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In general, recommendation systems assume that each transaction made by a user reflects a 

single purchase intent (mono-intent). However, in reality, a transaction may contain several 

underlying intentions, such as routine shopping, consumption for specific purposes, or 

household needs, which cannot be effectively captured by a mono-intent model. Previous 

studies have proposed multi-intent approaches such as topic modeling, transformer-based, 

and clustering techniques. However, these methods assume that each intent has the same 

weight, especially when products are consumed simultaneously and do not have explicit 

labels that correlate between products, thereby reducing context understanding and 

personalization capabilities. Based on this gap, we propose a framework for implicit multi-

intent detection in shopping transactions using the extensive knowledge of Large Language 

Models (LLMs) through the In-Context Learning (ICL) prompting technique. As for the 

preference assessment mechanism, we use the Position-Based Grouping (PBG) method to 

estimate user preferences based on the order of items added to the cart. The results of our 

experiments on the Instacart dataset show that our proposal is capable of producing a 

significant performance improvement compared to existing sequential recommendation 

systems, where our best model is able to increase Recall by up to 122% and MRR by up to 

217%, indicating that it is more effective in capturing user preference trends for specific 

intentions in the purchase sequence. This work is available at 

https://huggingface.co/recommender-system/mindfull. 
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1. INTRODUCTION

E-commerce purchases reflect multiple needs in a single

transaction. For example, a user may purchase milk and eggs 

for daily needs, stationery for work, and snacks for family 

entertainment, all in one shopping cart. This demonstrates the 

phenomenon of multi-intent transactions [1, 2]. 

Looking at current studies on recommendation systems, 

most still operate based on the assumption that one transaction 

corresponds to one intent (mono-intent) [3, 4]. This 

assumption simplifies the complexity of user behavior, 

resulting in recommendations that are irrelevant to user needs 

[4, 5], as shown in Figure 1. Seeing this weakness, recent 

research has begun to develop a multi-intent approach [6-9]. 

Several studies have proposed multi-intent models [9-11], 

including those that identify product subgroups within a 

transaction or apply topic models [10], transformers [11], and 

clustering techniques to distinguish user intent [9]. However, 

these methods still consider the weight of each user intent to 

be equal, especially when products are consumed 

simultaneously and do not have explicit labels [11]. 

The latest models in recommendation systems have adopted 

transformer-based architectures [11] that have strong natural 

language understanding capabilities. Although previous 

studies have shown limitations, transformer-based methods 

with the emergence of Large Language Models (LLMs) are 

beginning to offer new capabilities, including classification 

through hint-based inference, which promises to overcome 

multi-intent challenges, despite high computational demands. 

Some of the inference techniques with LLMs include (1) Zero-

shot Learning [12], which allows the model to perform 

classification without seeing specific examples from previous 

tasks, but rather relies on general knowledge acquired during 

pre-training. (2) Few-shot Learning [13] improves task-

specific understanding by including several examples in a 

single command. (3) In-Context Learning (ICL) [14] presents 

a series of examples in a single command without requiring 

fine-tuning, allowing the model to make predictions on target 

inputs directly. 

Seeing the opportunity of LLM-based methods to address 

multi-intent problems, we propose a new approach that utilizes 

ICL-based inference prompting and introduces a mechanism 

to assess the intensity of user preferences for each detected 

intent. In general, the main contributions of our research are as 

follows: 

a. An ICL-based multi-intent detection method that

eliminates the need for explicit labels.

b. Implicit transaction data from purchase sequences as

indicators of user interest.

c. A Position-Based Grouping (PBG)-based preference
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scoring mechanism to identify dominant intentions. 

d. Improved recommendation relevance that takes into

account context diversity [15] and the strength of user

preferences (intention interpretation) within a single 

transaction session. 

Figure 1. Example of a multi-intent problem 
Note: The top represents the case expected by conventional recommendation models, while the bottom depicts a real-world case where user needs are diverse. 

Figure 2. Architecture of the proposed framework 
Note: The components highlighted in green represent our novel contributions. 
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2. PROPOSED METHOD

To implement the proposed method, our approach is applied 

within a user transaction session framework, where each 

transaction 𝑇  is represented as a sequence of products 

[𝑝1, 𝑝2, . . . , 𝑝𝑛] ordered by the time each item 𝑝𝑖  was added to

the basket. This sequence is assumed to reflect the user's 

implicit preference level toward each product. The overall 

architecture of the proposed model is illustrated in Figure 2. 

Table 1. List of notation 

Notation Description 

𝑇 
List of products in a user transaction 𝑇 =

 [𝑝1, 𝑝2, . . . , 𝑝𝑛]
𝑝𝑖 The i-th product in the transaction 

𝐺 
Set of predicted intent groups 𝐺 =

 {(𝑃1, 𝑙1), . . . , (𝑃𝑘 , 𝑙𝑘)}

𝑃𝑗 
Subset of products belonging to the j-th 

intent group 

𝑙𝑗 Intent label for the product group 𝑃𝑗

𝑠(𝑝𝑖) 
Base score of product 𝑝𝑖 based on its

position in the basket 

𝛼 Positional score decay coefficient (e.g., 0.1) 

𝛽(𝐺𝑗) 
Bonus score for intent group 𝐺𝑗 based on

consecutive product pairs 

𝛾 
Bonus coefficient for sequential product 

pairs (e.g., 0.1) 

𝑆(𝐺𝑗) Total score for intent group 𝐺𝑗

𝑓(𝐺𝑗) 
Favorability rate, or the user’s preference 

level for intent group 𝐺𝑗

𝑆 
Set of sequential product pairs in intent 

group 𝐺𝑗

𝜙(𝑥) 
Embedding function for converting text 

into semantic vectors 

cos( 𝜙(𝑎), 𝜙(𝑏)) 
Cosine similarity between two text 

embeddings 

The primary task is to detect groups of latent purchase 

intents 𝐺  underlying the transaction, represented as 

(𝑃1, 𝑙1), . . . , (𝑃𝑘 , 𝑙𝑘)  where 𝑃𝑗 ⊆ 𝑇  and 𝑙𝑗  is the intent label

assigned to the product subset 𝑃𝑗 . In addition to intent

detection, the system is designed to compute the user's 

preference level 𝑓(𝐺𝑗) for each intent group 𝐺𝑗, using a score-

based ranking mechanism derived from item ordering. A 

summary of notations used is provided in Table 1. 

2.1 ICL for multi-intent detection 

The multi-intent detection component in this study 

leverages ICL with a Large Language Model (LLM) to infer 

latent intent structures within a transaction. In this approach, 

the LLM is provided with a set of example pairs consisting of 

products 𝑝𝑖  and their corresponding categories 𝑐𝑖 in the form

of a prompt which serve as contextual demonstrations for the 

model. After receiving these examples, the model is instructed 

to cluster the products 𝑃𝑗 in the target transaction into multiple

intent groups 𝑙𝑗. The output is formally defined in Eq. (1).

𝐺 =  (𝑃1, 𝑙1), (𝑃2, 𝑙2), . . . , (𝑃𝑘 , 𝑙𝑘) (1) 

The proposed steps for utilizing ICL in multi-intent 

detection are illustrated in Figure 3. 

The ICL prompt is designed with two main components, 

namely:  

(a) Context Examples, these consist of k product–category

pairs (𝑝𝑖 , 𝑐𝑖) that guide the LLM in understanding semantic

and functional relationships between products. In our 

implementation, we use 5-8 examples per prompt, selected 

from diverse aisles to maximize category coverage. Examples 

are sampled using a semantic similarity filter, ensuring that 

products included in the prompt remain representative of user 

shopping behaviors. Increasing the number of examples tends 

to improve intent coherence but also increases inference 

latency. Conversely, fewer examples may yield unstable or 

inconsistent grouping. 

(b) Target Transaction, this component contains the list of

products 𝑃𝑗  from the user’s transaction to be assigned into

intent groups 𝑙𝑗. The model is explicitly instructed to generate

up to n intents (where n ≤ 5) to maintain interpretability and 

avoid excessive fragmentation. An illustration of the prompt 

structure is shown in Algorithm 1. 

Figure 3. Flow design for multi-intent detection using ICL 
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Algorithm 1. Example of an ICL prompt used for multi-intent 

detection 

Products - Categories 

- Banana - Fresh Fruits

- Whole Milk - Dairy

- Cheddar Cheese - Cheese

Transaction: 

["Banana", "Whole Milk", "Cheddar Cheese", "Notebook"] 

Task: Group the products in the transaction into up to 5 purchase 

intents. 

Return in the format: {products: [...], intent: "..."} 

Since LLMs generate responses in free-text form, additional 

post-processing steps are required to ensure structural 

consistency and compatibility with subsequent modules. 

These steps include: 

a. Extracting product groups and intent labels, each LLM-

generated cluster is identified and mapped to a

standardized format, ensuring uniform labeling across

transactions.

b. Preserving product order, the original order of items, as

added to the user's cart, is maintained. This is critical for

computing the preference score in the PBG module.

c. Reconstructing the output format, the cleaned and

structured results are reformatted according to Eq. (1),

ensuring consistent input for downstream components.

2.2 Preference scoring with PBG 

Once the intent groups G have been identified, the next step 

is to measure the degree of dominance of each intent within a 

transaction, denoted as S(Gj) and f(Gj). This process leverages

the order in which products are added to the basket as a signal 

of implicit user preference. 

PBG is the proposed approach to quantify user preference 

for a given intent within a transaction, based on the relative 

position of each product when it was added to the cart [16]. 

The method assumes that the earlier a product is added, the 

more likely it reflects a dominant or favored intent. 

The preference scoring process consists of the following 

steps: 

2.2.1 Base product score based on position 

Each product in a transaction is assigned a base score 𝑠(𝑝𝑖),

calculated linearly based on its position (Eq. (2)). 

𝑠(𝑝𝑖)  =  1.0 − 𝛼(𝑖 − 1) (2) 

where, 𝛼 =  0.1 Products added earlier in the basket receive 

higher scores, indicating stronger interest. 

Example: If the basket sequence is (1) Banana, (2) Whole 

Milk, (3) Cheddar Cheese, (4) Notebook, then the base scores 

are 𝑠(𝑝𝑖)  =  [1.0,0.9,0.8,0.7].

2.2.2 Bonus for Consecutive Products within an Intent Group 

If two or more products within the same intent group 𝐺𝑗

appear consecutively in the transaction, a bonus score is added 

(Eq. (3)). 

𝛽(𝐺𝑗)  =  𝛾 ⋅ |𝑆| (3) 

where, 𝑆 is the number of consecutive product pairs within 𝐺𝑗,

and 𝛾 =  0.1.  

Example: After applying intent prediction with ICL, the 

resulting groups are, (1) Fresh Fruits – Banana, (2) Dairy 

Products – Whole Milk + Cheddar Cheese, (3) Stationery – 

Notebook. 

The intent group Dairy Products qualifies for the bonus 

since its products appear consecutively. Thus, the bonus is 

reflected in the final scores as 𝛽(𝐺𝑗)  =  [(1.0 + 0.0), (0.9 +

0.8 + 0.1), (0.7 + 0.0)]. 

2.2.3 Total intent score 

The total score for each intent group is computed by 

summing the base scores of all products within the group and 

adding the bonus score if applicable (Eq. (4)). 

𝑆(𝐺𝑗)  =  ∑ 𝑠𝑝∈𝑃𝑗
(𝑝) + 𝛽(𝐺𝑗) (4) 

Example: After including the consecutive-item bonus, the 

total intent score becomes S(Gj) = [1.0+1.8+0.7] = 3.5.

2.2.4 Normalization into favorability rate 

To assess the dominance of one intent over others within the 

same transaction, each total intent score is normalized (Eq. 

(5)). 

𝑓(𝐺𝑗)  =  
𝑆(𝐺𝑗)

∑ 𝑆𝑘
𝑚=1 (𝐺𝑚)

(5) 

The value of 𝑓(𝐺𝑗) ∈ [0,1] represents the user’s preference

level for intent Gj. The sum of all 𝑓(𝐺𝑗) values in a transaction

equals 1.0. 

Example: After obtaining the total intent scores, 

normalization is applied to compute the favorability rates 

𝑓(𝐺𝑗): 

𝑓(Fresh)  =  
1.0

3.5
 =  0.286 

𝑓(Dairy)  =  
1.8

3.5
 =  0.514 

𝑓(Stationery)  =  
0.7

3.5
 =  0.200 

By leveraging the Favorability Rate, the system can 

generate a composition of recommendations derived from 

diverse user intentions and rank the Top-K recommendations 

based on the weight of the most dominant intent. This results 

in increased contextual relevance, increased diversity in 

recommendations, and improved interpretability. 

2.3 Similarity-based recommendation 

After obtaining the favorability rates, the next stage 

involves generating recommendations. This begins with 

transforming the item embeddings ϕ(x) for each product in 

the intent group. If an intent contains more than one product, 

their embeddings are concatenated using max pooling to form 

a single representation. 

Next, the number of recommendation candidates allocated 

to each intent is determined proportionally based on its 

favorability score relative to the total Top-K size. For example, 

in a Top-10 recommendation setting, if the Dairy Products 

intent has a favorability score of 0.5, it will be allocated 5 

recommendation slots. 

To generate the final recommendations, we utilize a vector 

database (ChromaDB (https://www.trychroma.com/)) in 

combination with cosine similarity to retrieve candidate items 
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that semantically align with the detected intents. Cosine 

similarity is employed for its effectiveness in measuring the 

similarity between two objects cos ( ϕ(a), ϕ(b)) , the 

effectiveness of measuring the similarity between two objects, 

such as "Bread" and "Rice" which are the "staple food" group 

will be separated by "Coffee" which is a "drink", by 

considering the direction of the vector representation, not just 

the magnitude [17]. 

3. EXPERIMENTS

In this study, a systematic preparation phase was conducted 

prior to the experimental stage to ensure the validity and 

reliability of the results. The preparatory steps covered several 

key aspects as outlined below. 

3.1 Objectives 

The experiments conducted using our framework in this 

study aim to achieve the following goals. 

a. To evaluate how effectively LLMs can infer users’

favorability toward items based on their needs within a

transaction, and how this affects sequential

recommendation outcomes.

b. To understand the impact of LLMs and the ICL scheme

in detecting diverse user needs (multi-intent) within a

single transaction session.

3.2 Dataset 

The dataset used in this study is the Instacart Online 

Grocery Shopping Dataset 2017 

(https://www.kaggle.com/competitions/basket-

analysis/overview), which contains historical online shopping 

data from 206,209 users. In total, there are 3,421,083 shopping 

transactions (orders), covering 49,688 unique products. Each 

product is classified into one of 134 subcategories (aisles), 

which are further grouped into 21 main categories 

(departments) [18]. Every user has a chronological sequence 

of transactions, including timestamps and inter-order intervals. 

A summary of the dataset is presented in Table 2. 

Table 2. Summary of the Instacart 2017 dataset 

Component Count Description 

Users 206,209 
Each user has a sequence of 

transactions with timestamps. 

Orders 3,421,083 
Includes prior, train, and test 

orders. 

Products 49,688 
Unique products with names and 

IDs. 

Aisles 

(Subcategories) 
134 

Product subcategories such as 

fresh vegetables, candy 

chocolate, etc. 

Departments 

(Categories) 
21 

Main product categories such as 

produce, dairy eggs, beverages, 

etc. 

To ensure the dataset's suitability for our experiments, 

several pre-processing steps were applied: 

a. Session construction for each user based on the

chronological order of transactions.

b. Filtering of users and products based on a minimum

number of interactions (e.g., ≥ 5).

c. Tokenization of product names to enable sequential input

representation for the LLM. 

d. Dataset partitioning into training, validation, and test sets

using a chronological split method, where early data is

used for training and the most recent data is reserved for

next-product prediction evaluation.

3.3 Models used 

This experiment compares the proposed framework 

utilizing LLM with classical baseline models for the sequential 

recommendation task. The evaluated models are grouped into 

two categories as follows: 

3.3.1 Large language model as model for extract multi-intent 

from transaction 

The primary models used for multi-intent detection in this 

experiment consist of three recent LLMs: 

a. LLaMA 3, a language model from Meta AI, designed

based on an auto-regressive transformer architecture.

b. Qwen 3, an Alibaba open-source LLM, optimized for

both efficiency and performance in natural language

understanding and generation tasks.

c. Gemma 3, a lightweight model from Google, designed

for high efficiency and easy deployment, particularly

suited for recommendation and sequential processing

tasks.

These models were selected due to their strong capabilities 

in extracting information and understanding context for 

predictions via ICL, as well as their open-source availability 

and compatibility with our hardware requirements [19]. 

3.3.2 Baseline model for sequential recommendation 

To ensure a fair and comprehensive evaluation, we also 

implemented the following baseline models: 

a. Popularity-Based: Recommends products based on

overall purchase frequency.

b. GRU4Rec: A recurrent neural network (GRU-based)

model effective for session-based recommendation tasks.

c. SASRec: A self-attention-based model that explicitly

models item sequences.

d. BERT4Rec: A transformer-based model that leverages

bidirectional context for item sequence modeling.

These baseline models were chosen due to their robust 

performance and popularity in the sequential recommendation 

domain. However, a significant limitation of most of these 

models is their reliance on item ID representations, i.e., 

numeric IDs, for recommendations without leveraging the rich 

semantics of item attributes. To address this, we modify these 

baseline models to allow the use of item attributes by 

introducing a mapping mechanism from item IDs to their 

corresponding attribute vectors [20]. 

3.4 Evaluation protocol and metrics 

The experiments were conducted using a leave-one-out 

evaluation approach, which involves the following steps: 

a. For each user, the most recent purchase session is treated

as the ground truth.

b. All items not previously purchased by the user are

considered as negative candidates.

c. The model is tasked with predicting the next item(s)

based on the user’s preceding session history.

To assess prediction performance, two standard evaluation 

metrics commonly used in recommender systems are 

employed: Recall@K and MRR@K. The values of K tested in 

3097



this study are 5, 10, 15, and 20, in accordance with established 

practices in session-based recommendation experiments. 

3.5 Implementation detail 

The experiments were implemented in Python using the 

Hugging Face Transformers library for Large Language 

Model (LLM) integration. Tokenization was performed on 

either product IDs or product names within each purchase 

session. 

Several key hyperparameters were used consistently across 

all models. The maximum user interaction history length was 

set to max_len = 50. For semantic product representation, a 

combined text-based encoder, all-MiniLM-L6-v2, was used as 

the embedding_model. Item embeddings were aggregated 

using max_pooling. The batch size during training was set to 

128, while evaluation was performed with a batch size of 1. 

The loss function used was BCEWithLogitsLoss(), suitable 

for multi-label prediction scenarios. Model performance was 

evaluated using two primary metrics: Recall@K and MRR@K, 

with K values varied across [5, 10, 15, 20]. All models were 

trained for 50 epochs, as specified by training_epochs = 50. 

Parameter optimization was performed using the Adam 

optimizer with a learning rate of 0.001, denoted as Adam (lr 

= 0.001). All experiments were executed on a 12 GB NVIDIA 

GPU (RTX 4070 Super). 

3.6 Experimental results 

Overall performance. As presented in Table 3, the 

proposed framework consistently outperforms the classical 

baseline models in almost all evaluation metrics. Recall@K 

measures how many relevant items are successfully retrieved 

in the Top-K list of recommended items, where a higher score 

indicates better coverage of user preferences. Meanwhile, 

MRR@K evaluates the ranking position of the first relevant 

item in the Top-K list; a higher score indicates that the relevant 

item appears earlier in the recommendation list. The 

improvements are quite significant, with the framework 

achieving up to +122.56% improvement in Recall and 

+217.30% improvement in MRR compared to the best

baseline model. This highlights the framework's ability to

capture diverse user needs (multi-intent) and semantic

representations more effectively than traditional sequence-

based models such as GRU4Rec or SASRec.

Table 3. Comparison of recommender system performance 

Model Recall@5 Recall@10 Recall@15 Recall@20 MRR@5 MRR@10 MRR@15 MRR@20 

Popularity 0.1358 0.1618 0.1693 0.1693 0.2150 0.2283 0.2298 0.2293 

GRU4Rec 0.0554 0.0802 0.0938 0.1233 0.2295 0.2402 0.2432 0.2472 

SASRec 0.0854 0.0890 0.1089 0.1203 0.2121 0.2733 0.2752 0.2761 

BERT4Rec 0.0485 0.0723 0.0872 0.1046 0.1983 0.2127 0.2152 0.2193 

Ours-gemma3-4b 0.2585 0.2786 0.3103 0.3080 0.7282 0.7934 0.6931 0.6538 

Ours-llama3-8b 0.2165 0.2415 0.2913 0.3768 0.4029 0.3652 0.4351 0.4680 

Ours-qwen3-4b 0.1238 0.2071 0.2171 0.2704 0.2331 0.2818 0.2756 0.2769 

Improvement (%) +90.35% +72.19% +83.28% +122.56% +217.30% +190.30% +151.85% +136.80%
Note: Bold values indicate the best overall performance, while underlined values denote the best among baseline models. 

Table 4. Statistical significance (p-values) across metrics 

Model Metric Popularity Bert4Rec GRU4Rec SASRec 

gemma3 MRR@5 0.0000*** 0.0000*** 0.0000*** 0.0004*** 

gemma3 Recall@5 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

gemma3 MRR@10 0.0000*** 0.0000*** 0.0001*** 0.0138* 

gemma3 Recall@10 0.0000*** 0.0000*** 0.0000*** 0.0006*** 

gemma3 MRR@15 0.0001*** 0.0000*** 0.0010** 0.1098 

gemma3 Recall@15 0.0000*** 0.0000*** 0.0001*** 0.0133* 

gemma3 MRR@20 0.0001*** 0.0000*** 0.0024** 0.1858 

gemma3 Recall@20 0.0001*** 0.0005*** 0.1569 0.0874 

llama3 MRR@5 0.0766 0.0093** 0.3322 0.408 

llama3 Recall@5 0.0000*** 0.0000*** 0.0017** 0.0626 

llama3 MRR@10 0.0156* 0.0013** 0.062 0.9219 

llama3 Recall@10 0.0000*** 0.0007*** 0.0152* 0.2002 

llama3 MRR@15 0.071 0.0098** 0.3142 0.3774 

llama3 Recall@15 0.0000*** 0.0246* 0.1476 0.8336 

llama3 MRR@20 0.1201 0.0299* 0.5761 0.2845 

llama3 Recall@20 0.0000*** 0.356 0.2455 0.3758 

qwen3 MRR@5 0.0170* 0.1151 0.0020** 0.0000*** 

qwen3 Recall@5 0.0000*** 0.0056** 0.0602 0.3749 

qwen3 MRR@10 0.0009*** 0.0144* 0.0001*** 0.0000*** 

qwen3 Recall@10 0.0000*** 0.3039 0.8345 0.4785 

qwen3 MRR@15 0.0007*** 0.0056** 0.0001*** 0.0000*** 

qwen3 Recall@15 0.0000*** 0.1867 0.0451* 0.0011** 

qwen3 MRR@20 0.0005*** 0.0029** 0.0000*** 0.0000*** 

qwen3 Recall@20 0.0000*** 0.0405* 0.0003*** 0.0006*** 
Note: Values represent p-values. Asterisks denote the statistical significance level of the performance difference between the proposed and baseline models: * 
indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Absence of asterisks indicates no statistical significance (p ≥ 0.05). 

These performance gains are statistically validated in Table 

4. The significance tests confirm that the improvements are

robust and not due to random chance. Specifically, the Ours-

gemma3-4b variant demonstrates highly significant 
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superiority (p < 0.001) against almost all baselines, 

particularly in MRR@5 and MRR@10. This indicates that the 

model is exceptionally reliable in ranking relevant items at the 

very top of the list. While Ours-llama3-8b and Ours-qwen3-4b 

show significant improvements against weaker baselines (e.g., 

Popularity, BERT4Rec), their statistical advantage narrows 

against stronger baselines like SASRec at higher K values 

(e.g., MRR@20), suggesting that while they improve recall, 

their ranking precision is competitive but less dominant than 

the Gemma variant. 

Among the proposed variants, Ours-gemma3-4b stands out 

as the premier model, achieving peak performance with a 

Recall@5 of 0.2585 and MRR@10 of 0.7934. The dominant 

statistical significance (p < 0.001) observed in Table 4 

correlates with its precise execution of ICL. Gemma3-4b 

effectively identifies and groups products from single 

transactions into meaningful intent clusters, directly 

translating to higher MRR scores. 

Conversely, while Ours-llama3-8b and Ours-qwen3-4b 

perform well, they exhibit instability in ICL-based multi-intent 

detection. Despite having larger parameters (in Llama's case), 

Table 4 shows less consistent significance levels. 

Qualitatively, this is observed when transactions contain 

products with weak explicit semantic alignment. For instance, 

given items like whole milk, organic eggs, and butter cookies, 

these models occasionally mapped them to broad categories 

like dairy or miscellaneous instead of specific intended 

taxonomies. This "label smoothing" effect likely dilutes the 

precision needed for higher MRR scores, explaining why their 

statistical significance is less pronounced compared to the 

Gemma variant. 

Among the baseline models, the Popularity-based model 

achieved the highest Recall scores. However, this approach 

suffers from significant limitations. As illustrated in Figure 4, 

the model is static and provides the same recommendation to 

all users based solely on item popularity, ignoring user 

preferences and context. Over time, this lack of variation and 

personalization may lead to reduced user engagement due to 

recommendation fatigue. 

In contrast, SASRec and GRU4Rec outperform 

BERT4Rec, consistent with their design focus on modeling 

user interaction sequences (sequential recommendations). 

SASRec leverages a self-attention mechanism, effectively 

capturing both short-range and long-range dependencies. 

GRU4Rec, based on an RNN architecture, excels at learning 

explicit user interaction sequences. In contrast, transformer-

based BERT4Rec suffers from a setback, as its masked 

language modeling approach, similar to BERT, is less 

effective in sequential recommendation settings due to the loss 

of explicit sequences, especially in data-constrained scenarios. 

Impact of session length: To assess the effect of the 

number of items in a transaction on recommendation quality, 

we refer to Figure 5, which shows that the majority of 

transactions consist of between 2 and 15 products. This 

distribution is used as a basis for analyzing how session length 

influences the relevance of recommendations generated by 

each model. 

As illustrated in Figure 6, the proposed framework 

consistently outperforms all baseline models across various 

session lengths (2, 5, 8, 10, and 15 items), for both Recall@20 

and MRR@20 metrics. This performance advantage 

highlights the strength of LLMs and the ICL approach in 

understanding user intent, even in very short sessions. 

Specifically, variant llama3-8b excels in short sessions due 

to its ability to generalize and capture purchase patterns from 

minimal input. Meanwhile, gemma3-4b and qwen3-4b 

demonstrate more stable performance in longer sessions, 

indicating their adaptability to more complex contextual 

information. 

Figure 4. Average results of the popularity-based approach 

over 30 runs 

Figure 5. Distribution of transaction sizes (range 2-15) 
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Figure 6. Impact of session length on recommendation relevance across models. (Left): Recall@20, (Right): MRR@20 

Among the baseline models, Popularity shows relatively 

high Recall but low MRR, indicating that while popular 

products are frequently chosen, they are not always ranked in 

positions that reflect personal relevance. GRU4Rec and 

SASRec, both sequential models, show steady and improved 

performance as session length increases, reflecting their 

strength in leveraging user interaction history.  

Overall, while longer sessions provide additional context 

that can benefit most models, the proposed framework remains 

superior, even in short-session scenarios, demonstrating an 

ability to generate context-aware and relevant 

recommendations under limited information. 

Ablation study: To evaluate whether each component of 

the propose framework contributes significantly to the 

performance of the recommender system, we conducted a 

series of ablation studies. This experimental approach involves 

modifying or removing specific parts of the model architecture 

to observe their individual impact on performance. The 

primary objective is to verify that each component integrated 

into the proposed framework provides meaningful 

contributions to the overall results. Table 5 summarizes the 

results. 

Table 5. Ablation study results on proposed framework 

components 

Model Recall@20 MRR@20 

Intent Detection Removed 

without intent detection 0.1380 0.1136 

Favorability Rate Removed 

Variant gemma3-4b (no 

favorability) 
0.1732 0.2447 

Variant llama3-8b (no favorability) 0.1502 0.2219 

Variant qwen3-4b (no favorability) 0.1902 0.3572 

Mean Pooling Embedding 

Variant gemma3-4b + mean pooling 0.1715 0.4940 

Variant llama3-8b + mean pooling 0.1001 0.3476 

Variant qwen3-4b + mean pooling 0.1056 0.2040 
Note: Bold values indicate the best performance in each experimental block. 

Removing the intent detection stage causes the most 

substantial decline in performance, with Recall@20 and 

MRR@20 dropping by more than 50% relative to the full 

model. This degradation occurs not only because the intent 

module is removed, but also because its absence alters the 

semantic structure of the input representation. Without intent 

grouping, all items in a transaction are merged into a single 

undifferentiated sequence, causing: (a) Loss of multi-intent 

structure, items associated with different underlying user goals 

are treated as belonging to the same intent. (b) Weaker 

embedding quality, the aggregated representation becomes 

noisier, as unrelated item signals collapse into a single vector. 

(c) Reduced alignment with LLM reasoning, since the

downstream encoder expects structured intent groups,

removing them breaks the intended information flow. Thus,

the observed performance drop is a combined effect of

removing intent detection and the resulting disruption in input

organization.

Removing the preference scoring module results in a 40–

50% decrease in accuracy. This decrease stems from the loss 

of relative preference signals arising from the order in which 

items are added to the shopping cart. Without this module, the 

framework can be falling about (a) All items are treated 

uniformly, (b) The influence of dominant intentions is not 

emphasized, and (c) the model cannot infer which sub-

intentions are most likely to drive transactions. Therefore, the 

performance decrease is directly due to the removal of the 

scoring mechanism, which plays a crucial role in weighting 

intentions based on user behavior. 

Replacing max pooling with mean pooling also leads to a 

notable drop in Recall (up to 50%). This occurs because mean 

pooling dilutes dominant behavioral signals by averaging 

them with irrelevant or low-importance items. Max pooling, in 

contrast, preserves the strongest activation dimensions that 

often correspond to high-salience items within an intent 

cluster. 

Interestingly, the decline in MRR is smaller, suggesting that 

while fewer relevant items are retrieved overall, the model is 

still able to rank the most representative items reasonably well. 

This indicates that mean pooling primarily affects breadth of 

retrieval, whereas ranking fidelity remains partially intact. 

4. CONCLUSIONS

This study introduces a novel recommendation system 

framework based on LLMs to address the challenges of multi-

intent behavior within user transaction sessions. By integrating 

Deep Learning in Context (ICL) for intent mapping, a 

preference estimation mechanism through liking assessment, 

and an optimized embedding aggregation strategy, the 

proposed architecture effectively captures semantic and 

functional relationships between items. Experimental 
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evaluations show that the framework consistently outperforms 

baseline models across various session length configurations 

and remains robust even in short-session scenarios. Further 

ablation studies verify that each component, particularly the 

intent detection, liking ratings, and max-pooling strategies, 

contributes significantly to performance. 

Despite these promising results, several limitations require 

further investigation. First, the baseline models used in 

previous studies (e.g., SASRec and GRU4Rec) are primarily 

ID-based rather than text-based, requiring modifications to 

their embedding layers to accommodate textual 

representations. This modification may contribute to the 

performance degradation observed in some baseline models. 

Second, Transformer-based methods and LLM inference 

require substantial computational resources, including high 

memory capacity and careful management of disk-based 

processing to avoid memory exhaustion issues. 

Furthermore, our current framework has only been 

evaluated on the Instacart dataset. Therefore, assessing its 

generalizability across multiple sequential recommendation 

datasets remains an important direction for future research. 

Another opportunity for improvement lies in exploring the 

diversity of recommendations to ensure that users not only 

receive suggestions that align with their preferences but also 

benefit from unintentional exposure to new items. 
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