Z 3 I Er A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 12, December, 2025, pp. 3155-3162

Journal homepage: http://iieta.org/journals/isi

Optimizer Comparison for a GoogleNet-Based Tuberculosis Classification Model A

Aeri Rachmad"" ¥ Husni!
Miswanto®, Suci Hernawati*

, Mohammad Syarief

Check for
updates

, Eka Mala Sari Rochman'(” Yuli Panca Asmara®\,

! Department of Informatics, Faculty of Engineering, University of Trunojoyo Madura, Bangkalan 69162, Indonesia

2 Faculty of Engineering and Quantity Surveying, INTI International University, Negeri Sembilan 71800, Malaysia

3 Department of Mathematics, Faculty of Science and Technology, University of Airlangga, Surabaya 60115, Indonesia
4 Department of Health, Head of the Batuputih Community Health Center, Sumenep 69453, Indonesia

Corresponding Author Email: aery r@trunojoyo.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301207

ABSTRACT

Received: 13 September 2025
Revised: 5 December 2025
Accepted: 13 December 2025
Available online: 31 December 2025

Keywords:
tuberculosis bacteria, microscopic images,
deep learning, GoogleNet, Adam optimizer

Tuberculosis (TB) continues to pose a significant challenge to global public health,
especially in countries with limited healthcare infrastructure. Early identification is key to
mitigation; however, the interpretation of microscopic images poses a significant obstacle.
This research proposes the use of Deep Learning Models, specifically GoogleNet, for the
identification of TB bacteria from microscopic images. The study uses a dataset comprising
1,266 microscopic images to identify TB bacteria. This dataset is then divided into two
parts, with 80% of the data used for training (1,012 images) and 20% for testing (254
images). Before being fed into the model, the images are processed using median filter
techniques to enhance quality and consistency. This study proposes the use of Deep
Learning models, particularly GoogleNet, as a method for detecting TB bacteria in
microscopic images. Four optimization algorithms, RMSprop, SGD, Adam, and SGDM,
are evaluated and compared to identify the most effective configuration for optimal
performance. The experimental findings indicate that the Adam optimizer yields the best
results for TB classification. By applying transfer learning techniques, the GoogleNet model
is trained and evaluated using standard metrics. The evaluation results demonstrate high
accuracy and efficiency in training time. The model achieved excellent accuracy, precision,

recall, and F1-Score, each at 98.52%.

1. INTRODUCTION

There is still a long way to go in the fight against
tuberculosis (TB), but it is especially crucial in countries with
low per capita income and poor healthcare infrastructure,
where people often have trouble getting medical care [1].
Mycobacterium tuberculosis is the germs that cause this
disease. If it is not adequately recognized and treated, it can
have major effects on the person's health, as well as on social
and economic elements of their life [2]. After trying a lot of
different ways to find and cure the condition, one of the biggest
problems in the future will be getting an accurate diagnosis [1].

Microbiological bacterial identification on a blood sample
[3] is one way to tell if someone has tuberculosis in isolation.
The TBC microscopy sample identification approach is quick
and cheap. Nevertheless, variability in subjective assessment
and heterogeneity in microscopic image quality may adversely
affect the accuracy and consistency of the diagnosis [4]. In
recent years, new hopes have emerged to overcome this
constraint and enhance the efficiency of the initial TBC
identification process, especially with the evolution of
building-specific technology, particularly Convolutional
Neural Networks (CNNs) [5]. In this research, we examined
the application of GoogleNet, a CNN, for the bacteriological
identification of TBC from microscope pictures. Transfer

3155

learning techniques are used to feed the GoogleNet model tiny
photos of microorganisms [6]. This lets the model exploit
information that is already in the bigger dataset. The
evaluation employs conventional criteria in medical research,
including anxiety, pressure, recall, and F1-score. This study
emphasizes the significance of an optimization approach in
assessing model performance, while also addressing
architectural layout. The study sought to identify the optimal
combination of various algorithms, including RMSprop, SGD,
Adam, and SGDM, to enhance the assessment of the model's
efficacy in media TB detection.

The research findings indicate that the sampled pattern can
detect TBC bacteria with a significant degree of sensitivity.
The GoogleNet model can also do better than manual
microbiology-based methods when it comes to diagnosing. All
of these suggest that CNN with GoogleNet architecture for
identifying bacteria using microscopy could be a useful tool
for diagnosing and treating TB around the world.

2. METHODOLOGY AND METHODS
2.1 System architecture

The initial stage in building the architecture in Figure 1 is to

mailto:aery_r@trunojoyo.ac.id
https://orcid.org/0000-0002-4322-2944
https://orcid.org/0000-0001-5045-5781
https://orcid.org/0009-0009-0304-3296
https://orcid.org/0000-0001-7324-1380
https://orcid.org/0000-0001-6930-0771
https://orcid.org/0000-0003-4322-5317
https://orcid.org/0009-0000-5659-9911
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301207&domain=pdf

take photographs of TB with a microscope. This method
makes sure that the data is good enough to be used for further
analysis. The following step after taking the picture is
preprocessing, which uses a median filter. To get rid of noise
in photographs while maintaining crucial information, which
is very critical for correct analysis, you apply a median filter.

2

Median Filter

A 4

Split the dataset to 70% of the
total images for training stage
and 309% for testing

Classification Architekture
GoogleNet

Performance Result

Figure 1. System diagram

After that, the processed TB dataset will be divided into two
parts: 80:20. In this part, 80% will be training data to teach the
model, and 20% will be test data to see how well the model
works. It is very important to split this dataset so that the model
doesn't overfit, which is when it fits too closely to the training
data and doesn't generalize well to new data.

Then, the next step is to use a CNN with the GoogleNet
architecture to classify the data. GoogleNet was chosen since
it has been shown to be able to handle complex image data and
complex hierarchical features. GoogleNet uses a structure
called an "inception module" that lets the network efficiently
extract features from different scales. The inception module
lets the network process images with different levels of
resolution at the same time by using many parallel paths in one

3156

layer. This makes the visual representations richer.

After the classification process is complete, the results will
be evaluated thoroughly to measure the accuracy, precision,
recall and Fl-score value of the model developed. This
evaluation will also include the time it takes to classify the
entire dataset. This analysis is important for figuring out how
well Google's CNN model can classify TB image data while
also considering how long it takes to do it.

2.2 Sputum images dataset

The dataset employed in this study comprises sputum
images obtained using a microscope. A total of 1,266 images
were successfully collected. The dataset is divided into two
classes: 633 images of sputum from TB patients and 633
images from non-TB individuals. Below are examples of TB-
positive and TB-negative sputum images as shown in Figure 2
and Figure 3.

EEZEANEEEE
EENFEESEEN

Figure 2. Images of tuberculosis individuals
EEEEEEEERD
EEEEERERTYE

Figure 3. Images of non- tuberculosis individuals
2.3 Median filter on sputum images

The median filter was originally introduced by Tukey [7]
and is a nonlinear filtering technique that operates by sliding a
narrow window across the image, often with an odd number of
pixels [8]. Compared to linear smoothing filters of the same
size, it is particularly successful in removing impulsive noise,
sometimes known as salt-and-pepper noise [9]. In practice, the
filter sorts the pixel values in the window and replaces the
center pixel with its median. This method reduces harsh
changes, allowing the pixel values to merge more organically
with their neighbors. Additionally, the Median Filter can also
change the values of isolated pixel groups, which have
brightness or darkness levels different from their neighbors
and have an area less than n%/2, by using the median value from
an nxn matrix. Consequently, the noise removed by the
Median Filter will have values similar to the median intensity
of its neighboring pixels [8].

Pl , P1
P2 P2
e .
Data Sorting Take I\:Iedlan Pm
P3 P3 Value
Pn , Pn

Figure 4. Block diagram of the median filter workflow

Figure 4 shows that in the context of the sequence P(1) < application to a structure known as inception model [10].

P(2) <P(3) <P(n), the statement refers to the process of sorting Overall, inception adopts the concept of a network within a
data elements from the smallest rank (P(1)) to the largest rank network, consisting of sub-networks to optimize performance.
(P(n)). In other words, each data element is sorted based on its In the context of image processing, an efficient local structure
relative value in the dataset, from smallest to largest as shown is rarely applied repeatedly from start to finish to obtain better
in Figure 5. For example, if we have a dataset containing feature representations. In its application, three types of
values 3, 7, 1, and 5, after the sorting process, the sequence of inception structures tailored to different needs are introduced:
values will be 1, 3, 5, and 7. Meanwhile, the value of m generally, 1 x 1 convolutions are used to reduce dimensions
corresponds to the formula: before applying more complex 3 x 3 and 5 X 5 convolutions,
thereby improving computational efficiency and enhancing

m ="+ (1) feature representation quality. Furthermore, the use of

inception modules enables the network to learn hierarchical
representations from simple to complex features, with each
sub-network focusing on processing different features in the
image. This allows the network to be more adaptive and
capable of capturing various levels of detail in image data,
improving object recognition and classification performance.
This network has quite impressive capabilities in classifying
patterns from around 1000 images. Additionally, compared to
\ Ll AlexNet, GoogleNet uses significantly fewer parameters,
\[123] 96 [157 about 12 times fewer [11]. Like most neural networks used in

computer vision contexts, this model takes images as input and

produces labels for the classes it learns, along with confidence
157|259 levels as output [12]. The GoogLeNet architecture consists of
a total of 22 layers, which include 9 inception modules. The
modified inception modules, as seen in Figure 6, utilize
adaptable filters with sizes ranging from (1 X 1) to (5 x 5) to

101{69| O

56

255

\
\\
N\
a

87 196 (101 123

0 | 56| 69

Figure 5. Example of median filter application

2.4 Architecture GoogleNet perform convolution in parallel. This approach assists in
capturing various levels of detail from the existing features
The main development offered by GoogleNet is its [13].

(p3] (M1] [FC |

Figure 6. GoogleNet architecture

2.5 Optimization algorithm at how the parameters vary in Egs. (2)-(4). Gives a general idea

of how the RMSprop algorithm updates model parameters
The optimization process in machine learning plays a depending on the gradients that have been collected [14].

crucial role as an essential tool to adjust the values of the

objective function based on the available data. Through r=pr+(1—-p)gOg 2)

consistent iterative steps, the algorithm continuously updates

the model parameters to minimize prediction errors. Thus, the A =_*0 g 3)

model can continuously learn from the available data and S+

improve its accuracy. This study used four different 0=04+ A0)

optimization methods to boost the model's efficiency, which
shed light on the ways in which each technique aids in the
development of better machine learning algorithms.
RMSprop is a modification of the AdaGrad method that
seeks to enhance performance in non-convex scenarios by
altering the accumulation of gradients by the application of an
exponential moving average. When utilizing a conventional
learning rate of 0.001 in Stochastic Gradient Descent (SGD),
RMSprop helps fix the problem of the learning rate dropping
too quickly. To understand how RMSprop works better, look

In this instance, » denotes the accumulation of the squared
gradient, which is beneficial for modulating parameter updates
by considering gradient fluctuations. The parameter p
functions as the decay rate, dictating the rate at which the
accumulation of the square gradient diminishes with time. The
computed parameter update is referred to as A, representing
the modification required for the model parameters. The
learning rate, denoted by o, is the magnitude of adjustment
applied at each iteration during parameter updates. The

3157

constant 9, valued at 107, is employed to avert division by zero
in the computation. Ultimately, 0 represents the first model
parameter subject to modification. All these parts collaborate
to ensure the model learns from the input effectively and
efficiently.

A prominent variant of the gradient descent optimization
technique is SGD. In contrast to batch gradient descent, which
modifies parameters solely after processing the complete
dataset, SGD updates parameters following each unique
training example. This regular updating enables the algorithm
to converge more rapidly, rendering it particularly
advantageous for extensive datasets. Due to its efficiency and
responsiveness, SGD is frequently utilized in situations
requiring swift parameter modifications, typically with a
learning rate of 0.01. The SGD parameter update rule is
presented in Eq. (5), which demonstrates the iterative
optimization of model parameters utilizing the gradient of an
individual data point at each iteration.

=6 — 1 * Vo) (8;x5y"))

Here, 0 indicates the parameter that is modified with each
iteration of model training, whereas 1 denotes the learning rate,
which determines the magnitude of the adjustment. The pair xi
represents the input data and the output data utilized in that
phase. In each iteration, the model refines 6 utilizing the
gradient derived from the data, so enhancing the parameters
incrementally with each cycle. In this manner, SGD facilitates
the model's continuous enhancement by learning from
individual examples, enabling rapid adaptation and effective
responsiveness to variations in the training data [14].

Adam is a widely utilized optimization algorithm that
integrates concepts from two proven techniques: RMSProp
and Momentum. RMSProp incorporates the capability to
automatically modify the learning rate for each parameter,
hence addressing the prevalent challenge of selecting an
appropriate learning rate. Simultaneously, it employs the
concept of momentum to ensure updates go in a consistent
manner, rather than changing too abruptly. By integrating
these two methodologies, Adam renders the optimization
process both stable and efficient. This has rendered it one of
the most prevalent algorithms in machine learning, facilitating
robust performance across various tasks.

m; = Bymi + (1= B)gs (©)

aL\?
v =B+ (1 -8 (55) @)
In this context, parameter (6) refers to momentum, while
parameter (7) represents the exponential moving variance used
in the optimization algorithm. Momentum (6) helps speed up
convergence by keeping the parameter updates moving in a
consistent direction. On the other hand, the exponential
moving variance (7) adapts the learning rate for each
parameter, making the optimization process more stable and
efficient. When the initialization values for time steps and
decay rates are too small, parameters (6) and (7) tend to
approach a value close to 1, which can introduce bias in the
estimation. To mitigate this issue, bias correction and moment
estimation are conducted through the division of the
parameters in Egs. (6) and (7) by the difference between 1 and
the decay factor. This adjustment stabilizes the moment
calculations and produces more accurate estimates.

3158

Implementing this adjustment helps minimize the initial
estimation bias, leading to more dependable parameter values
throughout the optimization process. This step is essential to
ensure consistent and dependable results, especially when
dealing with sensitive initial conditions.

. m; 2
m =
1-8; ®)
N Vi 9
v =
1-5, ©)
Adam, an optimization algorithm proposed by its

developers, suggests setting 1 to 0.9, B2 t0 0.999, and £ to 10°5.
These values were determined through extensive experiments
to provide strong performance across a wide range of tasks. In
this setup, beta-1 and beta-2 control the exponential moving
averages of the gradient and the squared gradient, while
epsilon is included to prevent division by zero. After the
optimal values for parameters (8) and (9) have been obtained,
which represent these moving averages, the Adam update
formula can then be applied.

0

Jve+e

According to its formulation (10), Adam combines the core
ideas of RMSProp with the momentum method in gradient
estimation to improve both speed and stability during model
training. By using the exponential moving average of the
gradient together with the exponential moving variance, Adam
can adjust the learning rate for each parameter individually.
This adaptability gives Adam an advantage over earlier
optimization algorithms [15-17].

Stochastic Gradient Descent with Momentum (SGDM) is
an adaptation of the gradient descent optimization technique
that modifies model parameters during the processing of
training data. SGDM is distinguished by the use of a
momentum factor, which accelerates convergence and
mitigates oscillations, especially in the context of extensive
datasets. SGDM changes parameters by integrating
momentum from prior updates, enabling the model to navigate
more smoothly through both flat and steep gradient areas,
rather than solely relying on the complete dataset for updates.
The standard learning rate for SGD is typically established at
0.01, but this figure may be modified based on the intricacy of
the issue.

041 =6, — mg

(10)

Gt = VJ(8; x5 yH) (11)

In SGDM, the parameter 6 is revised at each step. The
learning rate n dictates the magnitude of each update step,
whereas x' and ' denote the input-output data pairs utilized in
training. With each iteration, 8 is modified according to the
processed data, enabling the model to progressively enhance
its performance by learning from each instance [18].

2.6 Confusion matrix

Figure 7 illustrates how the four mentioned values are
arranged in the confusion matrix. This version also lists the
total number of observations in the top left corner, as well as
the marginal counts at the top and left side of the matrix. The
colors used for each section of the matrix represent the

combination of categories that form the values within it [19].
For example, the color green represents true positives, which
consist of false positives and false negatives. Each model has
four values that describe its own performance. Therefore, the
importance of each of these values must be considered when
comparing the overall performance of the models [20].
Classification metrics are calculated from the numbers in the
confusion matrix, so to understand these metrics, one must
understand the meaning of each value within it [21].

Ground Truth Label
Total Ob ti has disease no disease
o (i ‘;Na ons Condition Condition
Positive (CP) | Negative (CN)
Test
o | test Outcome | True Positive | False Positive
§ positive ~ Positive (TP) (FP)
° (TOP)
2
L
'?3 test True Negative
8 |negative (TN)

Figure 7. Confusion matrix

True Positive: This means the model correctly detected the
disease.

True Negative: This means the model correctly identified
that there is no disease.

False Positive: This means the model incorrectly identified
someone as having the disease when they actually do not.

False Negative: This means the model failed to detect
someone who actually has the disease.

With a confusion matrix, various model performance
evaluation metrics can be calculated, such as accuracy,
precision, sensitivity (recall), specificity, and F1-score [22]. A
confusion matrix is a very useful tool for understanding the
performance of a classification model and identifying areas
where the model needs improvement. A brief explanation of
some commonly used evaluation metrics alongside the
confusion matrix [23]:

Accuracy
The percentage of total correct predictions made by the
model out of all the test data.

TP + TN

(12)
TP + TN + FP + FN

Accuracy =

Precision
The percentage of true positive predictions out of all
positive predictions made by the model.

TP

_— 13
TP + FP (13

Precision =
Recall

The percentage of positive data successfully identified by
the model out of all the actual positive data.

TP

Recall = m

(14)

F1-Score
The harmonic mean between precision and sensitivity. It is
used to compromise between both in one metric.

F1 — Score = 2TP/(2TP+FN+FP) (15)

3. RESULT
3.1 Test scenario

The subsequent phase of the research involves training the
GoogleNet model on a dataset of TB bacterial pictures derived
from microscopic observations. A series of tests was
performed using several optimizers, such as Adam, RMSProp,
SGD, and SGDM. The batch size was kept at 16, the learning
rate was set at 0.0001, and the number of epochs was set to 20
to get the best results. The experimental data are thereafter
displayed in tabular format to facilitate further research in the
domain of tuberculosis diagnosis by microscopic image
analysis, as seen in Table 1 [21].

Table 1. Test scenario [21]

Optimizer Batch Learning Rate Epoch
Adam 16 0.0001 20
Test Scenario RMSProp 16 0.0001 20
SGD 16 0.0001 20
SGDM 16 0.0001 20

Table 2. Comparison of metric values between the training and validation phases

Loss Accuracy Precision Recall F1-Score Time(s)
Train 9.74 98.03 98.06 98.03 98.03 76.04
Validation 5.80 98.52 98.52 98.52 98.52 122.81

3.2 Test result

Experimental results related to Tuberculosis show that the
GoogleNet model achieves excellent performance when
optimized with Adam, employing a learning rate of 0.0001, a
batch size of 16, and 20 epochs. The corresponding test results
are presented in Figures 8-11.

The results presented in Figure 8, obtained using the
GoogleNet model with the RMSProp optimizer, indicate that

3159

the model attains 89.74% accuracy on the training data,
accompanied by a loss of 25.66%. Its performance on the
validation data is likewise highly satisfactory, reaching an
accuracy of 95.57% and a loss of 14.80%. These outcomes
suggest that the model is able to learn from the training data
exceptionally well and maintain high performance on the
validation data, demonstrating strong generalization
capabilities.

The results presented in Figure 9, obtained using the

GoogleNet model with the SGD optimizer, indicate that the
model performs reasonably well on the training data, an
accuracy of 53.52% and a loss of 68.72% are obtained. In
addition, the model demonstrates comparable performance on
the validation dataset, with an accuracy of 55.17% and a loss
of 68.51%. These findings suggest that the model is
successfully learning from the training data and shows stable
performance on the validation data, although further
improvements are needed to increase accuracy.

—e— Training (GoogleNet RMSProp)
—e— validation (GoogleNet RMSProp)
100 95.57%

89.74%

80

60

Percentage (%)

25.68%

0
loss_training acc_training loss_validasi acc_validasi

Metrics

Figure 8. RMSProp optimizer trial result graph

—&— Training (GoogleNet SGD)
100 —e— Validation (GoogleNet SGD)

80

68.12% 68.51%

60
3.52%

Percentage (%)

20 1

0
loss_training acc_training loss_validasi acc_validasi

Figure 9. SGD optimizer trial result graph

The test results in Figure 10, obtained using the GoogleNet
model with the SGDM optimizer, indicate that the model
performs reasonably well on the training data, with an
accuracy of 47.96% with a loss of 71.85% is achieved.
Furthermore, the model demonstrates satisfactory
performance on the validation data, reaching an accuracy of
43.35% and a loss of 72.01%. These results suggest that the
model can effectively extract meaningful learning patterns
from the training data, but still requires further improvements
to reduce loss and increase accuracy on both the training and
validation data.

Regarding the loss, Figure 11 shows a value of 5.80%,
reflecting a low error rate during training. Moreover, the
model attains an accuracy of 98.52%, demonstrating its strong
capability to classify tuberculosis images with high precision.
Besides high accuracy, the GoogleNet model also shows
excellent results in terms of precision, recall, and F1-Score,

3160

each reaching 98.52%. Precision measures the accuracy of the
model's positive predictions, while recall measures how well
the model finds all positive instances. The F1-Score is the
harmonic mean of precision and recall, providing an overall
picture of the model's performance in classification. Not only
in terms of prediction quality, but the GoogleNet model also
demonstrates efficiency in training time. With only about
76.04 seconds required to train the model, it shows that this
model is not only accurate and consistent but also efficient in
the use of computational resources, as shown in Table 2.

—&— Training (GoogleNet SGDM)
100 —&— Validation (GoogleNet SGDM)

80
71.85% 72.01%

o
=

Percentage (%)

B
=]

20

loss_training acc_training loss_validasi acc_validasi

Metrics

Figure 10. SGDM optimizer trial result graph

—e— Training (MobileNetv2 ADAM)
—e— Vvalidation (MabileNetV2 ADAM)
100 98.03% 98.52%

80

@
o

Percentage (%)

(] T + ™ T
loss_training acc_training loss_validasi acc_validasi

Metrics

Figure 11. Adam optimizer trial result graph

4 - Training
Validation

100 4

60

Percentage / Time (s)

201

loss(%) Acc(%) Precision(%) Recall(%)

Metrics

F1-Score(%) time(s)

Figure 12. GoogleNet experimental results of metrics
between GoogleNet training and validation stages

Figure 12 presents a comparison of the metrics obtained
during the training and validation phases, depicting the
model's stability and effectiveness in both stages.

Figure 13 illustrates that the loss curve of the GoogleNet
model for TB classification exhibits a consistent decline in
training loss values across successive epochs, indicating the
model's progress in understanding the data patterns. However,
there is variation in the loss on the validation data, suggesting
the possibility of overfitting at some points. At Epoch 7, the
loss value decreases on both the training and validation data,
reflecting good performance on both datasets. Subsequently,
at Epoch 12, the training loss value reaches its lowest point,
indicating that the model has successfully adapted to the
training data. Although there is a slight increase in validation
loss at Epoch 12, the model's performance remains high with
good accuracy.

Figure 14 shows a graph depicting the accuracy
performance of the GoogleNet model in classifying
Tuberculosis bacteria during the training and validation
process. The image shows some fluctuations in the accuracy
results on the training data and validation results during the
epoch. Overall, an increase in accuracy was observed on both
data types as the epochs progressed, indicated by the
GoogleNet model's increased ability to classify data more
accurately. There are several indicators of marked accuracy
improvements, showing that the model’s performance has
generally improved. The more iterations performed, the higher
the accuracy achieved by the GoogleNet model in classifying
TB data.

0,25

0,1
0,05
1]

1 2 3 4 5 6 7 8

S

Cross Entropy Loss

9 10 11 12 13 14 15 16 17 18 19 20
Epoch

el |55 _training loss_validation

Figure 13. GoogleNet loss performance

1
0,98
0,96

Acc

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch
=l 055 training loss_validation

Figure 14. GoogleNet accuracy performance

4. CONCLUSIONS

The conclusion from the experimental results indicates that
the GoogleNet model excels in TB classification. For this
classification task, the Adam optimizer was utilized with a
batch size 16, a learning rate of 0.0001, and a total of 20

3161

training epochs. With a loss rate of 5.80% and an accuracy rate
of 98.52%, the model demonstrates excellent capability in
accurately classifying TB images. Additionally, the model has
high precision, recall, and F1-Score, each reaching 98.52%.
The performance graph of GoogleNet loss shows a decrease in
loss values on the training data from epoch to epoch, indicating
the model's progress in understanding the data patterns.
Despite some variation in the validation loss, the model's
performance remains high with good accuracy. Overall, the
graph illustrates the improvement in GoogleNet's accuracy in
classifying TB data as the iterations progress.

Future research will focus on implementing layer selection
techniques in the CNN architecture to reduce training time and
computational costs, while simultaneously improving the
overall accuracy and robustness of the model.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the
Ministry of Higher Education, Science, and Technology
(KEMENDIKTISAINTEK) for funding this research through
the Fundamental Regular Research (PFR) Grant in 2025. We
also extend our appreciation to Universitas Trunojoyo Madura,
Universitas Airlangga Surabaya, and INTI International
University Malaysia for their valuable collaboration in this
research project.

REFERENCES

[1] World Health Organization. (2019). Global tuberculosis
report 2019.
https://www.who.int/publications/i/item/global-
tuberculosis-report-2019.

Sugirtha, G.E., Murugesan, G. (2017). Detection of
tuberculosis bacilli from microscopic sputum smear
images. In 2017 Third International Conference on
Biosignals, Images and Instrumentation (ICBSII),
Chennai, India, pp- 1-6.
https://doi.org/10.1109/ICBSII.2017.8082271

Mithra, K.S., Emmanuel, W.R.S. (2018). FHDT: Fuzzy
and hyco-entropy-based decision tree -classifier for
tuberculosis diagnosis from sputum images. Sadhana, 43:
125. https://doi.org/10.1007/s12046-018-0878-y
Tamtyas, F.I., Rini, C.S. (2020). The detection of TB
lungs with microscopic and the rapid molecular test
methods. Medicra (Journal of Medical Laboratory
Science/Technology), 3(1): 1-4.
https://doi.org/10.21070/medicra.v3i1.650

Rachmad, A., Chamidah, N., Rulaningtyas, R. (2020).
Mycobacterium tuberculosis images classification based
on combining of Convolutional Neural Network and
support vector machine. Communications in
Mathematical Biology and Neuroscience, 2020: 85.
https://doi.org/10.28919/cmbn/5035

Kumar, S., Arif, T., Alotaibi, A.S., Malik, M.B., Manhas,
J. (2023). Advances towards automatic detection and
classification of parasites microscopic images using deep
Convolutional Neural Network: Methods, models and
research directions. Archives of Computational Methods
in Engineering, 30(3): 2013-2039.
https://doi.org/10.1007/s11831-022-09858-w

Zhu, Y.L., Huang, C. (2012). An improved median

(2]

(3]

(4]

(6]

(7]

(8]

[11]

[12]

[13]

[14]

filtering algorithm for image noise reduction. Physics
Procedia, 25: 609-616.
https://doi.org/10.1016/j.phpro.2012.03.133

Qur'ana, T.W. (2018). Perbaikan citra menggunakan
median filter untuk meningkatkan akurasi pada
klasifikasi motif sasirangan. Technologia: Jurnal Ilmiah,
9(4), 270-279. https://doi.org/10.31602/tji.v9i4.1543
Maulana, I., Andono, P.N. (2016). Analisa perbandingan
adaptif median filter dan median filter dalam reduksi
noise salt & pepper. Cogito Smart Journal, 2(2): 157-166.
https://doi.org/10.31154/cogito.v2i2.26.157-166
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., et al. (2015).
Going deeper with convolutions. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Boston, MA, USA, pp- 1-9.
https://doi.org/10.1109/CVPR.2015.7298594

Rachmad, A., Syarief, M., Hutagalung, J., Hernawati, S.,
Rochman, E.M.S., Asmara, Y.P. (2024). Comparison of
CNN architectures for Mycobacterium tuberculosis
classification in sputum images. Ingénierie des Systémes
d’Information, 29(1): 49-56.
https://doi.org/10.18280/is1.290106

Al-Huseiny, M. (2021). Transfer learning with
GoogLeNet for detection of lung cancer. Indonesian
Journal of Electrical Engineering and computer science.
Indonesian Journal of Electrical Engineering and
Computer Science, 22(2): 1078-1086.
https://doi.org/10.11591/ijeecs.v22.i2.pp1078-1086

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, pp- 770-778,.
https://doi.org/10.1109/CVPR.2016.90

Munir, K., Elahi, H., Ayub, A., Frezza, F., Rizzi, A.
(2019). Cancer diagnosis using deep learning: A
bibliographic review. Cancers, 11(9): 1235.
https://doi.org/10.3390/cancers11091235

Kusumah, H., Zahran, M.S., Rifqi, K.N., Putri, A.D.,
Hapsari, EEM.W. (2023). Deep learning pada detektor

3162

[16]

[19]

[20]

(21]

[22]

(23]

jerawat: Model YOLOVS. Journal Sensi: Strategic of
Education in Information System, 9(1): 24-35.
https://doi.org/10.33050/sensi.v9i1.2620

Arouri, Y., Sayyafzadeh, M. (2022). An adaptive
moment estimation framework for well placement
optimization. Computational Geosciences, 26(4): 957-
973. https://doi.org/10.1007/s10596-022-10135-9
Kingma, D.P. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
https://doi.org/10.48550/arXiv.1412.6980

Yuan, W., Hu, F., Lu, L. (2022). A new non-adaptive
optimization method: Stochastic Gradient Descent with
Momentum and difference. Applied Intelligence, 52(4):
3939-3953. https://doi.org/10.1007/s10489-021-02224-6
Tharwat, A. (2021). Classification assessment methods.
Applied computing and informatics, 17(1): 168-192.
https://doi.org/10.1016/j.aci.2018.08.003

Ponraj, A., Nagaraj, P., Balakrishnan, D., Srinivasu, P.N.,
Shafi, J., Kim, W., Jjaz, M.F. (2025). A multi-patch-
based deep learning model with VGG19 for breast cancer
classifications in the pathology images. Digital Health,
11: 20552076241313161.
https://doi.org/10.1177/20552076241313161

Rachmad, A., Husni, Hutagalung, J., Hapsari, D.,
Hernawati, S., Syarief, M., Rochman, E.M.S., Asmara,
Y.P. (2024). Deep learning optimization of the
EfficienNet architecture for classification of tuberculosis
bacteria. Mathematical Modelling of Engineering
Problems, 11(10): 2664-2670.
https://doi.org/10.18280/mmep.111008

Chen, R.C., Dewi, C., Huang, S.W., Caraka, R.E. (2020).
Selecting critical features for data classification based on
machine learning methods. Journal of Big Data, 7(1): 52.
https://doi.org/10.1186/s40537-020-00327-4

Mehdiyev, N., Enke, D., Fettke, P., Loos, P. (2016).
Evaluating forecasting methods by considering different
accuracy measures. Procedia Computer Science, 95: 264-
271. https://doi.org/10.1016/j.procs.2016.09.332

