
Enhancing Sequential Recommendation with Multi-Intent Detection and Preference Scoring

from Implicit Transactions

Andy Maulana Yusuf , Adiwijaya* , Agung Toto Wibowo , Z. K. A. Baizal

School of Computing, Telkom University, Bandung 40257, Indonesia

Corresponding Author Email: adiwijaya@telkomuniversity.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301202 ABSTRACT

Received: 12 August 2025

Revised: 14 November 2025

Accepted: 29 November 2025

Available online: 31 December 2025

In general, recommendation systems assume that each transaction made by a user reflects a

single purchase intent (mono-intent). However, in reality, a transaction may contain several

underlying intentions, such as routine shopping, consumption for specific purposes, or

household needs, which cannot be effectively captured by a mono-intent model. Previous

studies have proposed multi-intent approaches such as topic modeling, transformer-based,

and clustering techniques. However, these methods assume that each intent has the same

weight, especially when products are consumed simultaneously and do not have explicit

labels that correlate between products, thereby reducing context understanding and

personalization capabilities. Based on this gap, we propose a framework for implicit multi-

intent detection in shopping transactions using the extensive knowledge of Large Language

Models (LLMs) through the In-Context Learning (ICL) prompting technique. As for the

preference assessment mechanism, we use the Position-Based Grouping (PBG) method to

estimate user preferences based on the order of items added to the cart. The results of our

experiments on the Instacart dataset show that our proposal is capable of producing a

significant performance improvement compared to existing sequential recommendation

systems, where our best model is able to increase Recall by up to 122% and MRR by up to

217%, indicating that it is more effective in capturing user preference trends for specific

intentions in the purchase sequence. This work is available at

https://huggingface.co/recommender-system/mindfull.

Keywords:

sequential recommendation, multi-intent

detection, In-Context Learning, preference

scoring, Position-Based Grouping, semantic

similarity, Instacart dataset, Large

Language Model

1. INTRODUCTION

E-commerce purchases reflect multiple needs in a single

transaction. For example, a user may purchase milk and eggs

for daily needs, stationery for work, and snacks for family

entertainment, all in one shopping cart. This demonstrates the

phenomenon of multi-intent transactions [1, 2].

Looking at current studies on recommendation systems,

most still operate based on the assumption that one transaction

corresponds to one intent (mono-intent) [3, 4]. This

assumption simplifies the complexity of user behavior,

resulting in recommendations that are irrelevant to user needs

[4, 5], as shown in Figure 1. Seeing this weakness, recent

research has begun to develop a multi-intent approach [6-9].

Several studies have proposed multi-intent models [9-11],

including those that identify product subgroups within a

transaction or apply topic models [10], transformers [11], and

clustering techniques to distinguish user intent [9]. However,

these methods still consider the weight of each user intent to

be equal, especially when products are consumed

simultaneously and do not have explicit labels [11].

The latest models in recommendation systems have adopted

transformer-based architectures [11] that have strong natural

language understanding capabilities. Although previous

studies have shown limitations, transformer-based methods

with the emergence of Large Language Models (LLMs) are

beginning to offer new capabilities, including classification

through hint-based inference, which promises to overcome

multi-intent challenges, despite high computational demands.

Some of the inference techniques with LLMs include (1) Zero-

shot Learning [12], which allows the model to perform

classification without seeing specific examples from previous

tasks, but rather relies on general knowledge acquired during

pre-training. (2) Few-shot Learning [13] improves task-

specific understanding by including several examples in a

single command. (3) In-Context Learning (ICL) [14] presents

a series of examples in a single command without requiring

fine-tuning, allowing the model to make predictions on target

inputs directly.

Seeing the opportunity of LLM-based methods to address

multi-intent problems, we propose a new approach that utilizes

ICL-based inference prompting and introduces a mechanism

to assess the intensity of user preferences for each detected

intent. In general, the main contributions of our research are as

follows:

a. An ICL-based multi-intent detection method that

eliminates the need for explicit labels.

b. Implicit transaction data from purchase sequences as

indicators of user interest.

c. A Position-Based Grouping (PBG)-based preference

Ingénierie des Systèmes d’Information
Vol. 30, No. 12, December, 2025, pp. 3093-3102

Journal homepage: http://iieta.org/journals/isi

3093

https://orcid.org/0000-0001-7712-5221
https://orcid.org/0000-0002-3518-7587
https://orcid.org/0000-0003-2434-2518
https://orcid.org/0000-0003-0795-9559
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301202&domain=pdf

scoring mechanism to identify dominant intentions.

d. Improved recommendation relevance that takes into

account context diversity [15] and the strength of user

preferences (intention interpretation) within a single

transaction session.

Figure 1. Example of a multi-intent problem
Note: The top represents the case expected by conventional recommendation models, while the bottom depicts a real-world case where user needs are diverse.

Figure 2. Architecture of the proposed framework
Note: The components highlighted in green represent our novel contributions.

3094

2. PROPOSED METHOD

To implement the proposed method, our approach is applied

within a user transaction session framework, where each

transaction 𝑇 is represented as a sequence of products

[𝑝1, 𝑝2, . . . , 𝑝𝑛] ordered by the time each item 𝑝𝑖 was added to

the basket. This sequence is assumed to reflect the user's

implicit preference level toward each product. The overall

architecture of the proposed model is illustrated in Figure 2.

Table 1. List of notation

Notation Description

𝑇
List of products in a user transaction 𝑇 =

 [𝑝1, 𝑝2, . . . , 𝑝𝑛]
𝑝𝑖 The i-th product in the transaction

𝐺
Set of predicted intent groups 𝐺 =

 {(𝑃1, 𝑙1), . . . , (𝑃𝑘 , 𝑙𝑘)}

𝑃𝑗
Subset of products belonging to the j-th

intent group

𝑙𝑗 Intent label for the product group 𝑃𝑗

𝑠(𝑝𝑖)
Base score of product 𝑝𝑖 based on its

position in the basket

𝛼 Positional score decay coefficient (e.g., 0.1)

𝛽(𝐺𝑗)
Bonus score for intent group 𝐺𝑗 based on

consecutive product pairs

𝛾
Bonus coefficient for sequential product

pairs (e.g., 0.1)

𝑆(𝐺𝑗) Total score for intent group 𝐺𝑗

𝑓(𝐺𝑗)
Favorability rate, or the user’s preference

level for intent group 𝐺𝑗

𝑆
Set of sequential product pairs in intent

group 𝐺𝑗

𝜙(𝑥)
Embedding function for converting text

into semantic vectors

cos(𝜙(𝑎), 𝜙(𝑏))
Cosine similarity between two text

embeddings

The primary task is to detect groups of latent purchase

intents 𝐺 underlying the transaction, represented as

(𝑃1, 𝑙1), . . . , (𝑃𝑘 , 𝑙𝑘) where 𝑃𝑗 ⊆ 𝑇 and 𝑙𝑗 is the intent label

assigned to the product subset 𝑃𝑗 . In addition to intent

detection, the system is designed to compute the user's

preference level 𝑓(𝐺𝑗) for each intent group 𝐺𝑗, using a score-

based ranking mechanism derived from item ordering. A

summary of notations used is provided in Table 1.

2.1 ICL for multi-intent detection

The multi-intent detection component in this study

leverages ICL with a Large Language Model (LLM) to infer

latent intent structures within a transaction. In this approach,

the LLM is provided with a set of example pairs consisting of

products 𝑝𝑖 and their corresponding categories 𝑐𝑖 in the form

of a prompt which serve as contextual demonstrations for the

model. After receiving these examples, the model is instructed

to cluster the products 𝑃𝑗 in the target transaction into multiple

intent groups 𝑙𝑗. The output is formally defined in Eq. (1).

𝐺 = (𝑃1, 𝑙1), (𝑃2, 𝑙2), . . . , (𝑃𝑘 , 𝑙𝑘) (1)

The proposed steps for utilizing ICL in multi-intent

detection are illustrated in Figure 3.

The ICL prompt is designed with two main components,

namely:

(a) Context Examples, these consist of k product–category

pairs (𝑝𝑖 , 𝑐𝑖) that guide the LLM in understanding semantic

and functional relationships between products. In our

implementation, we use 5-8 examples per prompt, selected

from diverse aisles to maximize category coverage. Examples

are sampled using a semantic similarity filter, ensuring that

products included in the prompt remain representative of user

shopping behaviors. Increasing the number of examples tends

to improve intent coherence but also increases inference

latency. Conversely, fewer examples may yield unstable or

inconsistent grouping.

(b) Target Transaction, this component contains the list of

products 𝑃𝑗 from the user’s transaction to be assigned into

intent groups 𝑙𝑗. The model is explicitly instructed to generate

up to n intents (where n ≤ 5) to maintain interpretability and

avoid excessive fragmentation. An illustration of the prompt

structure is shown in Algorithm 1.

Figure 3. Flow design for multi-intent detection using ICL

3095

Algorithm 1. Example of an ICL prompt used for multi-intent

detection

Products - Categories

- Banana - Fresh Fruits

- Whole Milk - Dairy

- Cheddar Cheese - Cheese

Transaction:

["Banana", "Whole Milk", "Cheddar Cheese", "Notebook"]

Task: Group the products in the transaction into up to 5 purchase

intents.

Return in the format: {products: [...], intent: "..."}

Since LLMs generate responses in free-text form, additional

post-processing steps are required to ensure structural

consistency and compatibility with subsequent modules.

These steps include:

a. Extracting product groups and intent labels, each LLM-

generated cluster is identified and mapped to a

standardized format, ensuring uniform labeling across

transactions.

b. Preserving product order, the original order of items, as

added to the user's cart, is maintained. This is critical for

computing the preference score in the PBG module.

c. Reconstructing the output format, the cleaned and

structured results are reformatted according to Eq. (1),

ensuring consistent input for downstream components.

2.2 Preference scoring with PBG

Once the intent groups G have been identified, the next step

is to measure the degree of dominance of each intent within a

transaction, denoted as S(Gj) and f(Gj). This process leverages

the order in which products are added to the basket as a signal

of implicit user preference.

PBG is the proposed approach to quantify user preference

for a given intent within a transaction, based on the relative

position of each product when it was added to the cart [16].

The method assumes that the earlier a product is added, the

more likely it reflects a dominant or favored intent.

The preference scoring process consists of the following

steps:

2.2.1 Base product score based on position

Each product in a transaction is assigned a base score 𝑠(𝑝𝑖),

calculated linearly based on its position (Eq. (2)).

𝑠(𝑝𝑖) = 1.0 − 𝛼(𝑖 − 1) (2)

where, 𝛼 = 0.1 Products added earlier in the basket receive

higher scores, indicating stronger interest.

Example: If the basket sequence is (1) Banana, (2) Whole

Milk, (3) Cheddar Cheese, (4) Notebook, then the base scores

are 𝑠(𝑝𝑖) = [1.0,0.9,0.8,0.7].

2.2.2 Bonus for Consecutive Products within an Intent Group

If two or more products within the same intent group 𝐺𝑗

appear consecutively in the transaction, a bonus score is added

(Eq. (3)).

𝛽(𝐺𝑗) = 𝛾 ⋅ |𝑆| (3)

where, 𝑆 is the number of consecutive product pairs within 𝐺𝑗,

and 𝛾 = 0.1.

Example: After applying intent prediction with ICL, the

resulting groups are, (1) Fresh Fruits – Banana, (2) Dairy

Products – Whole Milk + Cheddar Cheese, (3) Stationery –

Notebook.

The intent group Dairy Products qualifies for the bonus

since its products appear consecutively. Thus, the bonus is

reflected in the final scores as 𝛽(𝐺𝑗) = [(1.0 + 0.0), (0.9 +

0.8 + 0.1), (0.7 + 0.0)].

2.2.3 Total intent score

The total score for each intent group is computed by

summing the base scores of all products within the group and

adding the bonus score if applicable (Eq. (4)).

𝑆(𝐺𝑗) = ∑ 𝑠𝑝∈𝑃𝑗
(𝑝) + 𝛽(𝐺𝑗) (4)

Example: After including the consecutive-item bonus, the

total intent score becomes S(Gj) = [1.0+1.8+0.7] = 3.5.

2.2.4 Normalization into favorability rate

To assess the dominance of one intent over others within the

same transaction, each total intent score is normalized (Eq.

(5)).

𝑓(𝐺𝑗) =
𝑆(𝐺𝑗)

∑ 𝑆𝑘
𝑚=1 (𝐺𝑚)

(5)

The value of 𝑓(𝐺𝑗) ∈ [0,1] represents the user’s preference

level for intent Gj. The sum of all 𝑓(𝐺𝑗) values in a transaction

equals 1.0.

Example: After obtaining the total intent scores,

normalization is applied to compute the favorability rates

𝑓(𝐺𝑗):

𝑓(Fresh) =
1.0

3.5
 = 0.286

𝑓(Dairy) =
1.8

3.5
 = 0.514

𝑓(Stationery) =
0.7

3.5
 = 0.200

By leveraging the Favorability Rate, the system can

generate a composition of recommendations derived from

diverse user intentions and rank the Top-K recommendations

based on the weight of the most dominant intent. This results

in increased contextual relevance, increased diversity in

recommendations, and improved interpretability.

2.3 Similarity-based recommendation

After obtaining the favorability rates, the next stage

involves generating recommendations. This begins with

transforming the item embeddings ϕ(x) for each product in

the intent group. If an intent contains more than one product,

their embeddings are concatenated using max pooling to form

a single representation.

Next, the number of recommendation candidates allocated

to each intent is determined proportionally based on its

favorability score relative to the total Top-K size. For example,

in a Top-10 recommendation setting, if the Dairy Products

intent has a favorability score of 0.5, it will be allocated 5

recommendation slots.

To generate the final recommendations, we utilize a vector

database (ChromaDB (https://www.trychroma.com/)) in

combination with cosine similarity to retrieve candidate items

3096

that semantically align with the detected intents. Cosine

similarity is employed for its effectiveness in measuring the

similarity between two objects cos (ϕ(a), ϕ(b)) , the

effectiveness of measuring the similarity between two objects,

such as "Bread" and "Rice" which are the "staple food" group

will be separated by "Coffee" which is a "drink", by

considering the direction of the vector representation, not just

the magnitude [17].

3. EXPERIMENTS

In this study, a systematic preparation phase was conducted

prior to the experimental stage to ensure the validity and

reliability of the results. The preparatory steps covered several

key aspects as outlined below.

3.1 Objectives

The experiments conducted using our framework in this

study aim to achieve the following goals.

a. To evaluate how effectively LLMs can infer users’

favorability toward items based on their needs within a

transaction, and how this affects sequential

recommendation outcomes.

b. To understand the impact of LLMs and the ICL scheme

in detecting diverse user needs (multi-intent) within a

single transaction session.

3.2 Dataset

The dataset used in this study is the Instacart Online

Grocery Shopping Dataset 2017

(https://www.kaggle.com/competitions/basket-

analysis/overview), which contains historical online shopping

data from 206,209 users. In total, there are 3,421,083 shopping

transactions (orders), covering 49,688 unique products. Each

product is classified into one of 134 subcategories (aisles),

which are further grouped into 21 main categories

(departments) [18]. Every user has a chronological sequence

of transactions, including timestamps and inter-order intervals.

A summary of the dataset is presented in Table 2.

Table 2. Summary of the Instacart 2017 dataset

Component Count Description

Users 206,209
Each user has a sequence of

transactions with timestamps.

Orders 3,421,083
Includes prior, train, and test

orders.

Products 49,688
Unique products with names and

IDs.

Aisles

(Subcategories)
134

Product subcategories such as

fresh vegetables, candy

chocolate, etc.

Departments

(Categories)
21

Main product categories such as

produce, dairy eggs, beverages,

etc.

To ensure the dataset's suitability for our experiments,

several pre-processing steps were applied:

a. Session construction for each user based on the

chronological order of transactions.

b. Filtering of users and products based on a minimum

number of interactions (e.g., ≥ 5).

c. Tokenization of product names to enable sequential input

representation for the LLM.

d. Dataset partitioning into training, validation, and test sets

using a chronological split method, where early data is

used for training and the most recent data is reserved for

next-product prediction evaluation.

3.3 Models used

This experiment compares the proposed framework

utilizing LLM with classical baseline models for the sequential

recommendation task. The evaluated models are grouped into

two categories as follows:

3.3.1 Large language model as model for extract multi-intent

from transaction

The primary models used for multi-intent detection in this

experiment consist of three recent LLMs:

a. LLaMA 3, a language model from Meta AI, designed

based on an auto-regressive transformer architecture.

b. Qwen 3, an Alibaba open-source LLM, optimized for

both efficiency and performance in natural language

understanding and generation tasks.

c. Gemma 3, a lightweight model from Google, designed

for high efficiency and easy deployment, particularly

suited for recommendation and sequential processing

tasks.

These models were selected due to their strong capabilities

in extracting information and understanding context for

predictions via ICL, as well as their open-source availability

and compatibility with our hardware requirements [19].

3.3.2 Baseline model for sequential recommendation

To ensure a fair and comprehensive evaluation, we also

implemented the following baseline models:

a. Popularity-Based: Recommends products based on

overall purchase frequency.

b. GRU4Rec: A recurrent neural network (GRU-based)

model effective for session-based recommendation tasks.

c. SASRec: A self-attention-based model that explicitly

models item sequences.

d. BERT4Rec: A transformer-based model that leverages

bidirectional context for item sequence modeling.

These baseline models were chosen due to their robust

performance and popularity in the sequential recommendation

domain. However, a significant limitation of most of these

models is their reliance on item ID representations, i.e.,

numeric IDs, for recommendations without leveraging the rich

semantics of item attributes. To address this, we modify these

baseline models to allow the use of item attributes by

introducing a mapping mechanism from item IDs to their

corresponding attribute vectors [20].

3.4 Evaluation protocol and metrics

The experiments were conducted using a leave-one-out

evaluation approach, which involves the following steps:

a. For each user, the most recent purchase session is treated

as the ground truth.

b. All items not previously purchased by the user are

considered as negative candidates.

c. The model is tasked with predicting the next item(s)

based on the user’s preceding session history.

To assess prediction performance, two standard evaluation

metrics commonly used in recommender systems are

employed: Recall@K and MRR@K. The values of K tested in

3097

this study are 5, 10, 15, and 20, in accordance with established

practices in session-based recommendation experiments.

3.5 Implementation detail

The experiments were implemented in Python using the

Hugging Face Transformers library for Large Language

Model (LLM) integration. Tokenization was performed on

either product IDs or product names within each purchase

session.

Several key hyperparameters were used consistently across

all models. The maximum user interaction history length was

set to max_len = 50. For semantic product representation, a

combined text-based encoder, all-MiniLM-L6-v2, was used as

the embedding_model. Item embeddings were aggregated

using max_pooling. The batch size during training was set to

128, while evaluation was performed with a batch size of 1.

The loss function used was BCEWithLogitsLoss(), suitable

for multi-label prediction scenarios. Model performance was

evaluated using two primary metrics: Recall@K and MRR@K,

with K values varied across [5, 10, 15, 20]. All models were

trained for 50 epochs, as specified by training_epochs = 50.

Parameter optimization was performed using the Adam

optimizer with a learning rate of 0.001, denoted as Adam (lr

= 0.001). All experiments were executed on a 12 GB NVIDIA

GPU (RTX 4070 Super).

3.6 Experimental results

Overall performance. As presented in Table 3, the

proposed framework consistently outperforms the classical

baseline models in almost all evaluation metrics. Recall@K

measures how many relevant items are successfully retrieved

in the Top-K list of recommended items, where a higher score

indicates better coverage of user preferences. Meanwhile,

MRR@K evaluates the ranking position of the first relevant

item in the Top-K list; a higher score indicates that the relevant

item appears earlier in the recommendation list. The

improvements are quite significant, with the framework

achieving up to +122.56% improvement in Recall and

+217.30% improvement in MRR compared to the best

baseline model. This highlights the framework's ability to

capture diverse user needs (multi-intent) and semantic

representations more effectively than traditional sequence-

based models such as GRU4Rec or SASRec.

Table 3. Comparison of recommender system performance

Model Recall@5 Recall@10 Recall@15 Recall@20 MRR@5 MRR@10 MRR@15 MRR@20

Popularity 0.1358 0.1618 0.1693 0.1693 0.2150 0.2283 0.2298 0.2293

GRU4Rec 0.0554 0.0802 0.0938 0.1233 0.2295 0.2402 0.2432 0.2472

SASRec 0.0854 0.0890 0.1089 0.1203 0.2121 0.2733 0.2752 0.2761

BERT4Rec 0.0485 0.0723 0.0872 0.1046 0.1983 0.2127 0.2152 0.2193

Ours-gemma3-4b 0.2585 0.2786 0.3103 0.3080 0.7282 0.7934 0.6931 0.6538

Ours-llama3-8b 0.2165 0.2415 0.2913 0.3768 0.4029 0.3652 0.4351 0.4680

Ours-qwen3-4b 0.1238 0.2071 0.2171 0.2704 0.2331 0.2818 0.2756 0.2769

Improvement (%) +90.35% +72.19% +83.28% +122.56% +217.30% +190.30% +151.85% +136.80%
Note: Bold values indicate the best overall performance, while underlined values denote the best among baseline models.

Table 4. Statistical significance (p-values) across metrics

Model Metric Popularity Bert4Rec GRU4Rec SASRec

gemma3 MRR@5 0.0000*** 0.0000*** 0.0000*** 0.0004***

gemma3 Recall@5 0.0000*** 0.0000*** 0.0000*** 0.0000***

gemma3 MRR@10 0.0000*** 0.0000*** 0.0001*** 0.0138*

gemma3 Recall@10 0.0000*** 0.0000*** 0.0000*** 0.0006***

gemma3 MRR@15 0.0001*** 0.0000*** 0.0010** 0.1098

gemma3 Recall@15 0.0000*** 0.0000*** 0.0001*** 0.0133*

gemma3 MRR@20 0.0001*** 0.0000*** 0.0024** 0.1858

gemma3 Recall@20 0.0001*** 0.0005*** 0.1569 0.0874

llama3 MRR@5 0.0766 0.0093** 0.3322 0.408

llama3 Recall@5 0.0000*** 0.0000*** 0.0017** 0.0626

llama3 MRR@10 0.0156* 0.0013** 0.062 0.9219

llama3 Recall@10 0.0000*** 0.0007*** 0.0152* 0.2002

llama3 MRR@15 0.071 0.0098** 0.3142 0.3774

llama3 Recall@15 0.0000*** 0.0246* 0.1476 0.8336

llama3 MRR@20 0.1201 0.0299* 0.5761 0.2845

llama3 Recall@20 0.0000*** 0.356 0.2455 0.3758

qwen3 MRR@5 0.0170* 0.1151 0.0020** 0.0000***

qwen3 Recall@5 0.0000*** 0.0056** 0.0602 0.3749

qwen3 MRR@10 0.0009*** 0.0144* 0.0001*** 0.0000***

qwen3 Recall@10 0.0000*** 0.3039 0.8345 0.4785

qwen3 MRR@15 0.0007*** 0.0056** 0.0001*** 0.0000***

qwen3 Recall@15 0.0000*** 0.1867 0.0451* 0.0011**

qwen3 MRR@20 0.0005*** 0.0029** 0.0000*** 0.0000***

qwen3 Recall@20 0.0000*** 0.0405* 0.0003*** 0.0006***
Note: Values represent p-values. Asterisks denote the statistical significance level of the performance difference between the proposed and baseline models: *
indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. Absence of asterisks indicates no statistical significance (p ≥ 0.05).

These performance gains are statistically validated in Table

4. The significance tests confirm that the improvements are

robust and not due to random chance. Specifically, the Ours-

gemma3-4b variant demonstrates highly significant

3098

superiority (p < 0.001) against almost all baselines,

particularly in MRR@5 and MRR@10. This indicates that the

model is exceptionally reliable in ranking relevant items at the

very top of the list. While Ours-llama3-8b and Ours-qwen3-4b

show significant improvements against weaker baselines (e.g.,

Popularity, BERT4Rec), their statistical advantage narrows

against stronger baselines like SASRec at higher K values

(e.g., MRR@20), suggesting that while they improve recall,

their ranking precision is competitive but less dominant than

the Gemma variant.

Among the proposed variants, Ours-gemma3-4b stands out

as the premier model, achieving peak performance with a

Recall@5 of 0.2585 and MRR@10 of 0.7934. The dominant

statistical significance (p < 0.001) observed in Table 4

correlates with its precise execution of ICL. Gemma3-4b

effectively identifies and groups products from single

transactions into meaningful intent clusters, directly

translating to higher MRR scores.

Conversely, while Ours-llama3-8b and Ours-qwen3-4b

perform well, they exhibit instability in ICL-based multi-intent

detection. Despite having larger parameters (in Llama's case),

Table 4 shows less consistent significance levels.

Qualitatively, this is observed when transactions contain

products with weak explicit semantic alignment. For instance,

given items like whole milk, organic eggs, and butter cookies,

these models occasionally mapped them to broad categories

like dairy or miscellaneous instead of specific intended

taxonomies. This "label smoothing" effect likely dilutes the

precision needed for higher MRR scores, explaining why their

statistical significance is less pronounced compared to the

Gemma variant.

Among the baseline models, the Popularity-based model

achieved the highest Recall scores. However, this approach

suffers from significant limitations. As illustrated in Figure 4,

the model is static and provides the same recommendation to

all users based solely on item popularity, ignoring user

preferences and context. Over time, this lack of variation and

personalization may lead to reduced user engagement due to

recommendation fatigue.

In contrast, SASRec and GRU4Rec outperform

BERT4Rec, consistent with their design focus on modeling

user interaction sequences (sequential recommendations).

SASRec leverages a self-attention mechanism, effectively

capturing both short-range and long-range dependencies.

GRU4Rec, based on an RNN architecture, excels at learning

explicit user interaction sequences. In contrast, transformer-

based BERT4Rec suffers from a setback, as its masked

language modeling approach, similar to BERT, is less

effective in sequential recommendation settings due to the loss

of explicit sequences, especially in data-constrained scenarios.

Impact of session length: To assess the effect of the

number of items in a transaction on recommendation quality,

we refer to Figure 5, which shows that the majority of

transactions consist of between 2 and 15 products. This

distribution is used as a basis for analyzing how session length

influences the relevance of recommendations generated by

each model.

As illustrated in Figure 6, the proposed framework

consistently outperforms all baseline models across various

session lengths (2, 5, 8, 10, and 15 items), for both Recall@20

and MRR@20 metrics. This performance advantage

highlights the strength of LLMs and the ICL approach in

understanding user intent, even in very short sessions.

Specifically, variant llama3-8b excels in short sessions due

to its ability to generalize and capture purchase patterns from

minimal input. Meanwhile, gemma3-4b and qwen3-4b

demonstrate more stable performance in longer sessions,

indicating their adaptability to more complex contextual

information.

Figure 4. Average results of the popularity-based approach

over 30 runs

Figure 5. Distribution of transaction sizes (range 2-15)

3099

Figure 6. Impact of session length on recommendation relevance across models. (Left): Recall@20, (Right): MRR@20

Among the baseline models, Popularity shows relatively

high Recall but low MRR, indicating that while popular

products are frequently chosen, they are not always ranked in

positions that reflect personal relevance. GRU4Rec and

SASRec, both sequential models, show steady and improved

performance as session length increases, reflecting their

strength in leveraging user interaction history.

Overall, while longer sessions provide additional context

that can benefit most models, the proposed framework remains

superior, even in short-session scenarios, demonstrating an

ability to generate context-aware and relevant

recommendations under limited information.

Ablation study: To evaluate whether each component of

the propose framework contributes significantly to the

performance of the recommender system, we conducted a

series of ablation studies. This experimental approach involves

modifying or removing specific parts of the model architecture

to observe their individual impact on performance. The

primary objective is to verify that each component integrated

into the proposed framework provides meaningful

contributions to the overall results. Table 5 summarizes the

results.

Table 5. Ablation study results on proposed framework

components

Model Recall@20 MRR@20

Intent Detection Removed

without intent detection 0.1380 0.1136

Favorability Rate Removed

Variant gemma3-4b (no

favorability)
0.1732 0.2447

Variant llama3-8b (no favorability) 0.1502 0.2219

Variant qwen3-4b (no favorability) 0.1902 0.3572

Mean Pooling Embedding

Variant gemma3-4b + mean pooling 0.1715 0.4940

Variant llama3-8b + mean pooling 0.1001 0.3476

Variant qwen3-4b + mean pooling 0.1056 0.2040
Note: Bold values indicate the best performance in each experimental block.

Removing the intent detection stage causes the most

substantial decline in performance, with Recall@20 and

MRR@20 dropping by more than 50% relative to the full

model. This degradation occurs not only because the intent

module is removed, but also because its absence alters the

semantic structure of the input representation. Without intent

grouping, all items in a transaction are merged into a single

undifferentiated sequence, causing: (a) Loss of multi-intent

structure, items associated with different underlying user goals

are treated as belonging to the same intent. (b) Weaker

embedding quality, the aggregated representation becomes

noisier, as unrelated item signals collapse into a single vector.

(c) Reduced alignment with LLM reasoning, since the

downstream encoder expects structured intent groups,

removing them breaks the intended information flow. Thus,

the observed performance drop is a combined effect of

removing intent detection and the resulting disruption in input

organization.

Removing the preference scoring module results in a 40–

50% decrease in accuracy. This decrease stems from the loss

of relative preference signals arising from the order in which

items are added to the shopping cart. Without this module, the

framework can be falling about (a) All items are treated

uniformly, (b) The influence of dominant intentions is not

emphasized, and (c) the model cannot infer which sub-

intentions are most likely to drive transactions. Therefore, the

performance decrease is directly due to the removal of the

scoring mechanism, which plays a crucial role in weighting

intentions based on user behavior.

Replacing max pooling with mean pooling also leads to a

notable drop in Recall (up to 50%). This occurs because mean

pooling dilutes dominant behavioral signals by averaging

them with irrelevant or low-importance items. Max pooling, in

contrast, preserves the strongest activation dimensions that

often correspond to high-salience items within an intent

cluster.

Interestingly, the decline in MRR is smaller, suggesting that

while fewer relevant items are retrieved overall, the model is

still able to rank the most representative items reasonably well.

This indicates that mean pooling primarily affects breadth of

retrieval, whereas ranking fidelity remains partially intact.

4. CONCLUSIONS

This study introduces a novel recommendation system

framework based on LLMs to address the challenges of multi-

intent behavior within user transaction sessions. By integrating

Deep Learning in Context (ICL) for intent mapping, a

preference estimation mechanism through liking assessment,

and an optimized embedding aggregation strategy, the

proposed architecture effectively captures semantic and

functional relationships between items. Experimental

3100

evaluations show that the framework consistently outperforms

baseline models across various session length configurations

and remains robust even in short-session scenarios. Further

ablation studies verify that each component, particularly the

intent detection, liking ratings, and max-pooling strategies,

contributes significantly to performance.

Despite these promising results, several limitations require

further investigation. First, the baseline models used in

previous studies (e.g., SASRec and GRU4Rec) are primarily

ID-based rather than text-based, requiring modifications to

their embedding layers to accommodate textual

representations. This modification may contribute to the

performance degradation observed in some baseline models.

Second, Transformer-based methods and LLM inference

require substantial computational resources, including high

memory capacity and careful management of disk-based

processing to avoid memory exhaustion issues.

Furthermore, our current framework has only been

evaluated on the Instacart dataset. Therefore, assessing its

generalizability across multiple sequential recommendation

datasets remains an important direction for future research.

Another opportunity for improvement lies in exploring the

diversity of recommendations to ensure that users not only

receive suggestions that align with their preferences but also

benefit from unintentional exposure to new items.

ACKNOWLEDGMENT

This research was funded by the Directorate of Research,

Technology, and Community Service (DRTPM) under the

Dissertation Doctor Research Scheme, with contract number

125/C3/DT.05.00/PL/2025. We would like to express our

gratitude for their support, which made this research possible.

REFERENCES

[1] Najmani, K., Sael, N., Zellou, A. (2022). A systematic

literature review on recommender systems for MOOCs.

Ingenierie des Systemes d'Information, 27(6): 895-902.

https://doi.org/10.18280/isi.270605

[2] Chen, C.W., Lamere, P., Schedl, M., Zamani, H. (2018).

Recsys challenge 2018: Automatic music playlist

continuation. In Proceedings of the 12th ACM

Conference on Recommender Systems, pp. 527-528.

https://doi.org/10.1145/3240323.3240342

[3] Hidasi, B., Karatzoglou, A. (2018). Recurrent neural

networks with top-k gains for session-based

recommendations. In Proceedings of the 27th ACM

International Conference on Information and Knowledge

Management, pp. 843-852.

https://doi.org/10.1145/3269206.3271761

[4] Pan, Z., Cai, F., Chen, W., Chen, H., De Rijke, M.

(2020). Star graph neural networks for session-based

recommendation. In Proceedings of the 29th ACM

International Conference on Information & Knowledge

Management, pp. 1195-1204.

https://doi.org/10.1145/3340531.3412014

[5] Yuan, J., Song, Z., Sun, M., Wang, X., Zhao, W.X.

(2021). Dual sparse attention network for session-based

recommendation. Proceedings of the AAAI Conference

on Artificial Intelligence, 35(5): 4635-4643.

https://doi.org/10.1609/aaai.v35i5.16593

[6] Liu, Z., Li, X., Fan, Z., Guo, S., Achan, K., Yu, P.S.

(2020). Basket recommendation with multi-intent

translation graph neural network. In 2020 IEEE

International Conference on Big Data (Big Data),

Atlanta, GA, USA, pp. 728-737.

https://doi.org/10.1109/BigData50022.2020.9377917

[7] Bhattacharya, B., Burhanuddin, I., Sancheti, A., Satya,

K. (2017). Intent-aware contextual recommendation

system. In 2017 IEEE International Conference on Data

Mining Workshops (ICDMW), New Orleans, LA, USA,

pp. 1-8. https://doi.org/10.1109/ICDMW.2017.8

[8] Zhu, N., Cao, J., Lu, X., Xiong, H. (2021). Learning a

hierarchical intent model for next-item recommendation.

ACM Transactions on Information Systems (TOIS),

40(2): 1-28. https://doi.org/10.1145/3473972

[9] Liu, Y., Zhu, S., Xia, J., Ma, Y., Ma, J., Liu, X., Yu, S.,

Zhang, K., Zhong, W. (2024). End-to-end learnable

clustering for intent learning in recommendation.

Advances in Neural Information Processing Systems, 37:

5913-5949. https://doi.org/10.52202/079017-0192

[10] Choi, M., Kim, H.Y., Cho, H., Lee, J. (2024). Multi-

intent-aware session-based recommendation. In

Proceedings of the 47th International ACM SIGIR

Conference on Research and Development in

Information Retrieval, pp. 2532-2536.

https://doi.org/10.1145/3626772.3657928

[11] Zou, D., Wei, W., Zhu, F., Xu, C., Zhang, T., Huo, C.

(2024). Knowledge enhanced multi-intent transformer

network for recommendation. In Companion

Proceedings of the ACM Web Conference 2024, pp. 1-9.

https://doi.org/10.1145/3589335.3648296

[12] Ding, H., Ma, Y., Deoras, A., Wang, Y., Wang, H.

(2021). Zero-shot recommender systems. arXiv preprint

arXiv:2105.08318.

https://doi.org/10.48550/arXiv.2105.08318

[13] Wang, Z. (2024). Empowering few-shot recommender

systems with large language models-enhanced

representations. IEEE Access, 12: 29144-29153.

https://doi.org/10.1109/ACCESS.2024.3368027

[14] Bao, K., Yan, M., Zhang, Y., Zhang, J., Wang, W., Feng,

F., He, X. (2024). Real-Time personalization for LLM-

based recommendation with customized In-Context

Learning. arXiv preprint arXiv:2410.23136.

https://doi.org/10.48550/arXiv.2410.23136

[15] Omar, H.K., Frikha, M., Jumaa, A.K. (2024). PyTorch

and TensorFlow performance evaluation in big data

recommendation system. Ingenierie des Systemes

d'Information, 29(4): 1357-1364.

https://doi.org/10.18280/isi.290411

[16] Zehlike, M., Yang, K., Stoyanovich, J. (2022). Fairness

in ranking, part I: Score-based ranking. ACM Computing

Surveys, 55(6): 1-36. https://doi.org/10.1145/3533379

[17] Shrivastava, R., Sisodia, D.S. (2019). Product

recommendations using textual similarity based learning

models. In 2019 International Conference on Computer

Communication and Informatics (ICCCI), Coimbatore,

India, pp. 1-7.

https://doi.org/10.1109/ICCCI.2019.8821893

[18] Rao, S., Zhang, L. (2021). The algorithms that make

Instacart roll: How machine learning and other tech tools

guide your groceries from store to doorstep. IEEE

Spectrum, 58(3): 36-42.

https://doi.org/10.1109/MSPEC.2021.9370062

[19] Chang, Y.P., Wang, X., Wang, J.D., Wu, Y., et al.

3101

https://doi.org/10.18280/isi.290411
https://doi.org/10.1145/3533379
https://doi.org/10.1109/ICCCI.2019.8821893
https://doi.org/10.1109/MSPEC.2021.9370062

(2024). A survey on evaluation of large language models.

ACM Transactions on Intelligent Systems and

Technology, 15(3): 1-45.

https://doi.org/10.1145/3641289

[20] Betello, F., Purificato, A., Siciliano, F., Trappolini, G.,

Bacciu, A., Tonellotto, N., Silvestri, F. (2024). A

reproducible analysis of sequential recommender

systems. IEEE Access. 13: 5762-5772.

https://doi.org/10.1109/ACCESS.2024.3522049

3102

https://doi.org/10.1145/3641289

