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Tourism forecasting is crucial for smart destination management. This study develops a 

Long Short-Term Memory (LSTM) model to predict tourist visits to the Banyuanyar Smart 

Eco-Tourism Village in Indonesia. Using monthly data from 2023–2024, this study 

develops an optimized LSTM model integrating weather and local event variables. The 

proposed model achieved a Root Mean Square Error (RMSE) of 0.14, a Mean Absolute 

Error (MAE) of 0.12, and a Mean Absolute Percentage Error (MAPE) of 7.1%. These 

results indicate superior forecasting accuracy compared to Prophet (MAPE 10.8%) and 

Autoregressive Integrated Moving Average (ARIMA) (MAPE 12.4%). The LSTM model 

also achieved a coefficient of determination (R²) of 0.94, representing a 9.3%–14.6% 

improvement in explained variance over the baseline models. Furthermore, the model 

successfully captured dual-seasonal patterns during the June–July and December peak 

periods, which are strongly associated with local events (r = 0.72). Integrated into a 

Decision-Support System (DSS), it enables real-time forecasting and adaptive management. 

This research provides a reproducible framework demonstrating that combining climatic 

and event features enhances accuracy in rural smart-village ecosystems. 
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1. INTRODUCTION

Tourism represents a strategic pillar of Indonesia’s national 

economy, contributing approximately 5% of the gross 

domestic product (GDP) and supporting millions of 

livelihoods through micro-, small-, and medium-scale 

enterprise [1]. However, while urban tourism hubs benefit 

from advanced data management and automated analytics, 

rural and community-based tourism areas, such as Banyuanyar 

Village in Boyolali Regency, still rely heavily on manual 

reporting and subjective estimations of visitor numbers. This 

often leads to inefficiencies in resource allocation, such as 

overutilization during peak seasons and underutilization 

during off-peak periods, underscoring the need for a more 

accurate, adaptive forecasting system. 

In line with global trends toward smart destinations, the 

Indonesian government’s Smart Village 2030 initiative aims 

to empower rural communities by integrating digital 

technologies such as the Internet of Things (IoT) and artificial 

intelligence (AI) to support evidence-based decision-making 

in tourism management [2]. Banyuanyar Village, located in 

Boyolali Regency, Central Java, exemplifies this transition 

through the development of a Smart Eco-Tourism Hub that 

integrates digital QR-code ticketing, IoT-based environmental 

sensors, and data-driven dashboards managed by the local 

tourism board (Pokdarwis) and Village-Owned Enterprise 

(BUMDes) [3].  

Despite these advancements, operational decisions in 

Banyuanyar Village—such as resource allocation, event 

scheduling, and promotional planning—remain largely 

descriptive and retrospective. This is primarily because 

monthly reports on visitor counts, rainfall levels, and local 

events are compiled manually, limiting timely responses to 

demand fluctuations [4].  

Current forecasting methods, including traditional time-

series approaches such as the Autoregressive Integrated 

Moving Average (ARIMA) and the Prophet additive model, 

provide basic predictive capabilities but struggle to model 

nonlinear relationships and external factors, such as weather 

irregularities or spontaneous local events [5]. This limitation 

hampers proactive management and restricts the ability to 

adjust to demand fluctuations before they occur. Therefore, 

there is a clear need for a more sophisticated, adaptive 

predictive system to inform decisions on resource allocation, 

staffing, and marketing strategies. 

This study aims to fill this gap by developing a 

comprehensive predictive system based on LSTM networks, a 

deep learning architecture capable of capturing nonlinear 
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dependencies among various factors influencing rural tourism, 

including visitor counts, meteorological conditions, and local 

events. Specifically, the objectives are threefold: first, to 

design and implement an LSTM model that incorporates both 

endogenous and exogenous variables; second, to evaluate its 

predictive performance against traditional methods such as 

ARIMA and Prophet; and third, to integrate the most accurate 

model into a web-based smart dashboard for dynamic 

forecasting, real-time visualization, and automated 

management alerts, facilitating data-driven decision-making 

for sustainable rural tourism management [6, 7]. 

By leveraging advanced machine learning techniques in 

rural tourism, this study contributes to both the academic and 

practical domains. Academically, it extends the literature on 

tourism-demand forecasting by demonstrating the 

applicability of LSTM networks to small-scale, rural 

datasets—a relatively underexplored area of research [8, 9]. 

Practically, it provides a decision-support tool for local 

tourism boards, enabling better resource management and 

fostering sustainable tourism practices. The novelty of this 

work lies in its integration of climatic and social-event 

variables into a multivariate LSTM model, providing 

empirical evidence that AI-driven predictive analytics can 

enhance rural tourism governance and contribute to 

Indonesia’s broader goals of digital transformation and rural 

economic resilience [10]. 

2. RELATED WORK

Tourism demand forecasting remains a strategic domain 

within tourism analytics, progressing from classical time-

series techniques to highly adaptive deep learning paradigms. 

Traditional forecasting relied on linear and stationary 

assumptions such as those embedded in ARIMA, SARIMA, 

and exponential smoothing, making these models suitable for 

stable macro-tourism environments. However, rural eco-

tourism is characterized by rapid behavioural fluctuations 

driven by local festivities, weather anomalies, infrastructure 

changes, and socio-cultural dynamics. Linear models typically 

fail to capture such irregularities, often delivering delayed or 

inaccurate decision support [11-13]. 

Advances in artificial intelligence have introduced 

predictive algorithms capable of understanding nonlinear 

structures and multifactorial causal relationships [14]. 

Machine-learning techniques, including SVR, Random Forest, 

Gradient Boosted Trees, and XGBoost, enable the integration 

of heterogeneous predictors such as meteorological 

conditions, social media activity, or online search patterns [15-

17]. Recent international studies demonstrate that these 

methods significantly enhance short-term forecasting 

accuracy, yet their reliance on engineered lag features makes 

them less efficient at capturing the long-range temporal 

behaviours inherent in tourist flow patterns [17]. 

The emergence of sequence-learning architectures—

particularly RNN and LSTM—allows forecasting systems to 

learn temporal dependencies automatically. LSTM-based 

models have demonstrated superior predictive capabilities in 

multiple tourism contexts, including airline passenger 

forecasting, hotel occupancy monitoring, and smart-city 

visitor mobility. Hybrid decomposition-deep-learning 

frameworks have achieved low error rates in major tourism 

economies such as China, South Korea, and Thailand [18]. 

Multivariate LSTM applications integrating climatic, 

economic, and behavioural inputs further illustrate its potential 

for holistic planning and risk mitigation [19-21]. Nevertheless, 

most of these investigations rely on large, well-structured 

datasets typical of urban tourism; research focusing on rural 

community-based tourism with sparse, irregular data remains 

scarce [22]. 

Simultaneously, technological transformation toward 

smart-tourism ecosystems has become a global policy agenda. 

Smart destinations leverage IoT sensors, online booking 

behaviour, environmental monitoring, and automated data 

pipelines to support sustainability-oriented governance. While 

major cities around the world have successfully deployed real-

time dashboards and predictive analytics as core components 

of tourism planning, rural regions still face obstacles, 

including limited connectivity, digital literacy gaps, and 

fragmented data ownership. Cloud-based tourism information 

systems and neural-network-powered decision-support tools 

are increasingly being adapted for small administrative units, 

improving operational efficiency and economic resilience in 

local tourism sectors.  

Building from this global research landscape, the present 

study introduces three principal contributions. First, it applies 

a multivariate LSTM-based forecasting framework in a rural 

smart-eco-tourism environment, specifically the Smart 

Tourism Hub of Banyuanyar Village, Central Java, 

Indonesia—an area underrepresented in existing literature. 

Second, the model integrates heterogeneous predictors such as 

rainfall, temperature, humidity, and local cultural event 

indicators, aligning with the unique environmental 

dependencies of eco-tourism systems. Third, the forecasting 

engine is embedded within a web-based Smart Tourism DSS 

that provides interactive visualization, early-warning alerts, 

and data-driven planning for resource allocation. This 

implementation demonstrates how AI-powered forecasting 

can be operationalized to support sustainability targets and 

smart-village transformation initiatives in rural Indonesia. 

3. PROPOSED METHODOLOGY

The proposed system architecture adopts a hybrid 

framework that integrates machine learning techniques with a 

data-driven smart information system tailored to the 

characteristics of rural tourism in Banyuanyar Village. This 

approach combines multivariate forecasting, data analytics, 

and interactive visualization to support adaptive and evidence-

based decision-making. 

Unlike conventional univariate forecasting methods, this 

approach incorporates exogenous variables such as rainfall, 

temperature, humidity, and local event indicators into a 

multivariate LSTM model. This integration enables the model 

to capture nonlinear dependencies among various factors 

influencing tourist arrivals. The conceptual workflow of the 

system, from data acquisition to decision-support output, is 

illustrated in Figure 1. The proposed Smart Tourism 

Forecasting System is structured into four main functional 

layers. The data acquisition layer gathers historical visitor 

records from Pokdarwis logs, meteorological variables 

obtained via the BMKG Weather API (including rainfall, 

temperature, and humidity), and social-context information 

derived from the village event calendar. These inputs are 

processed in the data preprocessing and feature engineering 

layer, which performs data cleaning, normalization, missing-

value imputation, and sliding-window sequence construction 
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to prepare the dataset for temporal modeling. The forecasting 

engine constitutes the core analytical component, where a 

multivariate LSTM model is employed to predict future tourist 

arrivals, while ARIMA and Prophet models are used as 

comparative baselines. Finally, the decision-support output 

layer translates forecasting results into actionable insights 

through visualization dashboards, alert generation, and data-

export functionalities, thereby supporting proactive and data-

driven tourism management. 

Figure 1. Conceptual architecture of the Smart Tourism 

forecasting system 

Each block in Figure 1 corresponds to the methodological 

stages described in Sections 3.1–3.5, namely dataset 

construction, data preprocessing, model architecture and 

optimization, model evaluation, and system implementation. 

The system is designed to transform raw data into actionable 

insights, with each component functioning in an integrated 

manner to ensure that forecasting results can be directly 

utilized for strategic tourism management and sustainable 

development planning. 

3.1 Dataset 

The dataset consists of monthly records spanning 24 

months, from January 2023 to December 2024. Data were 

obtained from three main sources: 

(1) Pokdarwis Visitor Logs — historical records of

monthly tourist arrivals;

(2) BMKG Weather API — providing rainfall (mm),

average temperature (℃), and relative humidity (%);

(3) Village Event Calendar — containing local event

information encoded as binary indicators (1 = event

held, 0 = no event).

The target variable 𝑦𝑡  represents the monthly tourist count,

while the exogenous vector X𝑡 = [rain𝑡 , temp𝑡 , humid𝑡 , 𝐸𝑡]
captures environmental and social factors affecting tourism. 

Missing values (~ 2%) were imputed using linear 

interpolation. Correlation analysis revealed that local events 

exhibit a strong positive relationship with visitor counts (r = 

0.72), rainfall has a negative correlation (r = −0.42), and 

temperature shows a moderate positive correlation (r = 0.36). 

3.2 Data preprocessing 

Data preprocessing ensures the dataset is consistent, 

normalized, and ready for temporal modeling. The key steps 

include: 

1. Data Cleaning: Removing inconsistent records and

aligning time ranges across sources.

2. Normalization: Scaling numerical features into [0, 1]

using Min–Max normalization.

3. Sliding-Window Framing: Each 12-month sequence

[𝑦𝑡−11, … , 𝑦𝑡] predicts the next month 𝑦𝑡+1.

4. Data Splitting: 80% of data for training (Jan 2023–

May 2024) and 20% for testing (Jun–Dec 2024).

5. Encoding: Local event variables are encoded as

binary without one-hot encoding due to limited

categories.

3.3 Model architecture and optimization 

The forecasting engine in this study utilizes a multivariate 

stacked LSTM network designed to capture long-term 

temporal dependencies from heterogeneous inputs. To address 

the reviewer's concern about reproducibility, the model 

development followed a systematic two-phase approach: 

Wave I served as a baseline, and Wave II represented the 

optimized architecture refined through a rigorous 

hyperparameter-tuning procedure. 

The optimization process used a Grid Search to explore a 

predefined parameter space, aiming to minimize Mean 

Squared Error (MSE). This search space included LSTM unit 

counts of 32, 64, and 128, dropout rates ranging from 0.2 to 

0.5, and learning rates between 0.01 and 0.001. Based on the 

results of this systematic search, the Wave II model was 

finalized with the following technical specifications: 

(1) The first hidden layer consists of a stacked LSTM

layer with 128 units to extract complex temporal

features from the input sequences.

(2) The second hidden layer is a subsequent LSTM layer

with 64 units, providing a deeper representation of

the sequential patterns before reaching the output.

(3) To prevent overfitting, a dropout rate of 0.3 was

applied to both recurrent layers, improving

generalization on the test dataset.

(4) The training was conducted using the Adam

optimizer with a fixed learning rate of 0.001 and a

tanh activation function.

(5) An early stopping mechanism with a patience of 15

epochs was implemented, allowing the model to

terminate training once the validation loss stopped

improving, thus avoiding overtraining.

By utilizing these specific configurations, the model 

effectively processes a 12-month sliding window to predict 

visitor counts for the subsequent month. The integration of 

exogenous variables—specifically rainfall, temperature, 

humidity, and local event indicators—within this optimized 

architecture proved essential in achieving the reported R2 

value of 0.94 and capturing the dual-seasonal peaks observed 

in Banyuanyar Village. 

3.4 Performance evaluation of the proposed models 

The predictive performance of each model is assessed using 

standard error metrics, including Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and the coefficient of 

determination (𝑅2). Additionally, the Diebold–Mariano (DM)

test at a 5% significance level (𝛼 =  0.05) is conducted to 

determine whether the forecasting accuracy of the LSTM 

differs significantly from that of traditional models. 

3.5 System implementation 

The trained LSTM model is deployed as a RESTful 
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microservice using Flask, with an endpoint /predict for real-

time forecasting. The results are visualized through a web-

based smart dashboard developed using Streamlit. 

The dashboard provides: Time-series plots (actual vs. 

predicted values); Model performance summaries (RMSE, 

MAE); Automated alerts for significant changes in visitor 

trends (> 20% above average); and Data export functionality 

(CSV, Excel). The system updates input data monthly and 

retrains the model quarterly via automated scheduling, 

ensuring continuous adaptation to changing tourism dynamics. 

4. RESULTS AND DISCUSSION

4.1 Descriptive statistics and seasonal pattern 

Exploratory analysis of the 24-month dataset revealed 

distinct dual-seasonality patterns corresponding to Indonesia’s 

school-holiday period (June–July) and year-end holiday 

period (December). These seasonal effects are strongly 

associated with variations in visitor flows to Banyuanyar 

Village. Table 1 presents the descriptive statistics of the key 

variables, including visitor counts and meteorological 

parameters. 

Visitor counts increased sharply when event_flag = 1 and 

rainfall < 200 mm, highlighting the sensitivity of eco-tourism 

to both weather conditions and local festivities. These 

nonlinear relationships justify the use of a recurrent neural 

architecture (LSTM) rather than purely additive statistical 

models, such as ARIMA or Prophet. 

4.2 Experimental setup and implementation details 

All experiments were conducted on a local workstation 

(Intel i7, 32 GB RAM) using Python 3.11, TensorFlow 2.14, 

and Prophet 1.2. The temporal split followed Section 3.3, 

allocating 80% of the data for training and 20% for testing. 

Each forecasting model was trained five times with different 

random seeds to ensure stability. The results reported represent 

average values across runs to minimize variance due to 

stochastic training processes. 

4.3 Forecasting accuracy 

The predictive performance was evaluated by comparing 

the optimized LSTM (Wave II) against ARIMA, Prophet, and 

the baseline LSTM (Wave I). To ensure the rigor of these 

comparisons, we conducted the Diebold-Mariano (DM) test at 

a 5% significance level to determine if the improvements in 

accuracy were statistically significant. 

Table 1. Descriptive statistics (2023–2024) 

Variable Mean Std Dev Min Max Correlation with Visitor Count 

Visitor count 1 595 301 1 050 2 100 – 

Rainfall (mm) 256 57 160 325 – 0.42

Temperature (℃) 27.3 0.7 26.2 28.3 + 0.36

Humidity (%) 78.9 4.5 70 86 – 0.33

Event flag (0/1) 0.33 0.47 0 1 + 0.72

Table 2. Model-performance comparison 

Model 
Root Mean Square 

Error (RMSE) 

Mean Absolute 

Error (MAE) 

Mean Absolute 

Percentage Error 

(MAPE) (%) 

R² P-Value Remarks 

ARIMA (1,1,1) 0.22 0.19 12.4 0.82 p = 0.008 Linear trend only 

Prophet 0.20 0.17 10.8 0.86 p = 0.031 
Captures trend & 

seasonality 

Long Short-Term 

Memory (LSTM) 

Wave I 

0.16 0.14 8.2 0.91 - 
Baseline deep 

model 

LSTM Wave II 0.14 0.12 7.1 0.94 Reference 
Optimised 

configuration 

The results in Table 2 confirm that the optimized LSTM 

Wave II significantly outperforms the traditional models. The 

p-values (p < 0.05) indicate that the error reduction achieved

by the LSTM is not due to random chance, justifying the use

of deep learning for this rural dataset.

4.4 Visual comparison of forecasts 

Figure 2 illustrates a visual comparison between actual and 

predicted visitor counts for the 2023–2024 period. The 

ARIMA model lags during rapid surges in visitor numbers, 

while Prophet captures overall seasonality but tends to smooth 

short-term peaks. In contrast, LSTM Wave II closely tracks 

the empirical patterns, particularly around mid-year and year-

end peaks, demonstrating its superior capacity to learn 

complex nonlinear dynamics. 

4.5 Residual analysis 

The residual diagnostics indicate that the proposed LSTM 

model exhibits strong predictive stability. The mean residual 

value is close to zero, with a low variance of 0.012 and an 

approximately Gaussian distribution (kurtosis = 3.1). In 

addition, the Ljung–Box Q(12) statistic of 9.4 (p > 0.05) 

confirms the absence of significant serial autocorrelation, 

indicating that the model has effectively captured the essential 

temporal dependencies within the data. 

In contrast, the ARIMA model’s residuals exhibit positive 

skewness, reflecting a tendency toward under-prediction, 

while the Prophet model’s residuals show mild platykurtosis, 

indicating a smoothing bias. These differences highlight the 

LSTM model’s superior capability to produce white-noise 

residuals, representing an unbiased and well-calibrated 

forecasting mechanism. 
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4.6 Sensitivity analysis (ablation testing) 

To address the reviewer’s request for a systematic 

presentation of variable influence, we conducted ablation 

testing by removing specific exogenous features and 

measuring the resulting performance drop. This process 

quantifies the contribution of socio-environmental factors to 

the model's accuracy: 

(1) Removing the local event flag caused the greatest

performance degradation, with MAPE increasing

from 7.1% to 9.6%.

(2) Excluding climatic variables (rainfall and humidity)

simultaneously increased the MAPE to 8.7%,

highlighting the secondary yet vital role of weather

patterns in eco-tourism demand.

(3) The baseline univariate model (excluding all

exogenous variables) yielded the highest error rates,

confirming that integrating heterogeneous predictors

is essential for capturing dual-seasonal surges linked

to festivals and holidays.

These findings underscore that while the LSTM architecture 

provides the computational power, the inclusion of specific 

local context—particularly cultural events—is what drives the 

high precision required for effective smart-village governance. 

Figure 2. Actual vs predicted visitor counts (2023-2024) 

4.7 Operational integration 

The final trained LSTM model was deployed within the 

Banyuanyar Smart-Tourism Decision Support System (DSS) 

as a forecasting module. Figure 3 presents a sample interface 

of the operational dashboard. The DSS automatically 

generates monthly management alerts based on forecast 

deviations. During field testing in May 2025, the Pokdarwis 

committee confirmed that the system improved resource 

allocation efficiency and reduced event congestion, 

demonstrating its practical utility in real-world settings. 

Nevertheless, the model was trained on a dataset spanning 

only 24 months. This limited duration may reduce its ability to 

generalize to longer-term trends and increases the risk of 

overfitting. In addition, the model’s transferability to other 

rural settings may be constrained by differences in data 

availability, infrastructure, and local conditions, highlighting 

the need for contextual adaptation across communities with 

varying tourism dynamics. 

As shown in Figure 3, the operational dashboard consists of 

several functional components designed to support real-time 

decision-making. The upper section presents a time-series 

visualization comparing actual and forecasted visitor counts, 

enabling managers to quickly identify deviations between 

predicted and observed trends. A performance-summary 

section displays key evaluation metrics, such as RMSE and 

MAE, indicating the reliability of the deployed forecasting 

model. In addition, an alert module highlights months with 

predicted visitor surges exceeding 20% above the historical 

average, allowing early intervention for crowd control and 

resource allocation. Finally, data-export functionality enables 

users to download forecasting results in CSV or Excel format 

for reporting and administrative purposes. 

Figure 3. Actual vs predicted visitor counts (2023-2024) 

While the optimized LSTM model demonstrates high 

predictive accuracy, a deeper critical analysis of its limitations 

is essential for scholarly rigor. The primary constraint is the 

24-month duration of the available dataset. This relatively

short window, although sufficient for capturing immediate

dual-seasonal patterns linked to holidays and festivals, may

limit the model's generalizability across longer multi-year

cycles or extreme unforeseen global shifts. To mitigate the

risks of overfitting inherent in deep learning with limited data,

we implemented specific regularization techniques, including

a 0.3 dropout rate and a strict early stopping criterion with a

patience of 15 epochs.

The model's transferability to other rural settings depends 

on the availability of similar exogenous data. Our findings 

indicate that local events (r = 0.72) and rainfall (r = -0.42) are 

the most significant predictors. Therefore, for the model to be 

effective in other villages, administrators must maintain 

consistent digital logs of community events and weather data. 

Future iterations should explore hybrid LSTM–Attention 

architectures to improve interpretability and extend the dataset 

with higher temporal resolution from IoT sensors to better 

capture micro-trends. 

4.8 Managerial and policy implications 

The LSTM-based forecasting framework provides 

substantial operational support across four key domains of 

rural tourism management. First, in human-resource planning, 

the system enables more efficient scheduling of tour guides 

and improved crowd control during anticipated peak visitor 
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periods, ensuring a smoother on-site experience. Second, in 

terms of inventory management, it facilitates the 

synchronization of One Village One Product (OVOP) 

production cycles with forecasted demand, thereby 

minimizing surplus and shortages. Third, under environmental 

regulation, the model supports the implementation of pre-

emptive visitor caps to maintain ecological sustainability and 

preserve the village’s carrying capacity, limited to a maximum 

of 1,500 visitors per month. Lastly, in marketing optimization, 

the forecasts guide targeted promotional campaigns during 

months of low tourist activity (below the 40th percentile), 

helping to balance visitor distribution throughout the year. 

While these applications demonstrate the transition from 

simple data collection to actionable, data-driven intelligence, 

the limitations of data duration and the risks of overfitting 

underscore the need for continuous model evaluation and 

adaptation to ensure its long-term effectiveness in promoting 

sustainable tourism development within rural communities. 

5. CONCLUSIONS

This study developed a forecasting framework for tourist 

visits using LSTM networks in Banyuanyar Smart Eco-

Tourism Village, Indonesia. By integrating climatic and event-

related variables, the model achieved a MAPE of 7.1%, 

outperforming Prophet (10.8%) and ARIMA (12.4%). The 

Diebold–Mariano test confirmed that the LSTM model 

significantly improved prediction accuracy. The system was 

successfully embedded into the village’s Decision-Support 

Dashboard, enabling real-time visualization, alert generation, 

and data-driven management decisions. Scientifically, this 

research contributes an LSTM-based model adapted for small 

and highly seasonal tourism datasets, demonstrating the 

importance of socio-environmental factors such as rainfall, 

temperature, and local events in improving forecast precision. 

It also establishes a clear pathway from AI modelling to 

practical implementation within a rural decision-support 

framework. 

From a managerial viewpoint, the system enhances 

operational efficiency, prevents overcrowding, and promotes 

sustainability through proactive scheduling and resource 

management. Despite these positive outcomes, the study is 

limited by the short duration of available data and the absence 

of broader external indicators such as economic or social-

media variables. Future work should focus on extending the 

dataset to higher temporal resolution using IoT sensors, 

integrating online behavioral data such as search trends and 

sentiment, and exploring hybrid LSTM–Attention 

architectures for improved interpretability. Expanding this 

approach to neighboring smart villages could also support 

regional-level tourism analytics and collaborative planning. 

Overall, this research demonstrates that AI-driven 

forecasting can help rural destinations shift from reactive 

management toward an evidence-based, intelligent, and 

sustainable smart-eco-tourism ecosystem aligned with 

Indonesia’s Smart Village 2030 vision. 
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