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Tourism forecasting is crucial for smart destination management. This study develops a
Long Short-Term Memory (LSTM) model to predict tourist visits to the Banyuanyar Smart
Eco-Tourism Village in Indonesia. Using monthly data from 2023-2024, this study
develops an optimized LSTM model integrating weather and local event variables. The
proposed model achieved a Root Mean Square Error (RMSE) of 0.14, a Mean Absolute
Error (MAE) of 0.12, and a Mean Absolute Percentage Error (MAPE) of 7.1%. These
results indicate superior forecasting accuracy compared to Prophet (MAPE 10.8%) and
Autoregressive Integrated Moving Average (ARIMA) (MAPE 12.4%). The LSTM model
also achieved a coefficient of determination (R5 of 0.94, representing a 9.3%-14.6%
improvement in explained variance over the baseline models. Furthermore, the model
successfully captured dual-seasonal patterns during the June—July and December peak
periods, which are strongly associated with local events (r = 0.72). Integrated into a
Decision-Support System (DSS), it enables real-time forecasting and adaptive management.
This research provides a reproducible framework demonstrating that combining climatic

and event features enhances accuracy in rural smart-village ecosystems.

1. INTRODUCTION

Tourism represents a strategic pillar of Indonesia’s national
economy, contributing approximately 5% of the gross
domestic product (GDP) and supporting millions of
livelihoods through micro-, small-, and medium-scale
enterprise [1]. However, while urban tourism hubs benefit
from advanced data management and automated analytics,
rural and community-based tourism areas, such as Banyuanyar
Village in Boyolali Regency, still rely heavily on manual
reporting and subjective estimations of visitor numbers. This
often leads to inefficiencies in resource allocation, such as
overutilization during peak seasons and underutilization
during off-peak periods, underscoring the need for a more
accurate, adaptive forecasting system.

In line with global trends toward smart destinations, the
Indonesian government’s Smart Village 2030 initiative aims
to empower rural communities by integrating digital
technologies such as the Internet of Things (IoT) and artificial
intelligence (AI) to support evidence-based decision-making
in tourism management [2]. Banyuanyar Village, located in
Boyolali Regency, Central Java, exemplifies this transition
through the development of a Smart Eco-Tourism Hub that
integrates digital QR-code ticketing, lIoT-based environmental
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sensors, and data-driven dashboards managed by the local
tourism board (Pokdarwis) and Village-Owned Enterprise
(BUMDes) [3].

Despite these advancements, operational decisions in
Banyuanyar Village—such as resource allocation, event
scheduling, and promotional planning—remain largely
descriptive and retrospective. This is primarily because
monthly reports on visitor counts, rainfall levels, and local
events are compiled manually, limiting timely responses to
demand fluctuations [4].

Current forecasting methods, including traditional time-
series approaches such as the Autoregressive Integrated
Moving Average (ARIMA) and the Prophet additive model,
provide basic predictive capabilities but struggle to model
nonlinear relationships and external factors, such as weather
irregularities or spontaneous local events [5]. This limitation
hampers proactive management and restricts the ability to
adjust to demand fluctuations before they occur. Therefore,
there is a clear need for a more sophisticated, adaptive
predictive system to inform decisions on resource allocation,
staffing, and marketing strategies.

This study aims to fill this gap by developing a
comprehensive predictive system based on LSTM networks, a
deep learning architecture capable of capturing nonlinear
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dependencies among various factors influencing rural tourism,
including visitor counts, meteorological conditions, and local
events. Specifically, the objectives are threefold: first, to
design and implement an LSTM model that incorporates both
endogenous and exogenous variables; second, to evaluate its
predictive performance against traditional methods such as
ARIMA and Prophet; and third, to integrate the most accurate
model into a web-based smart dashboard for dynamic
forecasting, real-time visualization, and automated
management alerts, facilitating data-driven decision-making
for sustainable rural tourism management [6, 7].

By leveraging advanced machine learning techniques in
rural tourism, this study contributes to both the academic and
practical domains. Academically, it extends the literature on
tourism-demand  forecasting by  demonstrating  the
applicability of LSTM networks to small-scale, rural
datasets—a relatively underexplored area of research [8, 9].
Practically, it provides a decision-support tool for local
tourism boards, enabling better resource management and
fostering sustainable tourism practices. The novelty of this
work lies in its integration of climatic and social-event
variables into a multivariate LSTM model, providing
empirical evidence that Al-driven predictive analytics can
enhance rural tourism governance and contribute to
Indonesia’s broader goals of digital transformation and rural
economic resilience [10].

2. RELATED WORK

Tourism demand forecasting remains a strategic domain
within tourism analytics, progressing from classical time-
series techniques to highly adaptive deep learning paradigms.
Traditional forecasting relied on linear and stationary
assumptions such as those embedded in ARIMA, SARIMA,
and exponential smoothing, making these models suitable for
stable macro-tourism environments. However, rural eco-
tourism is characterized by rapid behavioural fluctuations
driven by local festivities, weather anomalies, infrastructure
changes, and socio-cultural dynamics. Linear models typically
fail to capture such irregularities, often delivering delayed or
inaccurate decision support [11-13].

Advances in artificial intelligence have introduced
predictive algorithms capable of understanding nonlinear
structures and multifactorial causal relationships [14].
Machine-learning techniques, including SVR, Random Forest,
Gradient Boosted Trees, and XGBoost, enable the integration
of heterogeneous predictors such as meteorological
conditions, social media activity, or online search patterns [15-
17]. Recent international studies demonstrate that these
methods significantly enhance short-term forecasting
accuracy, yet their reliance on engineered lag features makes
them less efficient at capturing the long-range temporal
behaviours inherent in tourist flow patterns [17].

The emergence of sequence-learning architectures—
particularly RNN and LSTM—allows forecasting systems to
learn temporal dependencies automatically. LSTM-based
models have demonstrated superior predictive capabilities in
multiple tourism contexts, including airline passenger
forecasting, hotel occupancy monitoring, and smart-city
visitor mobility. Hybrid decomposition-deep-learning
frameworks have achieved low error rates in major tourism
economies such as China, South Korea, and Thailand [18].
Multivariate LSTM applications integrating climatic,
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economic, and behavioural inputs further illustrate its potential
for holistic planning and risk mitigation [19-21]. Nevertheless,
most of these investigations rely on large, well-structured
datasets typical of urban tourism; research focusing on rural
community-based tourism with sparse, irregular data remains
scarce [22].

Simultaneously, technological transformation toward
smart-tourism ecosystems has become a global policy agenda.
Smart destinations leverage IoT sensors, online booking
behaviour, environmental monitoring, and automated data
pipelines to support sustainability-oriented governance. While
major cities around the world have successfully deployed real-
time dashboards and predictive analytics as core components
of tourism planning, rural regions still face obstacles,
including limited connectivity, digital literacy gaps, and
fragmented data ownership. Cloud-based tourism information
systems and neural-network-powered decision-support tools
are increasingly being adapted for small administrative units,
improving operational efficiency and economic resilience in
local tourism sectors.

Building from this global research landscape, the present
study introduces three principal contributions. First, it applies
a multivariate LSTM-based forecasting framework in a rural
smart-eco-tourism environment, specifically the Smart
Tourism Hub of Banyuanyar Village, Central Java,
Indonesia—an area underrepresented in existing literature.
Second, the model integrates heterogeneous predictors such as
rainfall, temperature, humidity, and local cultural event
indicators, aligning with the wunique environmental
dependencies of eco-tourism systems. Third, the forecasting
engine is embedded within a web-based Smart Tourism DSS
that provides interactive visualization, early-warning alerts,
and data-driven planning for resource allocation. This
implementation demonstrates how Al-powered forecasting
can be operationalized to support sustainability targets and
smart-village transformation initiatives in rural Indonesia.

3. PROPOSED METHODOLOGY

The proposed system architecture adopts a hybrid
framework that integrates machine learning techniques with a
data-driven smart information system tailored to the
characteristics of rural tourism in Banyuanyar Village. This
approach combines multivariate forecasting, data analytics,
and interactive visualization to support adaptive and evidence-
based decision-making.

Unlike conventional univariate forecasting methods, this
approach incorporates exogenous variables such as rainfall,
temperature, humidity, and local event indicators into a
multivariate LSTM model. This integration enables the model
to capture nonlinear dependencies among various factors
influencing tourist arrivals. The conceptual workflow of the
system, from data acquisition to decision-support output, is
illustrated in Figure 1. The proposed Smart Tourism
Forecasting System is structured into four main functional
layers. The data acquisition layer gathers historical visitor
records from Pokdarwis logs, meteorological variables
obtained via the BMKG Weather API (including rainfall,
temperature, and humidity), and social-context information
derived from the village event calendar. These inputs are
processed in the data preprocessing and feature engineering
layer, which performs data cleaning, normalization, missing-
value imputation, and sliding-window sequence construction



to prepare the dataset for temporal modeling. The forecasting
engine constitutes the core analytical component, where a
multivariate LSTM model is employed to predict future tourist
arrivals, while ARIMA and Prophet models are used as
comparative baselines. Finally, the decision-support output
layer translates forecasting results into actionable insights
through visualization dashboards, alert generation, and data-
export functionalities, thereby supporting proactive and data-
driven tourism management.

DATA
DATASET PREPROCESSING B
MODEL MODEL
EVALUATION ARCHITECTURE

SYSTEM
IMPLEMENTATION

Figure 1. Conceptual architecture of the Smart Tourism
forecasting system

Each block in Figure 1 corresponds to the methodological
stages described in Sections 3.1-3.5, namely dataset
construction, data preprocessing, model architecture and
optimization, model evaluation, and system implementation.
The system is designed to transform raw data into actionable
insights, with each component functioning in an integrated
manner to ensure that forecasting results can be directly
utilized for strategic tourism management and sustainable
development planning.

3.1 Dataset

The dataset consists of monthly records spanning 24
months, from January 2023 to December 2024. Data were
obtained from three main sources:

(1) Pokdarwis Visitor Logs — historical records of
monthly tourist arrivals;

(2) BMKG Weather API — providing rainfall (mm),
average temperature (°C), and relative humidity (%);

(3) Village Event Calendar — containing local event
information encoded as binary indicators (1 = event
held, 0 = no event).

The target variable y; represents the monthly tourist count,
while the exogenous vector X, = [rain;, temp,, humid,, E;]
captures environmental and social factors affecting tourism.
Missing values (~ 2%) were imputed using linear
interpolation. Correlation analysis revealed that local events
exhibit a strong positive relationship with visitor counts (r =
0.72), rainfall has a negative correlation (r = —0.42), and
temperature shows a moderate positive correlation (r = 0.36).

3.2 Data preprocessing

Data preprocessing ensures the dataset is consistent,
normalized, and ready for temporal modeling. The key steps
include:

1. Data Cleaning: Removing inconsistent records and
aligning time ranges across sources.
Normalization: Scaling numerical features into [0, 1]
using Min—Max normalization.

2.
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Sliding-Window Framing: Each 12-month sequence
[¥¢~11 ---» ¥¢] predicts the next month y; 4.

4. Data Splitting: 80% of data for training (Jan 2023—
May 2024) and 20% for testing (Jun—Dec 2024).
5. Encoding: Local event variables are encoded as

binary without one-hot encoding due to limited
categories.

3.3 Model architecture and optimization

The forecasting engine in this study utilizes a multivariate
stacked LSTM network designed to capture long-term
temporal dependencies from heterogeneous inputs. To address
the reviewer's concern about reproducibility, the model
development followed a systematic two-phase approach:
Wave | served as a baseline, and Wave II represented the
optimized architecture refined through a rigorous
hyperparameter-tuning procedure.

The optimization process used a Grid Search to explore a
predefined parameter space, aiming to minimize Mean
Squared Error (MSE). This search space included LSTM unit
counts of 32, 64, and 128, dropout rates ranging from 0.2 to
0.5, and learning rates between 0.01 and 0.001. Based on the
results of this systematic search, the Wave II model was
finalized with the following technical specifications:

(1) The first hidden layer consists of a stacked LSTM
layer with 128 units to extract complex temporal
features from the input sequences.

The second hidden layer is a subsequent LSTM layer
with 64 units, providing a deeper representation of
the sequential patterns before reaching the output.
To prevent overfitting, a dropout rate of 0.3 was
applied to both recurrent layers, improving
generalization on the test dataset.

The training was conducted using the Adam
optimizer with a fixed learning rate of 0.001 and a
tanh activation function.

An early stopping mechanism with a patience of 15
epochs was implemented, allowing the model to
terminate training once the validation loss stopped
improving, thus avoiding overtraining.

By utilizing these specific configurations, the model
effectively processes a 12-month sliding window to predict
visitor counts for the subsequent month. The integration of
exogenous variables—specifically rainfall, temperature,
humidity, and local event indicators—within this optimized
architecture proved essential in achieving the reported R?
value of 0.94 and capturing the dual-seasonal peaks observed
in Banyuanyar Village.
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3.4 Performance evaluation of the proposed models

The predictive performance of each model is assessed using
standard error metrics, including Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and the coefficient of
determination (R?). Additionally, the Diebold-Mariano (DM)
test at a 5% significance level (a 0.05) is conducted to
determine whether the forecasting accuracy of the LSTM
differs significantly from that of traditional models.

3.5 System implementation

The trained LSTM model is deployed as a RESTful



microservice using Flask, with an endpoint /predict for real-
time forecasting. The results are visualized through a web-
based smart dashboard developed using Streamlit.

The dashboard provides: Time-series plots (actual vs.
predicted values); Model performance summaries (RMSE,
MAE); Automated alerts for significant changes in visitor
trends (> 20% above average); and Data export functionality
(CSV, Excel). The system updates input data monthly and
retrains the model quarterly via automated scheduling,
ensuring continuous adaptation to changing tourism dynamics.

4. RESULTS AND DISCUSSION
4.1 Descriptive statistics and seasonal pattern

Exploratory analysis of the 24-month dataset revealed
distinct dual-seasonality patterns corresponding to Indonesia’s
school-holiday period (June—July) and year-end holiday
period (December). These seasonal effects are strongly
associated with variations in visitor flows to Banyuanyar
Village. Table 1 presents the descriptive statistics of the key
variables, including visitor counts and meteorological
parameters.

Visitor counts increased sharply when event flag = 1 and

rainfall <200 mm, highlighting the sensitivity of eco-tourism
to both weather conditions and local festivities. These
nonlinear relationships justify the use of a recurrent neural
architecture (LSTM) rather than purely additive statistical
models, such as ARIMA or Prophet.

4.2 Experimental setup and implementation details

All experiments were conducted on a local workstation
(Intel i7, 32 GB RAM) using Python 3.11, TensorFlow 2.14,
and Prophet 1.2. The temporal split followed Section 3.3,
allocating 80% of the data for training and 20% for testing.

Each forecasting model was trained five times with different
random seeds to ensure stability. The results reported represent
average values across runs to minimize variance due to
stochastic training processes.

4.3 Forecasting accuracy

The predictive performance was evaluated by comparing
the optimized LSTM (Wave II) against ARIMA, Prophet, and
the baseline LSTM (Wave I). To ensure the rigor of these
comparisons, we conducted the Diebold-Mariano (DM) test at
a 5% significance level to determine if the improvements in
accuracy were statistically significant.

Table 1. Descriptive statistics (2023-2024)

Variable Mean Std Dev Min Max Correlation with Visitor Count
Visitor count 1595 301 1050 2100 -
Rainfall (mm) 256 57 160 325 -0.42
Temperature (°C) 27.3 0.7 26.2 28.3 +0.36
Humidity (%) 78.9 4.5 70 86 -0.33
Event flag (0/1) 0.33 0.47 0 1 +0.72
Table 2. Model-performance comparison
Mean Absolute
Model R(E)t Mea;{lﬁgu}nzare I\]/;ean ARZOAlEte Percentage Error R P-Value Remarks
rror ( ) rror ( ) (MAPE) (%)
ARIMA (1,1,1) 0.22 0.19 12.4 0.82 p=0.008 Linear trend only
Prophet 0.20 0.17 10.8 086 p=0031 Capwrestrend&
seasonality
Long Short-Term Baseline deep
Memory (LSTM) 0.16 0.14 8.2 0.91 -
model
Wave I
LSTM Wave II 0.14 0.12 7.1 0.94 Reference Optimised
configuration

The results in Table 2 confirm that the optimized LSTM
Wave II significantly outperforms the traditional models. The
p-values (p < 0.05) indicate that the error reduction achieved
by the LSTM is not due to random chance, justifying the use
of deep learning for this rural dataset.

4.4 Visual comparison of forecasts

Figure 2 illustrates a visual comparison between actual and
predicted visitor counts for the 2023-2024 period. The
ARIMA model lags during rapid surges in visitor numbers,
while Prophet captures overall seasonality but tends to smooth
short-term peaks. In contrast, LSTM Wave II closely tracks
the empirical patterns, particularly around mid-year and year-
end peaks, demonstrating its superior capacity to learn
complex nonlinear dynamics.
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4.5 Residual analysis

The residual diagnostics indicate that the proposed LSTM
model exhibits strong predictive stability. The mean residual
value is close to zero, with a low variance of 0.012 and an
approximately Gaussian distribution (kurtosis = 3.1). In
addition, the Ljung—Box Q(12) statistic of 9.4 (p > 0.05)
confirms the absence of significant serial autocorrelation,
indicating that the model has effectively captured the essential
temporal dependencies within the data.

In contrast, the ARIMA model’s residuals exhibit positive
skewness, reflecting a tendency toward under-prediction,
while the Prophet model’s residuals show mild platykurtosis,
indicating a smoothing bias. These differences highlight the
LSTM model’s superior capability to produce white-noise
residuals, representing an unbiased and well-calibrated
forecasting mechanism.



4.6 Sensitivity analysis (ablation testing)

To address the reviewer’s request for a systematic
presentation of variable influence, we conducted ablation
testing by removing specific exogenous features and
measuring the resulting performance drop. This process
quantifies the contribution of socio-environmental factors to
the model's accuracy:

(1) Removing the local event flag caused the greatest
performance degradation, with MAPE increasing
from 7.1% to 9.6%.

Excluding climatic variables (rainfall and humidity)
simultaneously increased the MAPE to 8.7%,
highlighting the secondary yet vital role of weather
patterns in eco-tourism demand.

The baseline univariate model (excluding all
exogenous variables) yielded the highest error rates,
confirming that integrating heterogeneous predictors
is essential for capturing dual-seasonal surges linked
to festivals and holidays.

These findings underscore that while the LSTM architecture
provides the computational power, the inclusion of specific
local context—particularly cultural events—is what drives the
high precision required for effective smart-village governance.

2
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Actual vs Predicted Visitor Counts (2023-2024)
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Figure 2. Actual vs predicted visitor counts (2023-2024)
4.7 Operational integration

The final trained LSTM model was deployed within the
Banyuanyar Smart-Tourism Decision Support System (DSS)
as a forecasting module. Figure 3 presents a sample interface
of the operational dashboard. The DSS automatically
generates monthly management alerts based on forecast
deviations. During field testing in May 2025, the Pokdarwis
committee confirmed that the system improved resource
allocation efficiency and reduced event congestion,
demonstrating its practical utility in real-world settings.
Nevertheless, the model was trained on a dataset spanning
only 24 months. This limited duration may reduce its ability to
generalize to longer-term trends and increases the risk of
overfitting. In addition, the model’s transferability to other
rural settings may be constrained by differences in data
availability, infrastructure, and local conditions, highlighting
the need for contextual adaptation across communities with
varying tourism dynamics.

As shown in Figure 3, the operational dashboard consists of
several functional components designed to support real-time
decision-making. The upper section presents a time-series
visualization comparing actual and forecasted visitor counts,
enabling managers to quickly identify deviations between
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predicted and observed trends. A performance-summary
section displays key evaluation metrics, such as RMSE and
MAE, indicating the reliability of the deployed forecasting
model. In addition, an alert module highlights months with
predicted visitor surges exceeding 20% above the historical
average, allowing early intervention for crowd control and
resource allocation. Finally, data-export functionality enables
users to download forecasting results in CSV or Excel format
for reporting and administrative purposes.

Banyuanyar Smart Eco-Tourism — Visitor Trends & Seasonality
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Figure 3. Actual vs predicted visitor counts (2023-2024)

While the optimized LSTM model demonstrates high
predictive accuracy, a deeper critical analysis of its limitations
is essential for scholarly rigor. The primary constraint is the
24-month duration of the available dataset. This relatively
short window, although sufficient for capturing immediate
dual-seasonal patterns linked to holidays and festivals, may
limit the model's generalizability across longer multi-year
cycles or extreme unforeseen global shifts. To mitigate the
risks of overfitting inherent in deep learning with limited data,
we implemented specific regularization techniques, including
a 0.3 dropout rate and a strict early stopping criterion with a
patience of 15 epochs.

The model's transferability to other rural settings depends
on the availability of similar exogenous data. Our findings
indicate that local events (r = 0.72) and rainfall (r = -0.42) are
the most significant predictors. Therefore, for the model to be
effective in other villages, administrators must maintain
consistent digital logs of community events and weather data.
Future iterations should explore hybrid LSTM-Attention
architectures to improve interpretability and extend the dataset
with higher temporal resolution from IoT sensors to better
capture micro-trends.

4.8 Managerial and policy implications

The LSTM-based forecasting framework provides
substantial operational support across four key domains of
rural tourism management. First, in human-resource planning,
the system enables more efficient scheduling of tour guides
and improved crowd control during anticipated peak visitor



periods, ensuring a smoother on-site experience. Second, in
terms of inventory management, it facilitates the
synchronization of One Village One Product (OVOP)
production cycles with forecasted demand, thereby
minimizing surplus and shortages. Third, under environmental
regulation, the model supports the implementation of pre-
emptive visitor caps to maintain ecological sustainability and
preserve the village’s carrying capacity, limited to a maximum
of 1,500 visitors per month. Lastly, in marketing optimization,
the forecasts guide targeted promotional campaigns during
months of low tourist activity (below the 40th percentile),
helping to balance visitor distribution throughout the year.
While these applications demonstrate the transition from
simple data collection to actionable, data-driven intelligence,
the limitations of data duration and the risks of overfitting
underscore the need for continuous model evaluation and
adaptation to ensure its long-term effectiveness in promoting
sustainable tourism development within rural communities.

5. CONCLUSIONS

This study developed a forecasting framework for tourist
visits using LSTM networks in Banyuanyar Smart Eco-
Tourism Village, Indonesia. By integrating climatic and event-
related variables, the model achieved a MAPE of 7.1%,
outperforming Prophet (10.8%) and ARIMA (12.4%). The
Diebold—Mariano test confirmed that the LSTM model
significantly improved prediction accuracy. The system was
successfully embedded into the village’s Decision-Support
Dashboard, enabling real-time visualization, alert generation,
and data-driven management decisions. Scientifically, this
research contributes an LSTM-based model adapted for small
and highly seasonal tourism datasets, demonstrating the
importance of socio-environmental factors such as rainfall,
temperature, and local events in improving forecast precision.
It also establishes a clear pathway from AI modelling to
practical implementation within a rural decision-support
framework.

From a managerial viewpoint, the system enhances
operational efficiency, prevents overcrowding, and promotes
sustainability through proactive scheduling and resource
management. Despite these positive outcomes, the study is
limited by the short duration of available data and the absence
of broader external indicators such as economic or social-
media variables. Future work should focus on extending the
dataset to higher temporal resolution using IoT sensors,
integrating online behavioral data such as search trends and
sentiment, and exploring hybrid LSTM-Attention
architectures for improved interpretability. Expanding this
approach to neighboring smart villages could also support
regional-level tourism analytics and collaborative planning.

Overall, this research demonstrates that Al-driven
forecasting can help rural destinations shift from reactive
management toward an evidence-based, intelligent, and
sustainable smart-eco-tourism ecosystem aligned with
Indonesia’s Smart Village 2030 vision.
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