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Sign language is a component element of communication between the mute and hearing-
impaired communities that are indispensable to them, but it is mostly closed-off to the 
general population. To step into that gap, the current paper outlines the design of a hybrid 
Vision Transformer-Convolutional Neural Network system, officially focused on Indian 
Sign Language (ISL) gesture recognition, strong dynamic gestures, and face muscles. The 
edited database is 1 100 video samples in 22 different classes, which were recorded in the 
heterogeneous environmental conditions, to provide the robustness. The empirical findings 
indicate that the hybrid model has an exemplary training accuracy of 100, validation 
accuracy of 88.6, and a test accuracy of 82.14 and thus outperforms the state-of-the-art that 
provides accuracy of 88.7 to 92% of training accuracy. Proposed system thus achieves 
enhanced accuracy by 7-11% in case of continuous sign gestures. Through this, inclusivity 
and accessibility to the deaf community are thereby enhanced and future possibilities 
involve data enhancement as well as the integration of NLP-based text-to-speech synthesis. 
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1. INTRODUCTION

Sign language is a highly dense, visually based interaction,
whose effectiveness is predetermined by a highly organized 
system of hand gestures in space and the concomitant use of 
musculature of the face, eye movements, articulatory gestures, 
and other non-manual signatures, which gives the speech of 
sign language an artistic shift of power [1]. There have arisen 
all over the world three hundred or so different sign systems, 
each of them diversifying iteratively in the specificity of the 
geographical region, the texture of the culture, and the subtlety 
of the language. Similar to the idea that is presented in spoken 
tongues of lingering dialects and accent, sign languages 
display substantial deviation when it comes to gesture 
construction, sequential correctness, idiomatic expression, and 
non-manual semiotic adornment. Especially, it is worth 
mentioning that Indian Sign Language (ISL) takes a prominent 
place in the South Asian linguistic landscape, which is the 
symbol of diversity and epistemic richness that defines the 
spectrum of sign languages [2]. Whereas sign languages can 
be coarsely categorized into the group of static gestures, where 
the hand shapes are created by one or both hands, and the 
group of dynamic gestures, where the temporal movement of 
the hands and the variations of the expression are added, the 
overwhelming part of the extant research has either 
overemphasized the former classification or oversimplified the 
current systems of gestures. This chauvinism poses a great gap 
in full identification of the broader spectrum of sign language 
that embraces facial expression and other more elaborate body 
languages [3]. Furthermore, the dominating paradigms are 

based on the recognition of transient manual movements or on 
those that are written in a speech form, thus overlooking the 
complete repertoire of sign-language communication and 
limiting the effectiveness of human-computer interaction 
systems that have been developed to correspond with the deaf 
community. There is an urgent need for powerful sign 
language recognition systems that go beyond the rigid gestures 
and written texts. We aim to develop a state-of-the-art solution 
that could understand dynamic sign language sufficiently well 
to include subtle facial expressions, among others, with the 
employment of state-of-the-art deep-learning algorithms. 
Precisely, this paper aims to: 

1. Propose and combine a Vision Transformer (ViT) to
enhance the Convolutional Neural Network (CNN) ability to 
identify sign language in video footage. 

2. Use a sample of naturally deaf and trained Sign Language 
speakers so as to incubate the intricacy of sign languages as 
they are truly utilized. 

3. A gap in the existing work of research will be resolved
by focusing on dynamic, continuous signs with non-manual 
attributes, thus going beyond the static signs and crude 
gestures that have been prevalent in the literature. 

The contribution to this paper is introducing a video-based 
sign-language recognition model which uses Vision 
Transformer to process dynamic signs, facial expressions of 
nuanced appearances and other non-manual societal readings. 
In this way, we get the field to a stage where it is not 
constrained by its own limitations, where more inclusive and 
effective solutions to human-computer interaction are possible 
that realize the richness and the complexity of the sign-
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language interaction. After this introduction, Section 1 is the 
review of related work in sign-language recognition. Section-
2 explains the suggested methodology and elaborates on how 
it will address the challenges mentioned. Section 3 describes 
the architecture of Vision Transformer and its video 
recognition application in detail. Section 4 describes and 
discusses the results of the experiment. Finally, Section 5 
wraps up this research providing a summary of the main 
findings and future research avenues. 
 
 
2. RELATED WORK 

 
Early manual gesture recognition has been based on 

compositional and model-based methods. As an example, 
Heap and Hogg [4] built up a hand model that is deformable 
and in 3D, and considered the Principal Component Analysis 
(PCA) to align a dynamically scaled template to observed 
images, allowing tracking motion of a hand in real-time. 
Although this method served as a great base to have precision 
in tracking, it was unable to manage scale, rotation, and 
occlusions. Complementary compositional practices also 
employed principles of perceptual grouping in describing hand 
postures by combinations of hand parts but these too had 
pragmatic obstacles as complex scenes were dealt with. The 
later works dealt with the static recognition of gestures using 
contours and special hardware. Lee and You [5] made use of 
the wrist bands to segment the region of the hand and used an 
algorithm to match and classify. They were however sensitive 
in terms of background color and not robust in problematic 
environments. Chevtchenko et al. [6] also used a multi-
objective evolutionary algorithm for the features sets and 
dimensions optimization, using Gabor filters and Zernike 
moments to reach accuracies up to 97.63% in 36 static gestures 
in a position. Huang et al. [7] target interpreting sign language 
into text or speech using a novel 3D CNN method 
automatically extracting discriminative spatial-temporal 
features from raw video streams.  Deep learning models 
triggered the adoption of more advanced architectures as the 
transition was made to video-based recognition and dynamic 
gestures. Vision Transformers (ViT) was an attractive 
alternative to Conventional Neural Networks (CNNs), and 
sometimes they outperformed them in precision and speed. On 
the same note, Lai and Yanushkevich [8] used CNNs together 
with recurrent neural networks (RNNs) to use both the spatial 
and time data, and they obtained the highest accuracy of 
85.46% with depth and skeleton data. Kamruzzaman [9] used 
ResNet50 and MobileNetV2 to do Arabic sign language 
achieving a combined accuracy of 98.2. Based on data 
augmentation mechanisms through CNNs, Zakariah et al. [10] 
and Zhang et al. [11] boosted the American sign language 
recognition and reached an accuracy of 99.52%.  These 
strategies were further applied by other scientists to other sign 
languages and methods of feature extraction. Recently, De 
Coster et al. [12] incorporated OpenPose with a multi-head 
attention mechanism to get 74.7 percent accuracy on Flemish 
Sign Language. Vaswani et al. [13] designed a CNN that was 
used to identify hand gestures in small scale image begging 
mind hand gestures on a simple background, which achieved 
an accuracy of 97.1%. Shenoy et al. [14] performed skin color 
segmentation and grid-based feature extraction to identify the 
ISL gestures which were using k-nearest neighbors (KNN) and 
hidden Markov models (HMM) with remarkable success. 
Katoch et al. [15] used a Bag of Visual Words (BOVW) model 

that was coupled with CNNs and SVMs to recognize ISL 
letters and digits whereas Rokade and Jadav [16] used a 
combination of skin color-based segmentation with artificial 
neural networks (ANN) and SVMs to obtain robust 
fingerspelling recognition in ISL. Nanivadekar and Kulkarni 
[17] created an ISL database and proposed a hand tracking and 
segmentation based on three step algorithm. Badhe and 
Kulkarni [18] implemented an ISL gesture translator using 
hand tracking with combinational algorithm and recognition 
done using template matching. Badhe and Kulkarni [19] have 
proposed handcrafted feature extraction method for SL 
recognition where complex grammatical rules are captured 
with 98% accuracy.  In addition to hand gestures, Kashika and 
Venkatapur [20] used deep learning as a way to detect objects 
on the panoramic video frame and Tran et al. [21] studied face 
recognition relying on SVM, but another team [22] proposed 
a new method of detecting objects. Sreemathy et al. [23] 
showed that deep learning could be used as an ICT method of 
identifying the signs of the ISL in English. Das et al [24] 
combined the handcrafted features and CNN-extracted 
features to counter the problem concerning the same hand 
orientations and different viewing angles. Sharma et al. [25] 
emphasized that transfer learning is efficient in the context of 
sign language recognition, and Liu et al. [26] explored the 
detection transformers which also has a feature extraction 
pyramid network in order to improve recognition 
performance. Al Essa et al. [27] proposed an approach of multi 
connect associative memory for recognition of American 
Signs. This approach solved a problem of misclassification of 
static signs which are too similar in gestures. 

This changing arena of methodologies between early hand-
modeling methodologies and more recent transformer-based 
architectures is indicative of a dynamic research domain. The 
limits of hand gesture and sign language recognition are 
constantly being extended with the integration of Vision 
Transformers, more advanced CNNs, and hybrid models, as 
more focus is placed on more advanced and sophisticated 
solutions. It is hoped that these developments can enhance the 
precision, flexibility, and applicability of sign language 
systems, which will favor more inclusive communication, and 
broaden the possibility of human-computer reaction under a 
variety and dynamic setting. 

 
 

3. METHODOLOGY 
 
Conventional CNN-based models which have historically 

been used in image and video tasks have good local feature 
extraction properties. Nevertheless, they in many cases use 
sequential feature summation (e.g., through RNNs or 3D 
convolutions) to do so, which can be costly and not always 
optimal to establish long-range correlations in videos. 
Whereas purely transformer-based schemes (ViT) can capture 
both the global and temporal context and find local differences, 
they can ignore small variations in local context that can 
distinguish similar gestures. 

Through the incorporation of CNN layers into the ViT 
structure we have been able to maintain the local pattern 
recognition capabilities of CNNs whilst still exploiting the 
ViT capability to capture multi-frame complex temporal and 
contextual interactions. This synergy does enhance 
recognition and is especially accurate with complex ISL 
gestures which are based on both fine-grained hand 
configurations and complex temporal patterns. 
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CNN-Only Models: 
CNN-based methods in pure form might be too restricted in 

terms of ability to realize the temporal global context unless 
other components, including RNNs or 3D convolutions, are 
added to them. In our initial experiments, we found that, 
because of the rich spatial feature retrieval capabilities of 3D 
CNNs, their performance in interpreting long sequences of 
behaviors was lower than that of the ViT-based counterparts. 

RNN or LSTM-Based Models: 
Though RNNs or LSTMs are capable of modeling temporal 

sequences, they can be more susceptible to such problems as 
vanishing gradients across long videos and even less efficient 
than attention-based models. Initial experiments with CNN-
LSTM hybrids provided decent performance at the price of 
increased training time and reduced modeling capabilities of 
complicated time-dependent dependencies. 

Pure ViT Models: 
Pure ViT models are superior in modeling long-range 

dependencies. Nevertheless, they do not have any local feature 
extraction element and hence do not pick up finer details such 
as minute movements of the fingers or micro-expressions on 
faces. Experiments on our part showed that the general fine-
grained recognition accuracy was enhanced with the addition 
of CNN layers, especially in harsh backgrounds. 

Altogether, the hybrid ViT-CNN solution provides a middle 
ground solution based on global time modeling (transformers) 
and local space feature extraction (CNNs). Empirical studies 
demonstrate that this hybrid architecture outperforms purely 
CNN-based or purely ViT-based models and are comparable 
to CNN-RNN hybrids in accuracy, efficiency and 
generalization to various ISL gestures. 
 
3.1 Flow of the study 

 
The current research aims to develop an effective ISL 

recognition application that could decode dynamic hand 
gestures and facial expressions on the basis of video streams 
correctly. Where a large number of research focuses on 
gestural frames or static gestures, this research focuses on 
continuous gestural signs, including small video recordings of 
1 to 3 seconds. In this direction, we choose a hybrid neural 
network combining the capabilities of global attention of a ViT 
with the potential of a local feature-extraction of a CNN. The 
whole processing chain is described in Figure 1 and 
summarized in the following parts: 

 
3.1.1 Video capture 

At the first stage, we obtain a rich set of video recordings of 
deaf subjects instructing a repertoire of predetermined ISL 
gestures in a range of lighting scenarios and background 
settings, which is used to strengthen the later system against 
environmental covariate influences. 

 
3.1.2 Frame extraction 

The videos that are captured are then divided into discrete 
frames; these temporal snapshots are the two elements of the 
manual component, i. e., the hand kinematics, and the non-
manual component, i. e., the facial musculature, both of which 
cannot be done without reading the signs in any manner. 

 
3.1.3. Frame counting and padding 

We also come up with the frame tally of both records and 
the temporal maximum over the corpus; those videos that are 
shorter are electronically padded to that temporal maximum 

which normalizes the input dimension of all further processing 
phases. 

 

 
 

Figure 1. Block diagram 
 

3.1.4 Landmark detection 
A Boolean landmark-detection processes on each frame 

provide a list of salient features, most likely to occur around 
the hands and face of the signer, that provide a structured, fine-
grained image of the gestures and subtle facial expressions. A 
similar approach is seen in the work of Jo et al. [28] for 
enhancing gestural interaction used in virtual and augmented 
reality with Media-Pipe based gesture recognition interface. 

 
3.1.5 Position encoding 

The network takes spatial context through positional 
encodings to the retrieved landmarks; this process embeds 
inter-point spatial relations and relative positions of anatomy 
parts into the model and provides it with a better understanding 
of gestural structure. 
 
3.1.6 Mask computation 

A saliency mask that gives more weight to the hand, face, 
and other regions of interest is synthesized by us and 
effectively reduces background clutter, sensor noise, and focal 
capacity of the model, focusing attention on the informative 
regions of the spatial map. 

Development: ViT architecture: ViT is an architecture using 
artificial intelligence (AI) to recognize images as objects and 
extract information from them. 

Motivation: ViT architecture: ViT is a type of architecture 
based on AI that identifies objects in images and derives 
information about objects contained within the image. Instead 
of defining images, or sequentially ordered frames, as a set of 
convolutional filters, Vision Transformers conceptualize 
images as a set of tokenized patches and use multi-head self-
attention systems to encode long-range correlations and 
contextual interactions. We then subdivide the extracted 
frames (or their spatial encodings, e.g., landmark-based ones) 
into small patches, and in this manner, a linear projection of 
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the patch into a high-dimensional embedding space and 
positional embedding is generated. 
 
3.1.7 Feature fusion 

The unified approach of combining CNN with Transformer 
follows a sequential feature encoding and fusion mechanism. 
For each input video sequence, individual frames are first 
processed by a backbone of CNN, which extracts fine-grained 
spatial features corresponding to hand shape, finger 
articulation as well as non-manual cues like facial expressions 
and head orientation. The embeddings generated by CNN are 
then temporally arranged and sourced as token representations 
to the vision transformer where self-attention mechanisms 
model long-range sequential dependancies across frames. The 
transformer output is lastly fused with the CNN features by 
concatenating before classification.  

Mathematical Formulation of the model: 
Let  

 
𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … . , 𝑥𝑥𝑇𝑇} (1) 

 
be the video with T frames. 

CNN feature extraction would be 
 

𝑓𝑓𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑡𝑡);  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑡𝑡 ∈ ℝ𝑑𝑑 (2) 
 
Stacked spatial matrix is represented by: 

 
𝐹𝐹 = [ 𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, . . . . . , 𝑓𝑓𝑇𝑇] (3) 

 
Position encoding is depicted by 

 
𝑍𝑍 =  𝐹𝐹 +  𝑃𝑃 (4) 

 
where, P is Positional Encoding Matrix and Z is position aware 
feature representation. The Transformation attention spaces 
Query (Q), Key (K) and Value (V) are represented as 
 

𝑄𝑄 = 𝑍𝑍𝑊𝑊𝑄𝑄, 𝐾𝐾 = 𝑍𝑍𝑊𝑊𝐾𝐾 and 𝑉𝑉 = 𝑍𝑍𝑊𝑊𝑉𝑉  (5) 
 

The transformer output, Fusion representation and 
Classification equation is :  

 
𝑇𝑇𝑓𝑓 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑍𝑍) (6) 

 
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹) ;  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇𝑓𝑓)] (7) 

 
𝑦𝑦 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑊𝑊𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + b) (8) 

 
where, Pool represents Global maxpooling and [;] indicated 
concatination of feature vectors. 

 

 
 

Figure 2. CNN- ViT fusion mechanism 
 

The method of fusion is as depicted in Figure 2. This fusion 
design enables the model to preserve fine – graned spation 
discrimination through CNN feature extraction while 

simultaneously exploiting the Transformer’s ability to capture 
temporal features. This synergy is particularly beneficial for 
dynamic ISL gesture recognition. 
 
3.1.8 ViT and adapting to the Desired Task: 

(a) Temporal Patching: Each frame or the set of landmarks 
that accompanies the frame is treated as a separate token, thus 
the transformer can focus on the spatial axis and 
simultaneously the time axis. 

(b) Temporal Positional Embedding: It makes the network 
self-temporal: the network is given the ability to represent its 
dynamic properties of motion and gesture development over 
time by encoding order in vectors indicating frame chronology. 
The application of CNN Elements and ViT Behavior: 

Although ViT is highly successful in observing the 
dependencies of the world, its peculiarity of using pure 
attention might not always adequately reflect local, subtle 
forms (such as fine grasping configurations or subtle facial 
micro-expressions). In order to address this weakness, we 
utilize CNN modules as part of the ViT pipeline. In everything 
hybrid, raw frames pass through a lightweight CNN that 
isolates salient primitives in space: edges and textures, 
contours, etc., before being subjected to the transformer. CNN 
feature maps such that result are in turn fused with the ViT 
embedding, allowing the transformer layers to have access to 
the enriched inputs that combine the benefits of global context 
framing with the benefits of distilled local detail. 

 
3.1.9 SoftMax layer 

The unprocessed output of the hybrid ViT-CNN processing 
is then fed into a SoftMax classifier to recede to an emergent 
representation, enabling categorical probabilities of every 
gesture classes repertoire of ISL to be produced, hence 
allowing decisive identification of signs with each input 
sequence. To identify the relationship, the model undertook 
and its strength, the tests involve training, validating, and 
testing the model. 

The ViT-CNN architecture was trained and optimized on 
the curated dataset of ISL and the following hyper-parameters 
and regularization options were used: 

o Learning Rate: Learning rate at the beginning will be 1e -
4 and as plateau in the validation accuracy is reached, it will 
be decreased by a factor of 0.1. 

o Number of Epochs: 50 -100, based on convergence 
patterns. 

o Batch Size: 8-16, which was selected according to the 
available memory of the GPUs and stability of the training. 

o Regularization Techniques: To address overfitting, 
dropout layers (dropout rate of 0.3–0.5) are included not only 
in the CNN layers but also in the transformer ones. Also, early 
stopping and data augmentation are applied (e.g. random 
cropping, limited rotations) to guarantee improved 
generalization. 

 
3.1.10 Model scoring 

After the training process, a detailed assessment of the 
withheld test split is performed where we calculate 
conventional performance measures such as accuracy, 
precision, recall and the F1-score to objectively assess the 
efficacy of the system in both controlled laboratory and real 
world background circumstances. This test confirms that the 
model can be dependable in distinguishing between twenty-
two different classes of ISL gestures. 
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3.1.11 Inference 
When its validation with sufficient accuracy is achieved, the 

hybrid ViT-CNN pronounces a real-time inference feature. 
Once a new video stream is consumed, the system will run 
landmark extraction, positional encoding, and mask 
generation sequentially and run the content through the hybrid 
network, producing an estimation of a gesture and a 
confidence estimate in the end. 
 
 
4. IMPLEMENTATION  
 
4.1 Database 
 

To work out the indispensable basis of further analyses, an 
ISL database was built strictly under a carefully curated one in 

the absence of a widely realized standardized corpus. A 
collection of 1,100 video recordings was made of the Ali 
Yavar Jung National Institute of Hearing Handicapped in 
Bandra, Mumbai, of 22 different ISL gestures executed by ten 
deaf signers. As our research objective demands to incubate 
the intricacy of sign language in its true sense, we ensured that 
the signers are naturally deaf and trained by an authentic ISL 
educator. The age group of the signers is 16 to 35 and it 
includes both male and female users. To make the system 
robust to variations like background, lighting conditions and 
signer bias, we recorded the videos in various backgrounds 
like – Classrooms, Personal desks or Cubicles. The lightning 
condition was not controlled. Also, sampling ensured to 
enclude left domninant as well as right-dominant users. Some 
recorded gestures are as shown in Figure 3.  

 

 
 

Figure 3. Twenty-two Indian sign language gestures (Image format) 
 

 
 

Figure 4. Vision Transformer (ViT) Architecture (Source: https://viso.ai/deep-learning/vision- transformer-vit/) 
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4.2 Vision transformer implementation 
 

ViT as shown in Figure 4 was thematicized to accept video 
analysis by dividing each frame into temporal patches, 
projecting the patches into linear representations, and 
encoding the latent with positional encodings through which 
the temporal structure of the video can be identified in the 
footage. The resulting ViT encoder, which includes the Layer 
Normalisation, Multi-Head Self-Attention, and Multi-Layer 
Perceptrons, converts the tokenised embeddings into an 
overall representation that can be subsequently used by 
classification tasks occurring downstream. 

The hybrid model provides the advantage of using both the 
global attentional attributes of ViT and fine-grained local 
feature extraction of CNN layers when combined with CNN 
features. The empirical analysis in the following passages 
indicates that this combined method is more accurate in 
recognition than the baseline CNN and CNN-RNN methods. 
When recovered with the local detail extraction by the CNN, 
the ViT would provide its ability to model long-range temporal 
dependencies, in the form of an architecture that is very 
sensitive to the complexities and subtleties of ISL gestures. 

In order to come up with a very efficient hand-gesture 
recognition framework based on the Vision Transformer, a 
systematic approach was adopted that entailed careful data 
segmentation, intensive training, meticulous validation and 
extensive testing as well. The second part of the paper outlines 
the approach used to divide the available data, training, 
validation, and evaluation processes of the ViT recognition 
model. 
Dataset Splitting 

It is comprised of a corpus of 1,100 videos (portraying 22 
different ISL gestures) that were recorded in varying 
conditions on ten deaf signers. To obtain a firm estimation of 
the model performance and ensure that there is generalisation 
to new data, the data was categorised into three mutually 
exclusive data subsets using subject wise split technique, 
including training data, validation data and testing data. 
Samples from the same subset were not shared across various 
subsets. The subjects used for training and validation were 
completely excluded from the testing subset ensuring that the 
model is evaluated on unseen subjects, reflecting real world 
deployment scenario.  
Training Set (80%): 

The training subset was provided with approximately 880 
videos. This large assignment ensures that this model is left 
open to numerous background variations, signer idiosyncrasy 
and subtle gesture dynamics. This diversity makes it easy to 
extract meaningful spatial-temporal patterns, and the resulting 
learning of the complex hand movements and facial 
expressions that are characteristic of ISL recognition becomes 
resilient. 
Validation Set (15%): 

There was also a set of 165 videos that would be held back 
as a validation set. This data, used in isolation from the training 
phase, is used to monitor the performance of the model in an 
iterative way. The validation set provides feedback in time by 
evaluating the accuracy, loss and (where applicable) 
specialised metrics at the end of each training epoch. 
Whenever metrics become stagnant or worse off, then it is an 
indication that metrics require adaptations of hyperparameters, 
architectural parts or regularisation methods to reduce either 
over-fitting or under-fitting. 
Testing Set (5%): 

Finally, the testing set of 55 videos was left to be included 
in the final set and serve as a purely unseen control. This 
conclusive analysis establishes the capacity of the model to 
extrapolate under new cases and provides an approximate 
estimate of its effectiveness in the real world and practical 
situations. With the help of a small but representative test set, 
end metrics such as accuracy, precision, recall, and F1- score 
are exact measures of the performance of the model on unseen 
data. 

The selected split ratios summarise a trade-off between 
maximizing training data to encourage robust learning and 
having adequate examples not seen to be validated and tested. 
Even though the fraction of the test can be viewed as small, 
the videos of the 55 types altogether are a headlong summation 
of the variegated nature of the dataset and still leave the testing 
phase as a strict and unbiased indicator of performance. 

The Vision Transformerbert model was then trained by 
starting with the 880 training videos. All the videos were pre-
processed into homogenous temporal patches and positional 
embeddings and then fed to the ViT. The CNN modules used 
were linked together to obtain local spatial aspects but the 
attention mechanisms of the ViT extracted it alongside the 
long-range association and time connection between frames. 

Parameters and Procedures of training. 
- Epochs: 50100 most common, and early stopping occurred 

when validation measures stopped improving over a specified 
patience (e.g., ten epochs). 

- Learning rate: To start with, the learning rate is initialized 
to approximately 1 -10-4 times and decreased by the same 
factor each time a plateau is reached in the validation accuracy. 

- Batch Size: Eight to sixteen, with a compromise between 
speed and stability of training, due to the limitation of using 
the GPU memory. 

Regularisation 
- Dropout: CNN and ViT layers were applied with a rate of 

0.3-0.5 to prevent over-fitting through the elimination of co-
adaptation of features. 

- Data Augmentation: Mild randomly spaced spatial 
transformations (e.g., cropping and small rotations) were 
applied as mechanisms to improve robustness and 
generalisation. 

- Early Stopping: Training was terminated when validation 
metrics stopped improving with the increase of the number of 
epochs and did not lead to needless over-training and wasted 
computations. 
Validation Process 

The model prediction on the 165 validation videos after 
each epoch was determined. Accuracy, validation loss, and, 
when it is applicable, precision-recall metrics were considered 
core metrics since they must identify core issues in class 
imbalance or particular difficulties in gestures. The differences 
in these metrics were used to perform hyper-parameter 
optimization and architecture-level changes, including 
learning rate schedule or dropout rate modulation. 
Model Testing 

After training and validation had been done, the model was 
tested on the 55-video test subset. These samples that were not 
observed during training and validation provided a true 
measure of generalisation. Gesture predictions of the model 
were compared with ground-truth gestures and the ultimate 
performance indicators, accuracy, precision, recall, and F1-
score, were calculated. These outcomes have been compared 
to the existing practices and reported to exemplify the 
effectiveness of the model based on ViT. 
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Outcome and Significance 
The study provides credible evidence of the validity and 

applicability of the trained ISL recognition model by adopting 
the comprehensive approach, including a reasonable division 
of data, extensive hyper-parameter optimization through the 
use of validation, and a strict final analysis of the test on 
unknown data. The attained output highlights the potential of 
Vision Transformers especially with CNN components, to 
drive sign language recognition systems to the next stage of 
being more inclusive and accessible communicative 
technologies. 
Model Evaluation 

An integrated assessment plan was used to effectively 
evaluate the performance of the Vision Transformer-based 
sign language recognition model. The evaluation involved a 
set of measures, such as accuracy, as well as precision, recall, 
and F1-score, thus providing detailed information about the 
model effectiveness and efficacy. 

Accuracy: Accuracy is a fundamental metric that measures 
the proportion of correctly predicted instances from the total 
instances in the testing dataset. Itis a primary indicator of the 
model's overall correctness in recognizing hand gestures [21]. 
Mathematically, accuracy is defined as the ratio of true 
positive (TP) and true negative (TN) predictions to the total 
number of predictions: 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
  (9) 

 
Precision: Precision gauges the model's ability to correctly 

identify positive instances (correctly recognizing a specific 
hand gesture) among all instances predicted as positive. It 
focuses on the model's propensity to avoid false positives, i.e., 
instances wrongly classified as positive. Precision is 
calculated using the formula: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
  (10) 

 
Recall (Sensitivity): Recall, also known as sensitivity or the 

true positive rate, quantifies the model's capacity to correctly 
identify positive instances from all actual positive instances 
[21]. This metric highlights the model's ability to capture all 
relevant occurrences of a particular hand gesture. A recall is 
calculated as: 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
  (11) 

 
F1 Score: The F1 score is a harmonic mean of precision and 

recall, providing a balanced assessment of the model's 
performance by considering false positives and false negatives. 
It offers a single metric considering Type I (false positive) and 
Type II (false negative) errors. The F1 score is calculated as 
follows: 

 
𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
  (12) 

 
The capabilities of the ViT based sign language recognition 

model can be holistically evaluated with the help of these 
metrics. High accuracy indicates a strong overall performance 
and precision identifies the model accuracy in performing a 
positive prediction. As mentioned, recall highlights the 
effectiveness of the model in capturing all the positive 
instances, whereas F1 score provides a balanced trade-off of 

precision and recall to rightfully consider that between false 
positive and false negative. 

The evaluation measures presented in the model based on 
the testing data allow a deep insight into its shortcomings and 
advantages. Moreover, these measures allow making strict 
parallels with the current methods and standards, which allows 
obtaining useful information about the possible practical 
implementation of the ViT-based hand gesture recognition 
system into practice related to the interaction through the ISL. 

 
 

5. RESULTS 
 
This paper is dedicated to strict analysis and subtle 

understanding of naturally pre-established ISL frameworks, 
and the major aim to outline the gap in communication 
between the disabled population and the rest of the community. 

The study combines ViT modules with traditional CNN 
models by building an indigenous ISL dataset by recording 
participants who are deaf and therefore enhancing the 
recognition accuracy. 

The sensitive application of encoder transformer avoids the 
use of complicated data preprocessing, and the discriminating 
addition of the ViT highlights the strength and performance 
measure of the model. 
Model Summary: 

Table 1 provides a concise overview of the model 
architecture and the cumulative trainable parameters. 

 
Table 1. Model summary 

 
Layer (Type) Output Shape Parameters # 

Input_1 (Input Layer) (None,144,258) 0 
Frame_position_embed

ding 
(None,144,258) 37152 

Transformer_layer (None,144,258) 270646 
Global_max_pooling1d (None,258) 0 

Dropout (None,258) 0 
Dense_2(None,22) (None, 22) 5698 

Total Parameters: 313496 
Trainable parameters: 313496 
Non- trainable parameters: 0 

 
Training and Validation Performance: 

During the course of training, significant success is found. 
Training accuracy reaches amazing 100‛, which shows the 
ability of the model to generalize the training data. The 
training accuracy is 95, and the recall is 92 with the resulting 
F1 score of 0.95 in 1,393 epochs. These measures highlight the 
capability of the model to pick the positive instances correctly 
and have a balance between the precision and recall. 

During validation stage, the model maintains a healthy 
performance. The agreement of validation stabilizes to 88.60 
per cent, and the precision is 87 and the recall is 86. Validation 
F1 score: 0.89, realized in 2,987 epochs. These statistics show 
that the model is a good generalization, which can still 
maintain a good performance when it is applied to data that is 
not seen. 

Construction: testing Performance and Comparative 
Analysis: 

The model when rigorously tested on another set of 55 
videos gives a testing accuracy of 82.14. Accuracy is 81.89, 
and recall is 81.36 with an F1 score of 0.81 in 3,000 epochs. 
Such findings support the effectiveness of the model in 
identifying ISL gestures in real world situations. 
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These performance metrics point out the consistency of 
proficiency of the model in training, validation and testing 
phases. 

 
Table 2. Model performance 

 
Phase Training (880 

Videos) 
Validation 

(165 Videos) 
Testing (55 

Videos) 
Accuracy (%) 100 88.60 82.14 
Precision (%) 95 87 81.89 

Recall (%) 92 86 81.36 
F1 Score 0.95 0.89 0.81 
Epochs 1393 2987 3000 

 
Class -Level Performance and Error Analysis: 

To gain more insights, the performance of the model was 
analyzed according to the classes, presented in Table 2. And 
Figure 5 can be seen as the confusion matrix. The results 
evidently show strong validation of the system’s suitability to 
correctly classify signs like Namaste, Hello, Danger, Help Me, 
and I am Hungry. This proves the system’s ability to perform 
practical ISL translation as the signs included are for: Greeting, 
Emergency Communication and conveying basic needs. 
Classification summary indicated that the features which are 
visually and dynamically distinct lead to near- perfect 
separability. The most contributing features to classification 
are Hand Shape, Orientation, Motion Pattern and Semantic 
uniqueness of the gestures. Although the majority of classes 
have high F1 scores, some of the classes such as “Ten” have 
relatively lower F1. In order to gain more insight into these 
discrepancies, a confusion matrix was obtained, as shown in 
Figure 5. The confusion chart demonstrates that gestures with 
similar hand shapes or orientations were wrongly classified 
quite often. The confusion matrix has strong diagonal 
dominance. An example is that the model was more likely to 

confuse the signs that have similar fingers arrangement or 
indicate slight rotations in their hands. 

Some of the difficult classes include, but are not limited to, 
classes: Ten and Nine which exhibit a significant level of inter-
class confusion as a result of the fact that these two classes are 
similar in their hand shape and position. Equally, those signs 
that require rapid changes or faint body expressions were also 
mistaken. The model may not be able to differentiate between 
gestures that are differentiated by slight variance in finger 
positioning or slight movement of the wrist and such therefore 
will be misclassified. The classification results can be grouped 
in 3 distinct categories. Group A: Perfectly Classified Classes, 
Group B: Moderately Strong Classes, Group C: Weak Classes 
as seen in Table 3. We can see that the gestures where 
distinctive sand shapes and motions are dominant have been 
precisely classified with a high F1 Score. The gestures where 
partial feature overlap is possible within the neighboring 
frames are moderately low in F1 score. The most misclassified 
signs are too similar in nature. The hand posture, orientation 
and visual similarity between the signs One, Ten and Hundred 
are too close. The analysis indicated that the error pattern is 
not random, however semantically more meaningful. Visual 
Resemblances of Gestures here stand out as a possible cause 
of misclassification. Little movements in bending fingers or 
the position of thumbs can be very hard to detect by the model. 
The results demonstrate that the proposed framework achieved 
excellent recognition for emergency, basic need and other 
conversational gestures, while giving challenges in some 
numeric sign gestures with similar visual patterns due to high 
inter-class similarity and subtle articulation differences.  

Even specific refinements (like a more careful data 
augmentation, better landmark detection, or using other cues, 
like depth or skeleton data) can be made by looking at cases of 
misclassification and understanding their causes. 

 

 
Figure 5. Confusion matrix 
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Table 3. Grouping of classes as per performance of the recognition 
 

Group F1 Score Gestures Included Gestural Characteristics 

A (Perfectly Classified) Approx 100% 

India 
Namaste 

Hello 
Sorry 

Danger 
Help Me 

I am Hungry 
Two 
Five 
Eight 

Distinct Hand Shapes and Motions 
Low Intra Class Variations 
Low Intra Class Similarities 

 

B (Moderately Strong) 65-85% 

Thank You 
Fire 

Three 
Four 
Six 

Seven 
Nine 

Thousand 

Partial visual overlap with neighboring frame 
Similar finger counts or transitions 

Variation in signing speed and orientation 

C (Weak Classification) Less than 50% 
One 
Ten  

Hundred 

Single Finger Count 
Similar hand position/ posture 

Visual Similarity 
 

Table 4. Class wise performance 
 
Class Name Accuracy 

% 
Precision 

% 
Recall 

% F1 Score 

India 100 100 100 100 
Namaste 100 100 100 100 

Hello 100 100 100 100 
Thank you 96 80 100 89 

Please 100 100 33 50 
Sorry 100 100 100 100 

Danger 100 100 100 100 
Fire 95 67 100 80 

Help Me 100 100 100 100 
I am Hungry 100 100 100 100 

One 70 50 62 50 
Two 100 100 100 100 

Three 100 100 67 80 
Four 93 50 100 67 
Five 100 100 100 100 
Six 100 100 67 80 

Seven 94 50 100 67 
Eight 100 100 100 100 
Nine 60 50 100 67 
Ten 50 33 33 33 

Hundred 50 50 33 40 
Thousand 92 50 100 67 

 
By examining misclassifications as depicted in Table 4 and 

understanding their underlying causes, targeted 
improvements—such as more elaborate data augmentation, 
refined landmark detection, or incorporating additional cues 
(like depth or skeleton data)—can be implemented. 
Consequences of the Real-World Usage:  

The noted matter of confusion has an important implication 
for the usage of the sign recognition system in the life 
environment. This is a must in the daily communicative 
interactions of a system where slight differences in gestures 
must be dealt with high accuracy. In other settings, including 
educational institutions, clinical facilities, or customer service 
touchpoints, misclassification of a particular gesture could 
trigger the occurrence of an expensive misunderstanding. This 
may lead to a necessity on the part of practitioners to embrace 
more vivid signing conventions, or the training corpus may be 
expanded by engineers to a wider cohort of signer 

heterogeneity and ambient environmental situations. 
Future work could be done by increasing the size of the 

corpus to include a wider range of difficult gestures examples. 
Adding multi-modal sensors of sensory data (depth sensors 

or skeletal tracking) to provide a more detailed context system. 
Optimizing the hybrid ViT-CNN like in a cross-head, i.e., 

adding to the model, to reinforce its local element extraction 
capabilities, especially on gestures of nearly the same shape. 

Implementation of domain adaptation measures so that 
there is robustness to the context environment interactions and 
variations in the background. 

 
 

6. CONCLUSIONS 
 

This research predicts the existence of a major gap in 
current academic literature. The literature corpus on the 
subject has concentrated mostly on the static sign, which 
places minimal interest in the dynamic sign on which the 
associated facial expressions have a significant role. Our 
question, on the other hand, takes the holistic approach to ISL 
recognition, at the same time looking to the changing gestures 
and the fine nature of the role of facial expressions. 

Based on the idea of augmenting existing CNN techniques 
with the ViT, our methodology provides efficient 
classification of a wide range of gestures, which does not 
require large-scale data augmentation or transfer learning. The 
efficiency results in a decrease in training time and 
computational complexity hence curbing problems that are 
common in recurrent architectures. 

Our proposed framework is efficacious as well as evidenced 
to have attained a validation accuracy of 88.60 and a test 
accuracy of 82.14 which are performance metrics exceeding 
the present-day state-of-the-art. A case study that was done by 
ablation proves that convolutional encoding shows significant 
improvement on accuracy in the recognition of ISL. Going 
forward, we will explore an expanded range of pre-trained ViT 
frameworks by increasing recognition accuracy further. 
Furthermore, we would increase the dataset to cover a more 
diverse range of dynamic signs and facial expressions. In 
addition, the introduction of Natural Language Processing 
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(NLP) as a text-to-speech processing solution and the creation 
of a user-friendly graphical user interface (GUI) are inscribed 
as some of the major goals, which will expand the application 
and availability of the suggested method. 

By focusing on dynamic gestures and facial expressions, 
this study essentially draws attention to a significant gap in the 
field of sign language recognition. The effective application of 
ViT methodologies will not only find the way to create 
superiority over traditional CNN methods, but also set the path 
to make significant developments in sign language 
interpretation, thus contributing to more inclusive 
communication between various communities. 
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