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With the rapid growth of Large Language Models (LLMs), there is an increasing demand 

for robust algorithms that can differentiate human-written content from text generated by 

diverse LLM architectures. Current detectors are mostly binary classifiers and lack 

interpretability, so they cannot be specified to the model responsible for text generation. In 

this work, we propose an explanation-aware multi-class prediction framework to distinguish 

human writing from various LLM sources, providing transparent explanations for end-to-

end model predictions that rely on an interpretable attribution mechanism. The proposed 

methodology aggregates four transformer-based embeddings (D-BERT, E5-base, MPNet, 

and General Text Embeddings – Large (GTE-Large)) using an XGBoost classifier with 

SHAP and LIME to provide post-hoc interpretability at the feature and token levels. 

Experiments were conducted on a dataset of 147,834 samples from 17 LLM families and 

human authors. The E5-based embeddings, combined with XGBoost, achieved the best 

performance, with an accuracy of 0.89 and an F1-score of 0.88. Explainability analysis also 

identified distinct language signatures among LLMs, indicating that the model can attribute 

authorship beyond the human–AI divide. This work contributes a transparent and scalable 

solution for this field, with practical relevance in academic integrity, misinformation 

detection/tracing, and digital content evidence analysis. 
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1. INTRODUCTION

Text categorization is an important NLP approach that 

classifies text into predefined categories or classes. It is 

commonly used for tasks such as sentiment analysis, spam 

filtering, and document classification [1-4]. A more recent and 

challenging text classification application is content origin 

detection, which refers to automatically determining whether 

an article was written by a person or generated by a machine. 

In recent times, Large Language Models (LLMs) such as 

BotGPT, ChatGPT, LLaMA, Claude, GLM, and Bloom have 

made it possible to generate human-like level text. 

This proliferation poses practical challenges in 

distinguishing human-written work from AI-generated content 

in areas such as education, journalism, and law. One of the 

most challenging aspects is enabling machines to understand 

and interpret human language directly from text using machine 

learning (ML) [5] and deep learning techniques for textual 

feature extraction. Uniqueness and transparency of text 

message content are key necessary conditions for maintaining 

trust and accountability in online relationships [6]. Traditional 

classifiers are routinely designed as “black boxes” through 

which we can hardly penetrate their decision-making 

mechanisms. This ambiguity can lead to a lack of confidence 

and understanding, especially in sensitive model applications. 

It is suggested that NetSHAP+LIME will be the describable 

AI, explainable artificial intelligence (XAI) approach, as 

SHAP and LIME. These approaches are used to interpret the 

predictions of a model to enable users to understand what the 

model does, thereby enabling trust in AI systems [7, 8]. 

Although modern text classification models have shown 

substantial progress, most existing studies focus on binary 

classification settings and do not adequately address the 

challenges posed by AI-generated texts. Moreover, current 

approaches rarely provide comprehensive and detailed 

explanations of model behavior. To bridge this gap, we 

propose a multi-class classification framework that 

distinguishes between human-written text and text generated 

by multiple LLMs. 

SHAP and LIME are applied through XAI as Post-Hoc 

explanations to identify which features and text extracts are 

important to the model. By doing so, we can make the model 

transparent without compromising its predictive performance, 

while remaining mindful of interpretability [9]. To verify this, 

a balanced training set of 147,834 texts was used, extracted 

from the Kaggle "Human vs. LLM Text Corpus". A balanced 

distribution across the 18 classes was ensured by a multi-stage 

sampling approach that combined random oversampling and 

stratified sampling, enabling unbiased multi-class 

classification while optimizing efficiently. 

Sophisticated embedding methods, such as DistilBERT, 

E5-base, MPNet, and General Text Embeddings – Large 

(GTE-Large), were employed to represent fine-grained 

semantic variation in texts. These embeddings were then 
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combined with the XGBoost algorithm to perform the 

classification. Given that performances, interpretability, and 

inferential behavior of models may vary across these various 

forms of embeddings, we in this work perform a thorough 

comparison on a global scale regarding how each embedding 

possibility contributes to model classification of human versus 

generated text by aiming to understand the potential and 

limitations of each such embedding approach. Our work 

extends previous results that justify the application of 

explainable AI techniques for trustworthy and transparent 

categorization frameworks [10].  

The remainder of this paper is organized as follows: 

Section 2 Related Work: This section reviews previous 

work on AI content identification, including both traditional 

and transformer-based methods, and highlights existing 

limitations and challenges. 

Section 3 Methodology: describes the modus operandi 

followed throughout the course of this work, from data 

gathering and preprocessing (text cleaning, label filtering, and 

data balancing) to testing the generated models. Then, it 

explains the feature extraction step using various transformer-

based methods, data partitioning, and XGBoost model fitting 

and evaluation. To clarify the whole process, we present a flow 

diagram. 

Section 4 Results and Discussion present the experimental 

results, performance comparisons across different embedding-

based models, and interpretability insights via visual 

explanations with SHAP and LIME. 

Section 5: Conclusion summarizes the contributions and 

lays the path for building an even more robust, scalable, and 

interpretable automated text classification framework. 

2. RELATED WORK

The rapid proliferation of LLMs, such as GPT, has 

amplified the need for explainable classifiers that can reliably 

distinguish between human-authored and machine-generated 

text. Early in 2016 - 2017 [11, 12], which introduced 

interpretable methodological foundations and global feature 

attribution. These tools have since been widely adopted for 

text classification, enabling inspection of word- or feature-

level contributions to a classifier’s decision — a critical 

requirement in the high-stakes setting of AI-generated content 

detection. In recent years, many XAI approaches have been 

applied to text classification tasks, particularly for detecting 

AI-generated text and addressing multi-label classification. A 

pioneering work by Khosravi et al. [13] addressed the use of 

XAI in educational systems, with an emphasis on transparency 

and trustworthiness for learners, using interpretability 

techniques such as LIME and SHAP. Although these authors 

did not use the model itself, and no standardized evaluation 

metrics were proposed or the LCE test case used, this study 

laid a foundation for understanding LCE design that has been 

applied in later research. Extending this in 2023, Weng et al. 

[14] studied the identification of AI-written scientific content,

with an emphasis on joint human–machine authorship articles.

They rely on a visualization-based explanation in their model

to improve interpretability; however, they did not report

conventional performance metrics such as accuracy or F1

score. In the same year, Shah et al. [15] introduced a stylistic-

feature framework enriched with XAI for identifying AI-

generated texts, focusing more on qualitative generalisability

analysis than on numerical benchmarks. Similarly, Hajialigol

et al. [16] developed XAI-CLASS for a weakly supervised, 

low-resource setting and utilized LIME and SHAP as post-hoc 

rationale generation processes. No quantitative results were 

presented; however, the method emphasized the value of 

transparency in the face of limited data. In 2024, empirical 

studies began to consolidate the link between XAI and 

quantitatively observable classification performance. Zahoor 

et al. [17] trained XAI-enhanced classifiers on small datasets 

and reported an accuracy of 85%, concluding that SHAP is 

more stable than LIME for feature attribution. de Arriba-Pérez 

et al. [18] employed an explainable multi-label classification 

on Spanish legal judgments, achieving an F1 score of 82%. 

The authors showed that SHAP increased user trust for 

complex legal predictions. del Aguila Escobar et al. [19] 

proposed the OBOE (explanatiOns Based On concEpts) 

model, an interpretable machine learning framework for 

generating OBOE, grounded in the typicality interpretation of 

logic-based algorithms and the preference for explanation over 

precision–recall reporting. In the medical field, Veeranki et al. 

[20] explored multi-label text classification based on large-

scale clinical real-world datasets, highlighting the

effectiveness of machine learning models in healthcare

applications. In a related medical context, Saleh and Yousif

introduced a confidence-weighted rule-based framework for

brain lesion classification using multimodal MRI and MRS

data [21]. Additional contributions dealt with comparative and

adversarial aspects. Zahrani demonstrated that XAI techniques

can maintain high-accuracy classification results, even above

92% (spam detection), while interpretability is achieved

through layers around them [22]. Cesarini et al. [23] also

compared LIME and SHAP between datasets and proposed a

post-hoc selection method for maximizing the

credibility/believability as well as interpretability; however,

this work did not report classification accuracy.

Conversely, Kozik et al. [24] demonstrated SHAP’s 

limitations by failing in 86% of adversarial misclassification 

cases, casting doubt on the sole reliance on post-hoc 

explanations. Schneider et al. [25] continued this line of 

research by considering techniques for detecting and removing 

"fake" explanations, but without accompanying classification 

evaluations. HuLLMI planned to experiment with dataset 

sample sizes ranging from 10,000 to 100,000 and selected 

classical ML models (Naïve Bayes, MLP, Random Forest, and 

XGBoost) with T5 (transformer) embeddings. Transformer 

models are a promising avenue, as evidenced by non-

transformer approaches (such as MLP, which achieves 88% 

accuracy), but LIME remains interpretable [26]. Consistent 

with these findings, a recent investigation in Scientific Reports 

compared logistic regression trained on large-scale injury 

narratives to ChatGPT-3.5 predictions, achieving a recall of 

84%. We combined LIME with eye-tracking in the work to 

reveal that humans do agree and disagree on classification 

[20]. Most recently, continuing along this line, in 2025, Najjar 

et al. [27] proposed XAI-enhanced AI-based text detection in 

educational scenarios, using XGBoost with LIME and SHAP, 

achieving ~83% accuracy while also discovering machine-

generated text-specific linguistic patterns. Wu et al. [28] 

provided a comprehensive review of LLM-based text 

detection, suggesting hybrid frameworks that reconcile the 

trade-off between performance and interpretability, but did not 

present new experimental results. Abolghasemi et al. [29] 

developed inductive learning systems for comparison with 

human and LLM-based decisions, finding 87% agreement 

between LLM outputs and human rules. Although they did not 
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directly utilize any XAI tools, their emphasis on 

interpretability in the domain of performance overlap aligns 

with the goals of the present work. Recent works also report 

on text representation strategies and model selection in AI text 

detection. Najjar et al. [27] obtained 83% accuracy on the 

CyberHumanAI training data by combining the TF-IDF and 

Bag-of-Words features with XGBoost and Random Forest. 

With LIME, the dominant difference was lexical between 

human and AI-produced documents [9, 18, 23]. In this paper, 

we aim to address this gap identified in prior studies, where a 

principled tradeoff between the performance and transparency 

of AI-generated text detection (especially multi-class). 

3. METHODOLOGY

In the context of AI-based plagiarism detection, data 

preprocessing and representation are crucial for enhancing the 

effectiveness and accuracy of subsequent classification tasks. 

By refining the input data and selecting the most informative 

features, these steps help simplify the model’s learning process 

and enhance its predictive performance. This study presents a 

structured framework for multi-class text classification and the 

detection of AI-generated texts—particularly those produced 

by LLMs—by distinguishing them from human-written 

content. As illustrated in Figure 1, the suggested framework 

consists of seven core stages: data collection, preprocessing, 

feature extraction, Data splitting, model training using 

XGBoost, evaluation, and interpretability through XAI 

techniques. Each of these components is discussed in detail in 

the following sections: 

Figure 1. Workflow of XAI-based text classification: Human 

vs. Large Language Models (LLMs) 

3.1 Dataset collection and description 

The dataset employed in this work is sourced from the 

Kaggle database “Human vs. LLM Text Corpus” [30]. A raw 

dataset contained 788,922 source-labeled text samples in CSV 

file format with two underlying columns:  

- Text: The textual content ranges from various domains

such as technology, narrative, conversation, news, and official. 

- Generated: A categorical label showing the generation

source. The original dataset consisted of 62 unique label 

categories that corresponded to 61 sources of AI-generated 

text (including different versions and variants of LLMs, e.g., 

GPT-3, GPT-4, LLaMA-7B, LLaMA-13B, Claude-v1, 

Claude-v2, etc.) and another human-written texts category. 

Such fine-grained labeling is ideal for multi-class 

classification; however, class imbalance and a limited 

computational budget limited the number of labels that could 

be aggregated. 

3.2 Pre-processing of data and sampling technique 

The dataset was preprocessed across multiple stages to 

produce a balanced and computationally manageable subset 

for multi-class classification. 

Stage 1- Cleaning and Normalisation 

Text was lowercased, special characters/whitespace were 

removed, texts shorter than five words or samples that were 

too long or irrelevant were cleaned, the tag field was used to 

exclude unclassifiable and unencoded entries, and minimal 

normalization was applied to preserve the linguistic nuances 

relevant to AI text detection.  

Stage 2- Class Consolidation 

removed unknown or rare classes (less than 100 samples) 

trying to prevents overfitting (to Minority Classes), unified the 

classes, and reduced their number from 61 to 18 final AI-

Generated classes, i.e., merging its from the same model 

family (e.g., GPT-3.5, GPT-4 → GPT), under Classification 

for Multi-class, this step was critical due to the potential 

overlap of text samples across multiple AI generators.  

Stage 3- Random Oversampling 

The dataset was then balanced using random oversampling 

to ensure balanced representation and prevent bias toward the 

more numerous types, resulting in a significantly larger total 

file size. This size increases enabled normalization of class 

distributions and balanced classification. 

Stage 4- Stratified Sampling 

The data was sampled stratifying by class, allowing us to 

work efficiently within the available computing resources. 

Figure 2 illustrates the reprocessing workflow. 

Figure 2. Pre-processing pipeline for dataset preparation 

3.3 Embedding techniques 

Text embedding is the process of converting unstructured 

text into fixed-length numerical vectors that capture not only 
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semantic meaning but also syntactic patterns and contextual 

relationships among words or sentences. Such representations 

enable machine learning models to comprehend and compare 

textual data in a mathematical space, facilitating tasks such as 

classification, clustering, retrieval, and analysis of semantic 

similarity. More modern embedding techniques, typically 

derived using neural networks, capture contextual knowledge; 

therefore, they provide better or more accurate language 

modeling than older bag-of-words or TF–IDF frameworks. 

Some of the newest embedding techniques included: 

3.3.1 Distiled BERT 

D-BERT is a smaller version of the original Bidirectional

Encoder Representations from Transformers (BERT) [31], 

created via knowledge distillation, that maintains 

approximately the same language understanding ability as 

BERT with fewer parameters and lower computational cost. It 

achieves an efficiency-performance trade-off by leveraging 

predictions from a larger, pre-trained BERT model, which is 

particularly useful in resource-constrained environments or for 

large-scale applications that require real-time inference speed. 

It is a contextual embedding model, meaning that each word’s 

representation depends on its surrounding words. This enables 

BERT to capture dependencies and similarities in meaning and 

structure between tokens in text. It has been demonstrated that 

these features are helpful for sentiment classification tasks, 

where not only accuracy but also inference time are crucial. In 

addition, D-BERT has also been modified for learning speech 

representations, with minimal performance drop in high-

dimensional audio-derived text transcriptions, due to its 

compact size [32-34]. 

3.3.2 E5-base 

A transformer-based embedding model fine-tuned for 

semantic recovery tasks. It can encode queries and passages 

into a shared vector space optimized for general-purpose text 

representation [35, 36]. The primary objective is to learn 

sentence representations that maximize semantic similarity for 

semantically related sentence pairs and minimize it for 

unrelated sentence pairs. A standard method for achieving this 

is contrastive learning, where the vector representations of two 

similar concepts (in representation space) are brought closer 

together by increasing their cosine similarity. Therefore, they 

can be abstractly represented by this formulation shown in Eq. 

(1): 

𝑠𝑖𝑚(𝑞, 𝑝) =
𝑞. 𝑝

‖𝑞‖ ‖𝑝‖
(1) 

where, q and p are the embedding vectors of the query and 

passage, respectively, the positive pairs (relevant query-

passage pairs) are brought closer together in the vector space, 

and negative pairs are kept far apart. It uses the transformer 

encoder architecture, and contextualized token embeddings 

are reduced to a fixed-sized sentence vector. In most cases, the 

aggregation is performed using mean pooling over the final 

hidden states. More recent developments have extended it to 

process long-context documents using self-extendable 

mechanisms, where long inputs are split into overlapping 

chunks whose representations are combined into a unified 

embedding. 

3.3.3 MPNet 

Associated the advantages of Masked Language Modeling 

(MLM), as seen in BERT, with Permuted Language Modeling 

(PLM), inspired by XLNet. This twin training technique can 

help MPNet to create high-quality semantic embeddings that 

better capture contextual dependence within text order. It has 

demonstrated strong performance in various natural language 

understanding tasks, thanks to its active encoding of both local 

and global semantic features [37, 38]. The intuition is quite 

simple: MLM replaces a subset of tokens in a sequence with a 

special [MASK] token and trains the model to predict these 

masked tokens based on the surrounding context. In contrast, 

PLM predicts tokens in a random permutation order to provide 

bi-directional dependencies without explicit masking. To 

build on their strengths, it employs a masking strategy in 

which tokens are first permuted and then fed into a mask 

generation mechanism that preserves relative positions while 

providing context continuity during simultaneous masking.  

Formally, let X (x1,x2,..,xn) be a sequence of tokens, π be a 

permutation over token indices, and M⊂π be the set of masked 

positions. It then optimizes the following training objective, 

which can be abstractly as shown in Eq. (2): 

ℒ =  − ∑ 𝑙𝑜𝑔 𝑃𝜃(𝑥𝑖 | 𝑋\𝑀, 𝜋

𝑖∈𝑀

) (2) 

where, 𝑋\𝑀  denotes the sequence with masked tokens

removed, and 𝑃𝜃  is a probability distribution over the

vocabulary parameterized by the model. This permutation π 

ensures that deviations between masked and unmasked tokens 

are balanced, thereby overcoming the mask-independence 

issue of BERT's MLM. It encodes sequences using a 

transformer encoder, generating contextual embeddings that 

capture both local (short-range) and global (long-range) 

semantic features. Then, a number of these embeddings are 

aggregated into a fixed-sized vector using mean pooling for 

downstream tasks such as Semantic Textual Similarity, text 

classification, or retrieval [39]. 

3.3.4 General Text Embeddings – Large 

GTE-Large is a Roberto NLP model built upon transformers 

and meant for tasks more complex than simple question-

answering, such as text classification. GTE belongs to the most 

recent embedding family of models, reducing complexity and 

dimensionality by leveraging large-scale transformer encoders 

to capture contextualized word dependencies [32], similar to 

how Self-Attention mechanisms operate on unstructured 

context. The Large variant uses more layers, hidden 

dimensions, and attention heads than base models to model 

complex linguistic patterns and semantic nuances [40, 41]. 

Essentially, it works by feeding input sequences through the 

transformer encoder, which produces a sequence of hidden 

states. A fixed-length sentence embedding can be obtained by 

aggregating these token-level hidden states with mean pooling 

over the final layer, which can be abstractly represented by the 

formulation in Eq. (3): 

𝑠 =
1

n
 ∑ ℎ𝑖

𝑛

𝑖=1

(3) 

where, ℎ𝑖 is the hidden state representation of the ith token, and

n is the sequence length. It creates a sentence vector 𝑠, which 

is a point in the high-dimensional continuous space, and 

similar sentences are closer to one another. 
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3.4 Data splitting 

For assessment of model performance, the training and test 

data were partitioned using a fixed-random split (Hold-out). 

Appropriate data splitting is an important aspect of machine 

learning, as the proportion of training versus testing data can 

have a considerable impact on model performance and 

reproducibility. A (Train: 118,267; Test: 29,567) split ratio 

was employed, as it follows common practice and 

experimental design recommendations to balance learning 

capability and fair testing [42, 43].  Additionally, measures 

were taken to ensure that the distribution of classes across 

subsets remained balanced, thereby preventing data 

imbalance. Studies have also confirmed the importance of 

optimal splitting techniques in reducing sample bias and 

improving the reproducibility of experimental results [44].  

3.5 Model training (XGBoost classifier) 

We have chosen the XGBoost (Extreme Gradient Boosting) 

model for classification because of its excellent skill, 

scalability, and robust predictive accuracy. It is efficient for 

processing structured data and supports parallel computation, 

regularization better tree boosting [45]. It has been effectively 

used in many fields, including environmental modeling [46] 

and civil engineering [47], demonstrating its versatility. 

Additionally, merging XGBoost with SHAP-based 

explanation methods has been shown to provide valuable 

insights into feature importance and model decision-making, 

making it a dependable choice for XAI systems. It is widely 

used for its accuracy. It builds boosted trees iteratively, 

minimizing an objective function that combines a loss term 

and a regularization term, thereby improving generalization 

and reducing overfitting. Its objective function combines loss 

minimization and tree regularization, shown in Eq. (4): 

ℒ (𝜙) =  ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡)

) + ∑ Ω(𝑓𝑘) (4) 

where, 

- 𝑙: loss function (e.g., log-loss)

- 𝑦𝑖: true label, 𝑦̂𝑖
 : predicted output

- Ω(f): regularization term for tree complexity

In practice, XGBoost approximates this objective using a

second-order Taylor expansion of the loss function, making it 

computationally efficient for finding gains from tree splits. In 

addition, it uses L1 and L2 regularization, making this model 

less prone to overfitting than the traditional boosting model. 

XGBoost natively handles missing values and parallelizes 

training, improving its scalability for large datasets. 

3.6 Model evaluation metrics 

To assess classification model performance, a set of 

standard evaluation metrics is used: accuracy, precision, 

recall, and F1 score. It estimates a model's predictive 

capability by calculating the rates of correct and incorrect 

predictions [48]. The nature of this dataset, with multiple 

classes and potential class imbalance, also revealed that total 

averages and weighted F1 scores were needed to achieve 

balanced performance [49-51]. The evaluation metrics used in 

this study are defined in Eqs. (5)-(8): 

Accuracy =  (TP + TN)/(TP + TN + FP + FN) (5) 

Precision =  TP/(TP + FP) (6) 

Recall = TP/(TP + FN) (7) 

F1 − Score =  
2 ×  Precision ×  Recall

Precision + Recall
(8) 

3.7 Explainability techniques (SHAP, LIME) 

To improve model interpretability and interpret the 

predictions of classification models, two popular XAI methods 

[52] are employed: SHAP (SHapley Additive exPlanations)

[12, 53] and LIME (Local Interpretable Model-Agnostic

Explanations) [11]. Such techniques reveal the contributions

of input features or tokens to model decisions and help identify

decision-relevant features, thereby increasing trust in the

system. SHAP and LIME have been widely used across many

domains and tested on various tasks, demonstrating their

reliability and stability in high-dimensional classification.

SHAP supports both global and local interpretability. Each of

the input variables is given with an additive feature importance

score, which allows for visualizing and explaining decisions,

as in Eq. (9):

𝑓(𝑥) =  𝜑0 + ∑ 𝜑𝑖 (9) 

where, 

f(x): model prediction,  

φ₀: base value (expected output) 

φᵢ: SHAP value for feature i 

The simplified formulation of SHAP values highlights how 

each feature influences a prediction by estimating its marginal 

contribution compared to all possible feature subsets, as shown 

in Eq. (10): 

𝜑𝑖 =  ∑[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] . 𝑊(𝑆) (10) 

where, 

S: subset of input features, 

f(S): model output on feature subset, 

w(S): weighting function 

While LIME describes the model locally using interpretable 

replacement models to explain individual predictions, as 

shown in Eq. (11): 

𝑔∗ = 𝑎𝑟𝑔 min
𝑔∈𝐺

ℒ (𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (11) 

where, 

g: interpretable model, 

G: set of all interpretable models 

πₓ: locality kernel around instance x, 

Ω(g): model complexity penalty 

In practice, LIME samples perturbations around the 

instance of interest, asks the Blackbox model for predictions, 

and then fits a simple interpretable model (for instance, a 

sparse linear regressor) weighted by the locality kernel πₓ. This 

ensures that the explanation focuses on the local decision 

boundary rather than the global model. Nevertheless, LIME 

explanations can exhibit variance across runs when random 

perturbations are used, and they may also be sensitive to both 

kernel width and sampling strategy, limiting their stability in 

some instances.  
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4. RESULTS AND DISCUSSION

This section reports the evaluation of the proposed 

framework for classifying human-written and LLM-generated 

text. The results combine quantitative metrics from four 

Transformer-based embeddings with an XGBoost classifier, 

along with qualitative explanations derived from XAI 

techniques. We evaluate the performance of various sentence 

embedding methods for the XGBoost classifier and then 

compare accuracy, precision, recall, and F1-score. 

Explainability techniques (SHAP, LIME) are then used to 

interpret model predictions and further support the 

transparency of the classification process by revealing how 

individual text features contribute to the outcome. Finally, the 

language patterns for each label are investigated using 

visualization methods, including SHAP force plots, LIME 

local explanations, and word clouds. 

4.1 Performance and comparative analysis 

This section compares four Transformer-based embedding 

models integrated with the XGBoost classifier. All models 

utilize different sentence embedding techniques, i.e., 

DistilBERT, MPNet, E5-base, and GTE-Large. The 

evaluation is based on standard classification metrics—

accuracy, precision, recall, and F1-score—as well as 

interpretability feedback from the explainability tools SHAP 

and LIME. The interpretability and classification results of 

each model are tabulated in Table 1. Among the evaluated 

methods, E-5 base performed best, with an accuracy of 89%, 

followed closely by GTE-Large (88%). DistilBERT and 

MPNet both achieved 87%. Interpretability-wise, SHAP 

analysis showed that the embedding-based model generated 

semantically consistent and meaningful attribute values, 

which are easier to comprehend in terms of how they led to the 

prediction. Additionally, LIME explanations identified 

keywords and phrases that most influenced classification 

decisions, thereby increasing transparency and credibility. 

These results suggest that the E5-base and GTE-Large models 

strike the best balance between representation quality and 

interpretability, making them most suitable for multi-class 

classification of AI-generated versus human-written text. 

Table 1. Performance and explainability summary of transformer-based embedding with XGBoost 

Model Algorithm Accuracy Precision Recall 
F1-

Score 
SHAP Insights LIME Insights 

D_BERT XGBOOST 0.87 0.87 0.87 0.87 
Several embedding dimensions in 

D_BERT had strong SHAP values 

Key text tokens influenced 

the prediction 

E5_base XGBOOST 0.89 0.88 0.89 0.88 

Key E5_base dimensions 

contributed significantly to 

predictions 

Semantic phrases 

contributed to the label 

decision 

MpNet XGBOOST 0.87 0.87 0.87 0.87 
MPNet had localized importance 

with a few dominant dimensions 

Keywords highlighted 

model reasoning 

GTE_Large XGBOOST 0.88 0.88 0.88 0.88 
Balanced SHAP values across 

many dimensions in GTE_Large 

Typical label-aligned 

phrases explained 

predictions 

4.1.1 Class-wise performance analysis 

Table 2. Class-wise F1-score comparison across 

embedding models 

Class 
D-BERT

F1

MPNet 

F1 

E5-Base 

F1 

GTE-Large 

F1 

Bloom 0.95 0.98 0.98 0.99 

Claude 0.98 0.98 0.98 0.98 

Falcon 0.91 0.91 0.91 0.91 

Flan 0.71 0.69 0.72 0.69 

GLM 0.97 0.97 0.98 0.98 

GPT 0.72 0.70 0.74 0.74 

Human 0.56 0.61 0.62 0.59 

LLaMA 0.79 0.79 0.83 0.79 

LZLV 0.98 0.98 0.98 0.98 

Mistral 0.96 0.96 0.96 0.96 

Mixtral 0.94 0.94 0.94 0.94 

Neural 1.00 1.00 1.00 1.00 

Nous 0.99 0.99 0.99 0.99 

OPT 0.64 0.62 0.67 0.64 

PaLM 0.99 0.99 0.99 0.99 

Psyfighter 0.99 0.99 0.99 0.99 

T0-11B 0.92 0.92 0.93 0.93 

Text 0.68 0.67 0.71 0.69 

Apart from overall performance, we also calculated fine-

grained class metrics for all 18 entities (Human + 17 LLMs). 

The models have also shown significant distinctions among 

the LLM families (F1-Score F1 = [0.59 - 1.00]), demonstrating 

that the system can indeed identify which text belongs to a 

particular generator, rather than only whether it was generated 

by Human vs AI. The classification performance across all 18 

LLM categories and four embedding models is summarized in 

Table 2, indicating distinctive separability across different 

LLM families. 

The Class-Wise scores indicate that many LLMs, such as 

Neural, PaLM, Claude, and Psyfighter (F1 ≈ 0.99–1.00), 

achieved perfect separability, meaning they are very 

distinctive from each other; meanwhile, Human, GPT, and 

FlanOPT. Moreover, texts achieve lower F1 scores because 

they tend to be more human-like and conversational. This 

indicates that the model is performing multi-class authorship 

attribution, not just binary Human vs. AI classification. 

4.2 Baseline comparison with a fine-tuned DistilRoBERTa 

model 

To assess the suggested framework against a transformer-

based state-of-the-art baseline, a DistilRoBERTa model was 

fine-tuned on the same dataset. The baseline achieved 88% 

accuracy, an F1-score of 87.9%, precision of 88%, recall of 

88%, and an inference time of 34 ms per sample. In 

comparison, the proposed E5-base + XGBoost model achieves 

a slightly higher accuracy (89%) while being significantly 

faster (8 ms per sample) and offering full explainability 

through SHAP and LIME. This accuracy-speed-explainability 

balance demonstrates the practicality and interpretability 
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advantage of our approach over transformer-only detectors. 

A summary is provided in Table 3, while detailed evaluation 

metrics of the baseline model are included in Appendix D. 

Table 3. Performance comparison between the proposed model and DistilRoBERTa baseline 

Model Accuracy Precision Recall F1-Score Inference Time 

E5-base + XGBoost 0.89 0.88 0.89 0.88 8 ms 

DistilRoBERTa (Fine-tuned) 0.88 0.88 0.88 0.879 34 S 

Table 4. Comparative of recent studies on artificial intelligence generated text detection using XAI 

Study Dataset Models/Algorithms 
XAI 

Techniques 
Accuracy Notes 

Our 

study 

Human vs. LLM Text 

Corpus (Kaggle) 

147,834 Balanced 

samples (18 classes: 

Human + 17 Large 

Language Models 

(LLMs)) 

DistilBERT, MPNet, E5-base, 

GTE-large, XGBoost 
SHAP, LIME 

E5-base: 

89% 

Multi-class classification 

distinguishing between human-

written and 17 distinct LLM-

generated text types with 

explainable AI 

Najjar et al. 

[27] 

CyberHumanAI (500 

humans, 500 

ChatGPT texts) 

TF-IDF, Bag-of-Words 

XGBoost, Random Forest 
LIME 83% 

Used LIME to identify 

distinguishing features between 

human and AI-created texts, 

noting differences in word 

usage patterns 

HuLLMI 

(2024) 

Multiple datasets, 

including curated 

corpora and real-

world samples 

10,000–100,000 

range, depending on 

the sub-dataset. 

TF-IDF, Bag-of-Words 

Naïve Bayes, MLP, Random 

Forest, XGBoost 

For T5 Modern Transformer 

Embedding 

LIME 

XGBoost: 

72%, MLP: 

88%, T5: 

88% 

Proved that traditional ML 

models perform comparably to 

modern NLP detectors in 

human vs. AI text detection, 

with LIME providing 

explainability. 

Scientific 

Reports 

(2024) 

204 injury narratives 

TF-IDF 

Logistic Regression (trained 

on 120,000 samples), 

ChatGPT-3.5 

LIME, Eye-

tracking 

ML model 

Recall: 84% 

Compared human and artificial 

intelligence model performance 

and explainability in text 

classification tasks, focusing on 

fields of agreement and 

difference 

Cesarini et 

al. [23] 

Different textual 

datasets 

Training corpus: 

120,000 labeled 

samples  

traditional (TF-IDF) and 

transformer embeddings 

(BERT-like), Evaluation of 

post-hoc XAI methods 

SHAP, LIME, 

and others 
undefined 

Presented an overall evaluation 

of different XAI methods in 

text classification, focusing on 

explainability and user 

confidence 

de Arriba-

Pérez et al. 

[18] 

Spanish legal 

judgments 

several thousand to 

tens of thousands, 

depending on each 

benchmark. 

Spanish BERT model 

Multi-label classification 

models 

visible and 

descriptive 

explanations 

85% micro-

accuracy 

Progressed a method collected 

with ML and natural 

explanations to classify legal 

judgments effectively. 

4.3 Explainability techniques (XAI integration) 

4.3.1 SHAP visualizations and interpretations 

Figure A1 presents the SHAP visual outputs in Appendix A 

in a clear and orderly manner for all four models. We can see 

which dimensions consistently affect the prediction. The 

printed colors of the stacked bars illustrate which classes 

depend the most on each dimension, providing insight into 

both the importance of each dimension and specific-class 

dependencies. The broad distribution of importance across 

many classes indicates models capture a wide range of 

semantic signals, rather than favoring one dominant class.  

Overall, SHAP summaries suggest potentially 

complementary behaviours among the four embedding 

models. In contrast, D-BERT shows less localised feature 

importance, indicating that shared semantic dimensions are 

more widely distributed across classes. MPNet and E5-base 

are more focused on class-specific dimensions, whereas 

attention is more dispersed in GTE-Large, distributing 

importance more generally, which leads to robustness against 

well-discriminated class layers. Complete per-model SHAP 

interpretations are available in Appendix A.  

4.3.2 LIME explanations 

Figure A2 presents the LIME visual outputs in Appendix B 

for all four models. Offered token-level interpretability, focus 

on the main words and phrases that contribute to the 

classification decision. These insights help us understand how 

different models support linguistic patterns across human and 

AI-generated text categories, using various LLMs. 

Transformer-based models exhibited more consistent patterns, 

where semantically meaningful tokens (e.g., verbs, technical 

terms) were associated with higher prediction weights. In 

particular, GTE-Large provided the most straightforward 

explanation by clearly highlighting the effective tokens for 

each output label, thereby supporting its superior 

3109



interpretability. These LIME-based explanations complement 

the SHAP global explanations by providing precise, local, and 

reasonable explanations, thereby fostering deeper trust in the 

model's actions. 

At the token level, LIME confirms that all four models 

attend to semantically meaningful words and phrases, but with 

different degrees of focus. GTE-Large produces the most 

sharply localised token attributions, and MPNet offers a 

balanced mixture of contextual and keyword-based evidence. 

At the same time, D-BERT spreads importance more 

diffusely, and E5-base also assigns weight to function words. 

These patterns complement the global SHAP findings and are 

reported in total detail in Appendix B. 

4.3.3 Comparison of SHAP and LIME interpretations 

The combination of both SHAP and LIME offered a dual 

perspective on model behavior. SHAP provided a global view, 

identifying the most impactful embedding dimensions that 

drove the model's predictions, while LIME offered local, 

human-interpretable, and visually appealing explanations, 

presenting words and phrases that affected individual 

predictions. A comparison of the two interpretability methods 

revealed strong alignment: tokens with high SHAP 

contributions from specific dimensions are often highlighted 

by LIME as meaningful. Such alignment between numerical 

and textual explanations also helps establish confidence in the 

model's overall reasoning process, which is crucial for trust, 

especially in high-stakes applications. Additional qualitative 

examples illustrating this alignment are included in 

Appendices A and B. 

4.4 Confusion matrix interpretation 

To further assess class-level behaviour, confusion matrices 

were generated for the four embedding-based classifiers 

(DistilBERT, MPNet, E5-base, GTE-Large). Figure A3 shows 

the visualized results. Complete confusion matrices are 

available in Appendix C for transparency and reproducibility. 

For all models, most LLM classes strongly dominate the 

diagonals of this matrix, indicating high discriminability 

between generators such as Neural, PaLM, Claude, Bloom, 

Mistral, and Nous. The confusing patterns are essentially 

between Humans, GPT, Flan, OPT, and Text –all of which can 

be positioned close to human-like instruction-following and 

conversational styles. This consistency indicates that the 

classification challenge is not an algorithmic weakness, but 

genuine overlap in linguistic style between these specific label 

groups. 

4.5 Benchmarking against prior studies 

Table 4 situates this work within the broader context of a 

recent survey of studies on explainable machine learning 

methods for detecting AI-generated texts. Traditional machine 

learning models, combined with interpretability tools, have 

been successfully used in previous work. Here, the novelty lies 

in the inclusion of multiple state-of-the-art sentence-

embedding transformers used in conjunction with an XGBoost 

classifier. Comparing this work with previous studies, which 

mainly employ binary classification or a single embedding 

approach, this work treats multi-class classification as a more 

challenging task in terms of real AI-generated diversity. 

Moreover, by combining global (SHAP) and local (LIME) 

explainability methods, a deeper level of transparency is 

achieved, providing more insights into model behavior across 

various text sources. differentiating it from previous attempts 

in that it combines accuracy and interpretability. 

5. CONCLUSION

In this paper, we introduce and test a system for interpreting 

machine learning approaches to the classification of human- 

and machine-generated texts using a variety of sentence 

embeddings and explainable AI algorithms. We show that 

transformer-based embeddings, specifically E5-base and 

GTE-Large, achieve superior classification performance, 

thereby further improving model interpretability. By 

combining SHAP for global and LIME for local token-level 

interpretations, we gained meaningful insights into how 

specific textual properties and embedding dimensions 

influence the model's decisions. These complementary 

interpretation techniques not only reinforce trust in the model's 

decision-making but also demonstrate the subtle linguistic 

signals that distinguish between human- and machine-

generated language. In summary, this work highlights the 

importance of integrating high-performing embeddings with 

transparent explanation frameworks, leading to more 

interpretable, accountable, and generalizable AI text detection 

systems. 
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APPENDIX A. SHAP Global Explanations 

This appendix provides the full-resolution SHAP summary 

plots for all four embedding-based XGBoost models. These 

figures complement Figure A1 in the main text. 
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(a) D-BERT

(b) MPNet

(c) E5-base

(d) GTE-Large

Figure A1. SHAP visualizations 

In more detail, the SHAP interpretations for each 

embedding model can be described as follows: 

DistilBERT (Figure A1(a)) 

• The features with the highest degree of influence (e.g.,

dim_223, dim_145, dim_351) make strong

contributions to numerous classes.

• SHAP bars from DistilBERT exhibit extensive color

mixing, implying that its embeddings represent

commonalities between classes, instead of dimensions

that are highly class-specific.

• This means that it may generalize well, albeit with less

discriminative power for fine-grained class separation,

compared to other models.

MPNet (Figure A1(b)) 

• The most-occurring features (e.g., dim_756, dim_688,

dim_461) present more focused contributions to certain

classes (especially Classes 7, 13, 16).

• MPNet exhibits more class dependence than

DistilBERT, indicating that it has a stronger capability

to encode discriminative features.

• This is consistent with MPNet's design (masked +

permuted training), which is more likely to encode

local and global dependencies in a more balanced

manner.

E5-base (Figure A1(c)) 

• E5-base has a small number of very dominant

dimensions (dim_756, dim_114), where individual

features have large effects on predictions for many

classes.

• Unlike DistilBERT, the attention is more unevenly

balanced — apparently, some dimensions serve more

as semantic bottlenecks, bearing a greater predictive

load.

• (which could be attributed to the task-specific fine-

tuning of E5-base embeddings for semantic similarity,

favoring compact, transparent representations but

potentially relying too much on a few features).

GTE-Large (Figure A1(d)) 

• GTE-Large has overall lower SHAP magnitudes (max
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≈ 0.8) which suggests that it tends to distribute its 

predictions more uniformly over many dimensions. 

• This "flat" nature of the importance profile means the

model is robust (redundant): it is not over reliant on any

one dimension.

• GTE-Large further demonstrates more well-separated

class-specific contributions, (e.g., Classes 12, 7, 9) and

explanations at the class level are more interpretable.

Appendix B. LIME Token Attribution Results 

This section contains the complete LIME outputs for 

representative samples across all 18 classes. 

(a) D-BERT

(b) MPNet

(c) E5-base

(d) GTE-Large

Figure A2. LIME explanations 

In more detail, the LIME interpretations for each 

embedding model can be described as follows: 

DistilBERT (D-BERT) 

• Emphasizes "algorithm" and "worst-case analysis"

heavily across workouts.

• Shows that DistilBERT is a type of keyword-driven

model, likely to have weights spread across multiple

tokens and provide less focused explanations.

MPNet 

• Emphasizes "algorithm" and "mathematical analysis"

with stronger weights.

• Consistently captures contextual meaning more

effectively, indicating that MPNet effectively encodes

local terms and their surrounding context.

E5-base 

• Gives weight not just to technical terms but also to

function words such as "one" and "provide".

• Suggests that in some cases it does more linguistic

work than what would be expected given just the

content words, which may flatten interpretability.

GTE-Large 

• Produces the clearest, most focused highlights,

especially on "algorithm", "worstcase", and

"computational problem".

• It demonstrates sharper token attribution, making the

explanations more understandable and believable

compared to other models.

Overall, all four models enhance semantically meaningful 

tokens, with GTE-Large providing the most focused and 

precise explanations, MPNet providing a balance of contextual 

and keyword significance, DistilBERT spreading weight more 

diffusely, and E5-base extending saliency to functional words. 

This is consistent with our interpretation that LIME should be 

used in conjunction with SHAP to investigate the model-

specific linguistic focus at the token level. 

APPENDIX C. Full Confusion Matrix Visualizations 

Figure A3 includes the complete confusion matrices for 

DistilBERT, MPNet, E5-base, and GTE-Large models, shown 

below. These provide the class-wise distribution of predictions 

beyond the summary discussed in Section 4.4. 
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(a) DistilBERT + XGBoost

(b) MPNet + XGBoost

(c) E5-base + XGBoost

(d) GTE-Large + XGBoost

Figure A3. Confusion matrix 

Appendix D. DistilRoBERTa Baseline Classification 

Report 

This appendix contains the full experimental results for the 

fine-tuned DistilRoBERTa model, used as a baseline reference 

against the proposed embedding-based XGBoost framework. 

Only summary indicators are mentioned in the Results section, 

while full numerical outputs are documented here for 

transparency and reproducibility. 

1. Baseline Performance Comparison

Table A1. Baseline performance comparison of different 

embedding–classifier combinations with inference time and 

explainability 

Model 
Accur

acy 

Preci

sion 

Rec

all 

F1-

Sco

re 

Infere

nce 

Time 

Explaina

bility 

E5-base 

+ 

XGBoost 

0.89 0.88 
0.8

9 

0.8

8 
8 ms 

Full 

(SHAP + 

LIME) 

DistilRoB

ERTa 

(Fine-

tuned) 

0.88 0.88 
0.8

8 

0.8

79 
34 ms Limited 

D-BERT

+

XGBoost 

0.87 0.87 
0.8

7 

0.8

7 
8 ms Full 

MPNet + 

XGBoost 
0.87 0.87 

0.8

7 

0.8

7 
8 ms Full 

GTE-

Large + 

XGBoost 

0.88 0.88 
0.8

8 

0.8

8 
8 ms Full 

As shown in Table A1, the baseline performance of 

different embedding–classifier combinations is compared 

across multiple evaluation metrics, including accuracy, F1-

score, inference time, and explainability. 

Table A2. Class-wise classification performance of the fine-

tuned DistilRoBERTa model on the 18-class dataset 

Class Precision Recall F1-score Support 

Bloom 0.9254 0.9746 0.9494 1654 

Claude 0.9975 0.9636 0.9803 1650 

Falcon 0.9262 0.9046 0.9153 1666 

Flan 0.7021 0.6897 0.6959 1647 

GLM 0.9019 0.9335 0.9174 1625 

GPT 0.7099 0.7789 0.7428 1646 

Human 0.7584 0.6709 0.7120 1647 

LLaMA 0.8029 0.7693 0.7857 1673 

LZLV 0.9757 0.9822 0.9789 1632 

Mistral 0.9384 0.9772 0.9574 1622 

Mixtral 0.8972 0.9756 0.9347 1637 

Neural 0.9994 1.0000 0.9997 1638 

Nous 0.9896 0.9747 0.9821 1657 

OPT 0.7764 0.7352 0.7553 1658 

PaLM 0.9927 1.0000 0.9963 1633 

Psyfighter 0.9987 0.9803 0.9894 1626 

T0-11B 0.7830 0.8920 0.8340 1630 

Text 0.7549 0.6439 0.6950 1626 

Accuracy 0.8801 29567 

Macro Avg 0.8795 0.8803 0.8790 29567 

Weighted Avg 0.8793 0.8801 0.8788 29567 

This benchmark confirms that our hybrid embedding-plus-

3115



XGBoost framework provides an advantageous balance 

between accuracy, inference speed, and explainability, 

compared to a fine-tuned transformer baseline. 

2. Full DistilRoBERTa Classification Report (18-Class

Output)

Table A2 presents the complete classification results for the 

fine-tuned DistilRoBERTa model are provided below. These 

results demonstrate the class-level performance with respect 

to precision, recall, F1-score and support. 
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