrum and 

network resources efficiently under intensive traffic situations. 

We conclude from analysis that MAMC provides superior 

scalability and robustness and, thus, is a good candidate for 

large-scale 6G IoT scenarios requiring reliable and fast data 

transmission. 

 

 
 

Figure 4. Comparative analysis of latency with respect to 

number of IoT nodes 

 
 

Figure 5. Comparative analysis of energy efficiency with 

number of IoT nodes 

 

4.4 Overall performance improvement analysis 

 

Figure 7 gives a general summary of performance 

improvements gained through different optimization schemes 

in three key metrics: reduced latency, energy efficiency, and 

throughput increase. Classical schemes, such as GAO and 

PSO, exhibit stepwise improvements over baseline RBO, but 

few gains, particularly in throughput performance, remain 

over-all. By comparison, the new framework of MAMC 

achieves the best gains, up to 18% reduced latency, up to 22% 

energy efficiency, and up to 15% throughput increase, 

respectively. From this general summary, the advantage of 

MAMC in jointly optimizing multiple performance aspects is 

manifested, validating its use in large-scale 6G IoT networks, 

where reduced latency, enhanced energy efficiency, and 

superior throughput become overwhelming needs. 

 

 

 
 

Figure 6. Comparative analysis of throughput with number 

of IoT nodes 

 

 
 

Figure 7. Comparative analysis of latency reduction, energy 

efficiency, and throughput improvements 

 

 

5. CONCLUSION 

 

Optimisation of the intelligent 6G IoT configuration 

through MAMC was superior in its performance by lowering 

latency up to 18%, increasing energy efficiency up to 22%, 

and attaining 15% more throughput than conventional 

practices such as RBO, GAO, and PSO. By adopting multiple 

classifiers and adaptive policy generation, the framework 

manages effectively the principal trade-offs of low delay, high 

reliability, and efficient resource usage, pivotal for large-scale 

6G IoT use cases. Its resilience under heterogeneous devices, 

dynamic workloads, and fluctuating traffic demand holds 

promise for use in smart cities, healthcare, autonomous 

motion, and industrial automation. Future advances of the 

framework will arise through incorporation of reinforcement 

learning-based continuous self-optimisation, federated 

learning-based distributed privacy-respecting intelligence, and 

quantum-inspired optimisation for tackling massively large 

decision spaces. Real-world testbed experiences, security-

sensitive edge-cloud cooperation, and cross-domain 

interoperability will widen its scope and applicability, 

securing the future of MAMC as a scalable, intelligent, and 

future-proof solution for next-generation IoT infrastructure. 

This work is not intended as a survey of 6G technologies but 

as a solution-oriented optimization framework that concretely 

exploits 6G capabilities through multi-algorithm learning. 
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NOMENCLATURE 

 

KPI Key Performance Indicator 

RAN Radio Access Network 

IoT Internet of Things 

MAMC 
Multi-Algorithm Machine Learning 

Classification 

SVM Support Vector Machine 

RF Random Forest 

XGB Extreme Gradient Boosting 

CNN-

LSTM 

Convolutional Neural Network – Long Short-

Term Memory 

URLLC Ultra-Reliable Low Latency Communication 

eMBB Enhanced Mobile Broadband 

mMTC Massive Machine Type Communication 

MEC Mobile Edge Computing 

 

Greek symbols 

 

α Trade-off weight for latency minimization 

β Trade-off weight for energy optimization / 

Exploration coefficient 

γ Trade-off weight for throughput maximization 

μ Estimated reward / Mean value used in 

normalization 

σ Standard deviation used for scaling 

ϕ(·) Feature extraction and mapping function 

 

Subscripts 

 

t Time index 

i Classifier index 

h Model index (classifier in meta-selection) 

u Configuration profile index 

k Constraint function index 
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