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Novelty detection is a critical task in machine learning and data mining, aiming to identify
previously unseen or abnormal patterns that are not represented during model training.
Among the available novelty detection paradigms, domain-description approaches are
particularly attractive because they learn an explicit boundary of normal data without strong
distributional assumptions. This paper provides a focused review of domain-based novelty
detection methods with emphasis on Support Vector Machine (SVM) formulations,
particularly Support Vector Data Description (SVDD) and One-Class Support Vector
Machines (OCSVM). We summarize the theoretical foundations of one-class classification
and review recent research that enhances SVDD and OCSVM through robust boundary
learning, improved feature representations, and computational efficiency. Based on the
analyzed literature, the main technical directions for improving OCSVM and SVDD can be
grouped into three trends: (i) robustification via modified loss functions and outlier-resistant
formulations, (ii) integration with feature learning frameworks such as deep models and
hybrid architectures, and (iii) acceleration strategies for large-scale and high-dimensional
settings. Despite consistent performance improvements across applications, parameter
sensitivity, optimization complexity, and limited adaptability under evolving data
distributions remain persistent challenges. Finally, we outline concrete research
opportunities toward scalable, adaptive, and self-tuning domain-description models for

reliable deployment in real-world novelty detection scenarios.

1. INTRODUCTION

One of the primary problems with machine learning and
data mining is novelty detection (ND), sometimes referred to
as anomaly detection, outlier detection, or one-class
classification. Differentiating recognized items (regular
patterns) from samples that are abnormal (outliers) is ND's
primary duty [1]. The capability to identify novel classes could
possess a substantial and favorable outcome, wherein the test
data (or unlabelled data) might comprise details regarding
items not known at the time of the training process [2]. ND
encompasses learning a model that can recognize any
departure from normalcy by absorbing the characteristics of
the training dataset's normal data samples. Real-world
applications include, among other things, currency validation,
machine failure detection, medical diagnostics, and user
verification in computer systems. Normal data samples are
usually abundant in ND-related applications, but abnormal
data samples are sometimes scarce or, in certain situations,
nonexistent. As a result, the majority of ND algorithms
prioritize the typical data and primarily use it to create a data
description [3].

The predictive performance in ND is determined by
measuring the model’s ability to classify samples belonging to
the normal category, i.e., elements that have properties alike
the elements used for training, and distinguish those samples,
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referred to as novel, outliers, or abnormal [4]. The novelty
detection technique is employed to devise a model that isolates
new patterns from a specified dataset. The model must be
formulated in a manner that inputs having features different
from those used during training should have the inputs
classified as novel patterns, while those matching the training
inputs should be classified accordingly [5]. In recent years,
numerous fields have focused on the function of one-class
categorization in pattern recognition. The approach of
simulating a widely dispersed class to categorize an unknown
testing class is known as one-class classification, and it is
frequently employed for ND. When there is just one known
class available to train the model (i.e., classifier) rather than
two or more, it is regarded as a specific case of a classification
problem. The ability of the constructed model to differentiate
samples of the normal class that is, samples with traits
comparable to those used in training from the other examples,
which are referred to be abnormal or novel, or outliers, is the
basis for measuring prediction performance in ND [6].

ND can also be viewed as much like novel class detection
[1, 7, 8]. Two circumstances should be substantiated to affirm
the advent of a novel class: the threshold condition and the
cohesion-separation condition. Cluster-specific assumptions
are made for the first condition, where elements of the novel
class are assumed to be like the other elements of the class;
however, those elements are different from the elements
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belonging to other classes. The second condition indicates that
the novel class element count must exceed a specified
threshold. The threshold is employed for differentiating
between the novel class and outlier’s cases; when the quantity
of applicants is fewer than the stated level, we presume that
they represent anomalies in the current classes. Experts
determine the requisite threshold value, and it is specific to the
application [9]. In the wake of the specified criteria, a learner
must evaluate sets of instances to ascertain the creation of an
additional class. Thus, current techniques are either based on
chunks [10-12] or according to timing limitations [13, 14].

Although terms such as anomaly detection, outlier detection,
novelty detection, and one-class classification have nuanced
differences in the literature, this review treats them
interchangeably, focusing on their shared objective of
identifying deviations from learned normal data using domain-
based methods.

With a focus on domain-based methods for novelty
detection in the machine learning literature, this survey
attempts to present an up-to-date and organized summary of
recent research and approaches to novelty detection using a
semi-supervised learning approach using One-Class Support
Vector Machines (OCSVM). The rest of the paper is organized
in this manner: Section 2 discusses the novelty detection
methodologies, including various categories of approaches
from the literature. Meanwhile, Section 3 delves into Support
Vector Machines (SVM), where this section details a support
vector data description review (SVDD) and OCSVM are
presented. This is followed by a detailed technical review of
the fundamental algorithmic improvement made to OCSVM
from the literature, and a review of real-world applications of
novelty detection using OCSVM. At the end, the review is
summarized in Section 4 and followed by the concluding
remarks.

2. NOVELTY DETECTION METHODOLOGIES

Novelty detection (ND), also referred to as anomaly
detection or one-class classification, aims to identify patterns
that deviate from the characteristics of normal data observed
during training. Depending on how normal behavior is
modeled, existing novelty detection techniques can be broadly
categorized into several methodological families. This section
briefly reviews these categories with the specific purpose of
positioning domain-description methods, particularly those
based on Support Vector Machines (SVMs), relative to
alternative approaches [15].

In probabilistic approaches, normal behavior is
characterized by calculating the data's probability density
function, and samples with low likelihood under the learned
distribution are considered novel. While effective for low-
dimensional and well-behaved data, these methods often
suffer in high-dimensional settings due to density estimation
complexity and sensitivity to distributional assumptions. In
contrast, distance-based methods rely on similarity measures,
such as nearest-neighbor distances or clustering structures,
under the assumption that normal data form dense regions in
feature space; however, their effectiveness degrades with
increasing dimensionality and data volume [16].

Reconstruction-based methods, including autoencoder-
based models, detect novelty by measuring reconstruction
error when projecting input data through a learned
representation. These approaches are capable of modeling
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complex nonlinear data structures but typically require large
amounts of training data and careful model tuning. Moreover,
their decision boundaries are implicit, which can limit
interpretability and reliability in industrial or safety-critical
applications [17].

In contrast to the above paradigms, domain-description
methods explicitly aim to identify a border enclosing typical
data without assuming a specific underlying probability
distribution. Rather than modeling density or distances, these
approaches characterize the support of the normal data
distribution, making them particularly suitable for novelty
detection scenarios involving high-dimensional data, limited
training samples, or unknown anomaly characteristics [15].

Among domain-description methods, Support Vector
Machine-based approaches, notably OCSVM and Support
Vector Data Description (SVDD), are the most widely adopted.
These methods formulate novelty detection as an optimization
problem that constructs a tight boundary around normal data
by maximizing margin or minimizing hypersphere volume in
a high-dimensional feature space. By relying on boundary-
defining samples (support vectors), SVM-based domain-

description  methods achieve strong  generalization
performance and robustness [10].
—»  Probabilistic
—> Distance Based
Novel»ty Domain Based
Detection
N Reconstruction
Based
Information
—> Theoretic
Detection

Figure 1. Categories of novelty detection methods and
position of domain-description approaches (adapted from the
study [18])

Figure 1 summarizes the main categories of novelty
detection techniques and highlights the position of domain-
description methods within the broader landscape. As
illustrated, SVM-based techniques constitute a central and
well-established branch of domain-description approaches,
motivating their extensive adoption across diverse application
domains [18].

Given these characteristics, domain-description methods
based on OCSVM and SVDD have become a dominant
framework for novelty detection. The following section
therefore focuses on the theoretical foundations of SVM-based
domain-description methods, followed by a detailed review of
recent algorithmic improvements and real-world applications
[15].



The novelty detection can be categorized into five broad
classes, as shown in Figure 1 [18]. As can be seen from this
figure, various novelty detection techniques have been
developed, each leveraging distinct methodological
frameworks to isolate anomalous instances. Probabilistic
techniques calculate the density of the normal class and
interpret low-density regions as indicative of abnormality,
assuming novel data exhibits a low probability under the
modeled distribution. Distance-based methods rely on nearest
neighbor and clustering analysis, positing that normal data
points are tightly grouped, while anomalies lie at greater
distances from their nearest neighbors. Reconstruction-based
approaches train models to reproduce input data and assess
novelty through reconstruction error, where larger
discrepancies signify deviations from the learned structure. On
the other hand, domain-based techniques characterize the data
distribution by forming boundaries around the normal class
without focusing on density peaks, effectively capturing the
support of the training distribution. Information-theoretic
approaches evaluate the informational complexity of data
using metrics such as entropy, detecting novelty based on
significant changes in the information content introduced by
new observations. These frameworks collectively address the
diverse structural properties of data in unsupervised anomaly
detection tasks [15].

Based on these, the distance-based novelty detection
methods are the most used, which in this technique the
statistical similarity metrics that classify features using clearly
specified distance measurements. Statistical distances that
quantify the (dis)similarity between two sets of features
whether univariate or multivariate are the foundation of these
techniques, pertinent to the damaged and undamaged
circumstances, respectively. However, when dealing with
enormous  volumes of random  high-dimensional
characteristics, such methods do not appear to be efficient or
successful. Because of their complicated High computing
costs, substantial data storage requirements, and high-
dimensional features like time series model residuals may also
negatively affect the effectiveness of machine learning and
novelty detection algorithms and result in significant
limitations during the decision-making stage [17].

In certain instances, each sample was assigned a novelty
score determined by a distance metric, such Euclidean. The
greatest Euclidean distance between every sample of normal
training data and the calculation of the centroid of all normal
training data. The calculation of a test sample's distances from
the normal data centroid defines its output. At the centroid, a
spherical border of radius is defined by a certain threshold. If
the distance exceeds a predetermined threshold, the test
sample is deemed abnormal in relation to the existing normal
training data. It could be possible to generalize to normal data
that is absent from the training set by using a threshold value
to define a region that is larger than the one inhabited by
normal training data [19].

Domain-based methods for detecting novelty do not assume
anything regarding the data's distribution; instead, they use
just the data that are closest to the novelty boundary to
establish its position. The SVM based approach is one of the
domain-based novelty identification techniques are the most
used in the literature. Among them, the One-Class SVM (OC-
SVM) and Support Vector Data Description (SVDD) [20]. For
domain-based techniques, a boundary that considers the
training dataset's structure must be established. Since these
techniques define the target class border, or the domain, rather
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than the class density, they are usually insensitive to the
sample and density of the target class. The placement of
unknown data concerning the boundary then determines their
class membership. Like two-class SVM, novelty detection
SVM (sometimes referred to as OC-SVM in the literature)
uses only the support vectors, or the data that are closest to the
novelty border (in the converted space), to identify where the
novelty boundary is. When determining the novelty, all other
training set data those which are not support vectors, are
ignored [15].

Among the various categories of novelty detection
techniques, domain-description methods have attracted
particular because of their capacity to model complicated data
boundaries without strong distributional assumptions. SVM-
based approaches, especially OCSVM and SVDD, represent
the most prominent realizations of this paradigm. The
following section therefore focuses on these methods, their
theoretical foundations, and recent algorithmic advancements.

3. SUPPORT VECTOR MACHINES

SVM is a widely used classifier for generating decision
boundaries that divide data into various classes. For binary
pattern classification of linearly separable data, the original
SVM network is a perfect fit. A hyperplane that maximizes the
distance between two classes is used by the SVM. Support
vectors are the training points that are located close to the
border, establishing this dividing edge. Numerous adjustments
and enhancements have been made to the original concept
since it was first proposed. A technique called Robust Support
Vector Machines (RSVM) deals with the over-fitting issue that
noise in the training dataset causes. With this method, the
standard SVM is combined with an averaging technique (class
centre) to smooth the decision surface and regulate the degree
of regularization [21].

3.1 Support Vector Data Description

One commonly used method of a one-class classifier is
SVDD. This technique maps target data into a high-
dimensional feature space, intending to identify a set of
support vectors (SV) representing the spherical border of the
target data. The procedure takes place in feature space; hence,
the description boundary of SVDD is adjustable. To make up
for shortcomings in earlier one-class classifier research, SVM
served as the model for the development of SVDD. Numerous
classification techniques before the usage of support vectors
relied on estimating the target data set's probability
distribution [15].

Recently, certain SVDD technique extensions have been
put forth to enhance the hyper-spherically shaped novelty
boundary's boundaries. The first extension is proposed in the
previous study [22], where a new SVDD incorporates the idea
of density weighting—that is, assigning each data point a
weight based on its relative density, as determined by applying
the k-nearest neighbor (k-NN) method to the target data's
density distribution. This novel approach emphasizes data
points in high-density regions by incorporating the additional
weight into the SVDD search for an ideal description.
Eventually, the optimal description moves to these places.

Recent studies further extend Deep SVDD by integrating
representation learning with contrastive objectives, improving
feature compactness for normal samples while enhancing



separability from abnormal patterns. For example, contrastive
Deep SVDD frameworks combine contrastive learning and
SVDD loss to strengthen anomaly discrimination in complex
feature spaces [23].

On the other hand, Yin et al. [24] introduced an SVDD
technique for robust novelty detection that is based on active
learning. It may lessen the quantity of labelled data by utilizing
a framework for active learning, generalize the data spread,
and lessen the effect of noise by directing the selection process
with the help of the local density.

A deep learning neural network model that adopts the
SVDD was proposed by Kim et al. [25]. A variation of the
SVM, the SVDD achieves a maximal margin in one-class
classification tasks, resulting in great generalization
performance. The goal of the suggested model is to achieve
deep learning's representational power. With the SVDD,
generalization performance is preserved. In the study by Wang
and Cha [26], according to the multivariate statistics known as
Stahel-Donoho (SD) outlying-ness in an arbitrary kernel space,
the authors have suggested giving each observation a weight.
Weighted penalties, whose weights depend smoothly on the
outlying-ness criteria, were presented as a novel robust SVDD.
By assigning a weight to each data item based on a few chosen
weight function families. In order to find the minimum-sized
hypersphere, SVDD down-weights observations containing a
lot of outliers, which could be mistakes, recordings from
unusual situations, or members of a different population. To
create a better model for the regular data, it is crucial to be able
to identify these observations during SVDD training.

A two-phase intelligent fault detection approach for rotating
equipment that combines optimized SVDD and optimized
SVM was proposed by Zhang et al. [27]. To be more precise,
SVM is used for fault identification, and SVDD is used for
fault detection. The grasshopper optimization algorithm (GOA)
optimizes the parameters of SVM and SVDD. The input
feature vector for SVDD and SVM is extracted using
multiscale entropy (ME). The advantages and disadvantages
of eight distinct entropy-based indicators for feature extraction
are examined within the parameters of the suggested
methodology. A technique for selecting features when
building the SVDD model with only normal samples is shown.

Meanwhile, to efficiently monitor the nonlinear plantwide
processes, a decentralized fault detection and diagnosis
technique was suggested by Wang et al. [28]. It has two main
themes: fault diagnosis based on SVDD and mutual
information-Louvain-based process decomposition. First, the
plantwide process is first mapped as an undirected graph that
matches the process structure and mechanism knowledge. A
Louvain algorithm with MI correlation is suggested to finely
break down the process into manageable sub-blocks. Mutual
Information (MI) is provided to illustrate the degree of
correlation between various nodes (i.e., process variables). For
each sub-block, a decentralized defect detection technique
based on SVDD is then introduced, and the associated variable
contribution rate is calculated. Decentralized SVDD
(DSVDD), which identifies the abnormal status and pinpoints
the variable causing this fault, is the basis for local fault
diagnosis and detection. The DSVDD model is used to identify
faults and determine their causes by calculating the
corresponding contribution rate.

In the study by Rahimzadeh Arashloo [29], the author has
introduced a dual norm into the goal function, demonstrating
a way for managing the intrinsic sparsity or consistency of the
issue to improve descriptive capacity. By generalizing the
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model to ¢, -norm where p =1, the proposed approach
enables formulating a non-linear cost for slacks. Also, extend
the proposed works of €,,-norm concept from a strictly one-
class environment to the training situation and demonstrate the
benefits of the suggested extension by include marked
negative objects.

DR-SVDD, or dynamic radius support vector data
description, is a new fault diagnosis technique. was proposed
by Lu et al. [30] to efficiently identify the fuel cell system with
proton exchange membranes faults. Compared to the classic
SVDD and enhanced SVDDs, this approach takes into account
the distribution properties of the training set sample as well as
the SVDD hypersphere radius information to provide a more
sufficient and accurate description of the sample data. New
slack variables are added to the model to improve its
generalization performance, resilience, fault-tolerance, and
computational complexity.

The Sparrow Search Algorithm (SSA) was introduced by
Pan et al. [31] into the parameter optimization process of
SVDD. This method reads the training data then determines
and arranges the fitness values for every sparrow based on the
characteristics that correspond to its location. The training
samples are divided into two groups when SVDD is trained
using a single group at random; While the other group
conducts the test, one group trains the SVDD model determine
how many samples are not in the hypersphere. This is known
as the fitness value. The sparrow that has the lowest fitness
was chosen as the elite, and its position data was recorded to
ascertain whether the fitness was below or equal to the error
rate threshold. The computed error rate is then used as the
fitness value.

In the study by Wu et al. [32], the authors have proposed the
Part Interval Stacked Auto-encoder and Support Vector Data
Description (PISAE-SVDD), a new process monitoring and
fault diagnosis algorithm. This algorithm improves the
Stacked Auto-encoder's (SAE) loss function. The mean square
error of the initial input and output data is the reconstruction
error value in certain measurement data. In contrast, a specific
acceptable range for the reconstruction error value is provided
by uncertain measurement data. Within this range, the
measurement data's error value is regarded as zero. In the same
manner as for specific measurement data, the reconstruction
error value of measurement data that exceeds the permitted
range is computed. Meanwhile, SAE's powerful nonlinear
characterization capability is used to retrieve the distinctive
information of the industrial process. Then, using the SAE
feature information data taken from normal samples, SVDD is
utilized to determine the control limit of the fluctuation range
of the normal functioning state.

A Broad Learning Systems (BLS)-based weighted SVDD
algorithm was proposed by Huang et al. [33], this increases the
SVDD model's robustness during training by introducing
reconstruction of a few atypical samples and error weights.
SVDD was utilized to address issues where the proportion of
sample categories of data is highly uneven, and the BLS was
enhanced to produce a new model for data reconstruction.

On the other hand, a novel approach of a pinball loss SVDD
was suggested in order to find outliers in the previous study
[34]. In this approach, the sphere classifier uses all the training
data, including the ones that are located inside the sphere.
Because a little quantity of noisy data has minimal effect
regarding the classifier, this technique is more resistive to
noise and achieves dispersion minimization in the sphere
center. This technique is superior in two ways: first, it employs



the pinball loss, which improves our approach's robustness and
reduces scatter in the sphere center, in contrast to the
traditional SVDD, which uses the hinge loss function and is
noise-sensitive; second, it can be distinguished from the
existing weight-varying anti-noise SVDD techniques, which
take more pre-processing time to produce.

In industrial anomaly detection, recent improvements to
Deep SVDD emphasize robust feature extraction and patch-
level representation to handle localized defects, demonstrating
improved detection stability in real deployment contexts [35].

3.1.1 Summary

Overall, the reviewed SVDD extensions reveal a clear
research trend toward improving robustness and adaptability
of the hypersphere boundary under real-world data
imperfections. Density-weighted and active-learning-based
SVDD variants consistently enhance sensitivity to local data
structure, particularly in noisy or imbalanced datasets.
Meanwhile, integration with deep learning models enables
SVDD to handle high-dimensional and nonlinear feature
representations  more  effectively.  However, these
improvements often introduce increased computational
complexity and additional hyperparameters, which can limit
scalability and hinder deployment in real-time systems.
Despite performance gains, most SVDD variants remain
sensitive to kernel and parameter selection, highlighting the

need for adaptive or self-tuning mechanisms in future research.

3.2 One-Class Support Vector Machines

OCSVM is a popular method that is a reliable classifier for
unsupervised anomaly detection. However, in some cases, it is
not resistant to outliers. A few of its variations have recently
been put forth to increase the resilience against outliers. The
fundamental concept of OCSVM is to locate in the feature
space a hyperplane (w - ¢(x)) — p = 0 that, with the greatest
possible margin, divides sample images from the origin. The
following is the primal optimization problem [36].

1 2 1 @n
min 2 fwil® = p + 5 5 & M
st.(w.p ()= p&,& =0,i=1,..,n
where, [ represents all of the training samples, v is a trade-off
parameter, and & are slack variables. Meanwhile, w, p, and &
are the weight vector, offset parameter, and i-th training
sample, respectively. This is a convex optimization problem,
and its dual problem, which is represented below, can be used
to solve it.

n

1
maX—E Z a’iajk(xl-,xj)
A= )
1
st.0<gq S—I,Zai =1

where, K(xl-, xj) denotes a kernel function. A typical kernel
function adopted by researchers is the Gaussian Radial Basis
Function (RBF), which is given as follows:

1
k(o) = exp (= 5l = ) ()

where, ¢ is a Gaussian function parameter. Because of its
capacity to represent intricate and non-linear decision
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boundaries, this RBF is employed as the kernel function. The
RBF kernel calculates the relationship between two data
points' similarity and the Euclidean distance between them
[37].

Let's say sample x; lies outside of the classification
hyperplane, &; is greater than 0, and the Karush-Kuhn-Tucker
(KKT) condition states that a; = 1/vl. This indicates that in
traditional OCSVM, samples outside of the surface are defined
by SVs. It is well known that the normal vector w =

', a;¢(x;) can be written in terms of the mappings of SVs.
When v is set large to create outliers that are outside the
surface, these outliers become SVs and their respective a; are
equal to 1/vl, which gives them more magnitude control over
the normal vector and the surface; conversely, when v is set
small, the surface surrounds the outliers, thereby influencing
the surface.

There are two components to the strategy suggested by
Scholkopf et al. [36]; getting the surface around the target
cluster core is the first step; using this surface and find outliers
and remove them from the training set so that the final
OCSVM model may be trained. It is anticipated that the
surface will identify the outliers outside and, more crucially,
will not be affected by these outside-located outliers to better
contain the cluster core of the target class. By adjusting v, the
first expectation can be fulfilled since this value represents the
upper bound for training samples that are situated outside of
the surface or hyperplane.

3.2.1 Algorithmic improvements to the OCSVM

Anomaly detection makes considerable use of a OCSVM.
To detect anomalies, OCSVM looks for the ideal hyperplane
in high-dimensional data that can maximally separate the data
from anomalies. However, conventional OCSVM' hinge loss
is unlimited, leading to greater loss from outliers and
impairing their ability to detect anomalies. Outlier influence is
decreased using the bounding hinge loss function [38].

In this section, the most recent development in the
fundamental research on OCSVM at the algorithmic level is
discussed. The implementation of the OCSVM in the earlier
research is always centered around the original formulation,
such as in Egs. (1) and (2). However, recently, more research
found in the literature has made significant changes to the
OCSVM formulation at the algorithmic level.

For example, a new OCSVM algorithm based on hidden
information was proposed by Zhu and Zhong [39]. They
proposed a modified OCSVM that exploits so-called “hidden”
or group information present in the training data. Unlike the
standard OCSVM, which models all training samples using a
single set of slack variables, their approach assumes that
samples can be meaningfully partitioned into groups (e.g.,
based on demographic, acquisition, or contextual attributes).
The key motivation is that deviations from the learned
boundary may have different significance across groups, and
a single global slack mechanism may bias the novelty
boundary, particularly when training data are limited or
heterogeneous. To address this, the method introduces a
second learning space, referred to as the correcting space, in
addition to the conventional decision space. While all samples
contribute to defining the decision boundary in the decision
space, group-specific correcting functions are learned in the
correcting space to model slack variables. These correcting
functions regulate how much each group is allowed to violate
the boundary, effectively imposing group-dependent
constraints on the slack variables. Importantly, the correcting



space does not perform classification; instead, it modulates the
influence of training errors during optimization. This two-
space formulation enables the OCSVM to incorporate
auxiliary group information, improving generalization by
preventing dominant or noisy groups from disproportionately
shaping the novelty boundary.

In another approach, an algorithm for resilient and sparse
anomaly detection was put forth by Tian et al. [40]. They have
added the ramp loss function with comparison to the initial
implementation of OCSVM. The primary goal of this work is
to create a sparse and robust semi-supervised method by using
the non-convexity aspects of the ramp loss function.
Additionally, the derived model was solved using the
Concave-Convex Procedure (CCCP), which solves a non-
differentiable non-convex optimization problem. The authors
have introduced a ramp loss function in this manner:

0, zZZp
R,s=4p—2 p—s<z<p 4)
S, z<p-—s

where, z and s are the loss function score and pre-defined
parameter, respectively. Therefore, the ramp loss function as
in Eq. (4) was employed to strengthen the resilience of
OCSVM and prevent the outliers from being excluded as
support vectors. Based on this function, for those z < p — s,
the ramp loss will be flat, and its value will be a constant s.
Ramp loss OCSVM can be reformulated as:

l
o1 1
ming I + 57 ) Ros (0 0) -
i=

To accurately categorize samples that resemble training
data, OCSVM seeks to choose an appropriate region from an
unknown probability distribution that includes the majority of
the input samples. This algorithm can be used to locate the
hypersphere with the smallest radius to discover outliers.
However, a conventional OCSVM’s hinge loss is unlimited,
leading to greater loss from outliers and impairing their ability
to detect anomalies, which in turn results in the lessened
outlier’s influence [40].

On the other hand, a new method for detecting anomalies in
big amounts of data using randomized nonlinear features in
SVM was proposed [38]. This method reduces computing
complexity by doing away with the requirement to handle
enormous kernel matrices for large datasets. Instead of looking
for support vectors that are optimized using an unlimited loss
function, the authors have proposed an iterative approach with
a bounded loss function using a half-quadratic optimization
technique.

In this case, the random projection can reduce the
optimization method's computational cost needed for large
nonlinear kernels. Hence, a similar effect can be observed
when using nonlinear features. Considering these issues, the
authors in the research [38] proposed OCSVM's optimization
issue with a bounded loss function as:

l

1ZT
vl & —p

i=1

(6)

max ||wl|3 —
wp 2

where, randomized slack variables, &} = ,8(1 - e"’fi), with
normalization constant, 8 given as follows:
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T 1—e

B (7

where, the scaling constant is 7 > 0. The fundamental goal of
constraining the loss function of &/ = 1 is ensured by the
normalizing constant 8. The scale constant, 1, sets the upper
bound, and the loss function becomes conventional hinge loss
when n =0 The above formula demonstrates that the
bounded loss function OCSVM is convex and monotonic, just
like conventional OCSVM. It is evident that n regulates the
limit of the loss function, substituting the unbounded loss
function of the conventional SVM with a bounded one.
Greater 1 values indicate higher degrees of scaling, and vice
versa [38].

In terms of kernel parameters, for example o in Eq. (3),
whose selection is not simple for anomaly detection situations,
has a significant role in OCSVM's performance. Furthermore,
in certain complex and unequal data distributions, the densities
and shapes of distinct data regions can differ significantly,
which makes it challenging for OCSVM to use a global kernel
parameter to generate good boundaries in every region. Hence,
in the study by Pang et al. [41], they have suggested a hybrid
technique combining vector quantization and OCSVM, known
as VQ-OCSVM, to address the problems.

To be more precise, distribution information about normal
data is extracted via vector quantization, and the resulting
information is utilized to build a clear mapping function that
creates a high-dimensional feature space from data. The
classifier is then constructed within the feature space using
OCSVM. Through the addition of the explicit mapping to
OCSVM, two regularization hyperparameters exist, A; and A,
have been introduced in VQ-OCSVM. For A,, the traditional
OCSVM algorithm is referred to, and it is suggested to be
fixed to the value of 1. As for A;, they have introduced the
subsequent practical yet empirical approach to determine its
value.

In order to achieve feature auto-selection and model sparsity,
keep in mind that A; regulates the weight of the L; -norm
regularization in the objective function. It makes sense that a
model with a A; that is too small will overfit the typical
training data and be too complex, whereas a model with a
A, that is too large will be too simple and underfit the typical
training data [41].

The dual problem, which is a quadratic programming
problem, is solved using the conventional OCSVM in order to
solve the primal problem. Nevertheless, quadratic
programming is ineffective for training large-scale problems
since its computation is cubic and its storage complexity
increases quadratically with problem scale. Therefore, Zhu et
al. [42] proposed to directly train OCSVM in primordial space.
Unfortunately, the gradient-based optimization approach, a
first-order method that converges quickly, cannot solve it
because of the non-differentiability of hinge loss utilized in
OCSVM.

Furthermore, the OCSVM is less resilient to outliers
because of the unbounded hinge loss. Because of the outliers,
the decision boundary will diverge greatly from the ideal
hyperplane. A nonconvex differentiable function, a Huberized
truncated loss function, was suggested as a solution to the
problems to increase the OCSVM's resilience [42]. As an
alternative to hinge loss in conventional OCSVM, the
Huberized truncated loss function was proposed to be used due
to its insensitiveness to outliers. Unlike regular OCSVM,
robust OCSVM has a differentiable primal objective function.



The primordial space's resilient OCSVM can be solved using
a method for rapid proximal gradients. The following are the
two Huber loss functions that the authors have suggested:

(p—r—g, r<p-6

_ —\2
Hl(r)_ %’ p-6<r§p (8)
0, r>p
s—r—g, r<p-—96
KHs(r) = (5;;)2’ S—6<7"SS (9)
0, r>s

The continuous and differentiable nature of H,(r) and
Hy(r) was readily apparent. It can be observed that these
functions diminish to the hinge loss when § — 0 and expand
linearly as i lowers. Following the combination of H; (r) and
—H,(r), the Huberized truncated loss function, Ty(r) =
H,(r) — Hy(r) can be written as follows:

Ts(r) = Hy(r) — Hs(r) =

p—S, r<s-—90
5§ (s-1)?
p_r_E_T' s—0<r<s 0
<p—r—§, s<r<p-4§ (10)
2
%, p—6<r<p
0, r>p

As presented above, the development of OCSVM began
with a modification that added further restrictions to the slack
variables for the instances belonging to various groups. Then,
later, the ramp loss function was introduced, where this loss
function's non-convexity properties were used to create a
robust, sparse semi-supervised method. After that bounded
loss function was integrated utilizing OCSVM's randomized
nonlinear characteristics, removing the requirement to handle
big kernel matrices for big datasets, which lowers the
complexity in terms of time and space. In another method, it
was developed by utilizing the vector quantization technique
combined with the OCSVM, which is more capable of
generalization complex data distribution. Later, a Huberized
truncated loss function was proposed to overcome the hinge
loss function's drawbacks and increase the OCSVM's
robustness.

(1) Synthesis of algorithmic advancesment in OCSVM
Algorithmic improvements to OCSVM can be broadly
categorized into three dominant directions: loss-function
modification, integration with auxiliary learning models, and
computational acceleration. Loss-based approaches, such as
ramp, bounded, and Huberized loss functions, consistently
improve robustness against outliers by limiting the influence
of extreme samples; however, they often introduce non-
convex optimization challenges and heightened parameter
sensitivity. Hybrid approaches that combine OCSVM with
deep learning or vector quantization enhance representational
power but increase model complexity and training cost. Efforts
aimed at accelerating OCSVM through randomized features or
primal-space optimization improve scalability for large
datasets, yet may trade off accuracy in highly heterogeneous
data distributions. Overall, existing methods exhibit a
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recurring tension between robustness,
efficiency, and generalization capability.

computational

3.2.2 Applications of OCSVM

There are many areas or fields of applications that have
made use of OCSVM in dealing with the challenge of novelty
detection. In this section, some of the recent research that has
applied OCSVM is discussed. For example, Delgado-Prieto et
al. [20] proposed a multi-modal strategy to enhance the
effectiveness of novelty detection. The approach used in this
work is broken down into three primary steps. The first step is
a specific feature calculation and reduction over all accessible
physical magnitudes. Next, a group of OCSVM-based novelty
detection models was developed to detect previously
unconsidered events. Lastly, a diagnosis model that consists of
a feature fusion scheme was introduced to classify faults
accurately.

A new scheme was proposed to be utilized for denoising,
which displays the optimal thresholding rule and mother
wavelet combination for every signal [43]. This scheme
requires features to be collected from the time-frequency and
time-domains, and the energy-to-frequency analysis shows the
optimal mother wavelet for feature extraction from each signal.
The criterion of the Shannon entropy ratio. In this work, it is
also demonstrated because by making the signals more
nonlinear, the statistical traditional or mixtures of statistical
traditional and solely nonlinear features have the ability to
fully classify data; nonlinear features are unable to do so.
Hence, three rotating systems' vibration data are detected
using OC-SVM; nevertheless, the focus is on data pre-
processing techniques such denoising, dimension reduction,
vectorization, feature extraction, and normalization. In
particular, for the first time, the impact of both classical and
nonlinear statistical feature extraction on novelty detection.

Saari et al. [44] have used OCSVM to use fault-specific
characteristics taken from vibration signals in order to detect
and identify wind turbine bearing problems. By training
models using these attributes as input for a OCSVM,
automatic identification was accomplished. By adjusting the
model tuning settings, detection models with varying
sensitivity were trained concurrently. Additionally, efforts
were made to determine a process for choosing the model
tuning parameters by first determining the system's criticality
and then using that information to estimate the detection
model's accuracy.

An unsupervised deep learning method was proposed
founded on an OCSVM-based deep auto-encoder, where the
classifier was used in the measurement of the reaction data
obtained from baseline or intact structures as training data,
making it possible to identify structural degradation in the
future [45]. The well-crafted deep auto-encoder, which is
utilized as an extractor to extract damage-sensitive features
from the observed acceleration response data, and the OCSVM,
which is employed as a damage detector, are the main
innovations and contributions of the suggested approach.

On the other hand, Cardoso and Poppi [46] suggested a
novel technique that uses one-class modeling and Raman
spectroscopy to examine the adulteration in cassava starch.
OCSVM was found to have achieved higher accuracy than
other techniques. This study evaluated two methods for one-
class classifier models: OC-SVM and soft independent
modelling by class analogy (SIMCA).

A new hybrid model was proposed in the previous study [47]
that combines an unsupervised deep belief network (DBN) and



OCSVM to solve the difficulty of detecting high-dimensional
geochemical abnormalities. This model uses DBN to initially
extract the pertinent features, which are then fed into the
OCSVM. The hybrid method's decision function values are
used to map the geochemical patterns associated with iron
deposits. The OCSVM is then trained using the features
discovered from the original data in order to successfully
distinguish the multivariate geochemical anomaly from the
geochemical background. Ramp OC-SVM, a robust and
nonconvex semi-supervised technique, was proposed by Tian
et al. [48]. OCSVM was used to handle the lack of labelled
data for deceptive opinions and by utilizing the Ramp loss
functions, non-convex features to its advantage, where it
removes the impact of non-reviewed opinions and outliers.

In the other work, the large building land area was able to
be retrieved from Landsat image data using an OCSVM-based
approach [49]. Their works have demonstrated that OCSVM
is appropriate for the research of remote sensing image
classification when only one class of features is extracted, and
expanding the use of OCSVM in remote sensing picture
building recognition, demonstrating its effectiveness and
precision in this context. In the study by Yin and Wang [50], a
new strategy was put forward to detect the outliers of
unhealthy leaf images from the massive leaf images dataset
using OCSVM. They have established that their modified
OCSVM has produced very efficient and robust results in
detecting the anomalous data from the extensive dataset of leaf
images.

The decision tree classifier and OCSVM were used to create
a hybrid intrusion detection system [51]. This system is
designed to detect both known Very highly accurate zero-day
cyberattacks with low false alarm rates. Using OCSVM as the
classifier inside their ensemble learning model, the
experimental results have shown that this system outperforms
traditional single classifier approaches and proves to be more
effective than other machine learning techniques.

On the other hand, a novel personalized federated learning
method based on OCSVM was proposed by Anaissi et al. [52].
In this work, the method aims to address the transmission and
data privacy concerns raised by central machine learning
models by customizing the support vectors that are generated
at each client in the distributed learning model structure. Their
results have shown that the proposed OCSVM-based
personalized federated learning method has achieved
significant accuracy and can precisely generalize the clients’
models compared to the other techniques.

Recently, an OCSVM-based algorithm was proposed by
Karami and Niaki [53] to overcome the limited sensitivity of
fast change point detection, high computing costs, poor
scalability with large networks, and excessive reliance on
case-based features. It is adaptable to a variety of social
network applications and efficiently identifies network
disruptions by utilizing both nodal and network-level
characteristics. The approach reduces the processing of input
data by using a well-defined training data dictionary with an
evolutionary network update procedure, improving memory
and time efficiency.

Recent application studies also demonstrate the practicality
of one-class classification for structural health monitoring
using online anomaly detection, emphasizing real-time
deployment under limited anomaly labels and evolving
operating conditions [54].
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(1) Summary of application-oriented implementation

Across diverse application domains, including fault
diagnosis, medical analysis, remote sensing, and cybersecurity,
OCSVM-based novelty detection demonstrates strong
adaptability and consistent performance when labeled
anomaly data are scarce. Application-driven studies highlight
the importance of domain-specific feature engineering and
preprocessing pipelines, which often play a decisive role in
detection accuracy. Nevertheless, reliance on handcrafted
features or expert knowledge reduces portability across
domains. Furthermore, many application-oriented models
require careful parameter tuning and exhibit sensitivity to
operating conditions, limiting robustness under data drift or
evolving environments. These observations suggest that future
application-focused research should emphasize adaptive
feature learning and automated parameter calibration to
improve long-term reliability.

Recent comparative studies continue to include OC-SVM
as a primary baseline for unsupervised anomaly detection. For
example, Agyemang [55] evaluated OC-SVM against
Isolation Forest, Local Outlier Factor, Robust Covariance, and
an SGD-based OC-SVM variant, reporting that OC-SVM
remains among the most effective methods for identifying
outliers, achieving strong recall performance, while
highlighting trade-offs with precision depending on the dataset
characteristics.

4. SUMMARY

Table 1 summarizes the review of the OCSVM and SVDD
algorithms in the context of novelty detection. The works are
arranged in this table from the most recent implementation to
the oldest research. Consistent improvements of fundamental
algorithms like OCSVM and SVDD are revealed in this review
of novelty detection techniques. Using methods like ramp loss
functions deep belief networks (DBNs) ensemble classifiers
and metaheuristic optimizations like Grasshopper or Sparrow
Search researchers have enhanced these algorithms. These
integrations are intended to increase the accuracy of fault
detection strengthen resilience to outliers and support complex
or high-dimensional datasets from spam filtering and plant
health monitoring to electromechanical faults and
geochemical analyses. Dynamic adaptations like quarter-
sphere methods and variable-radius SVDD further highlight
the fields emphasis on efficiency and generalization across a
range of applications.

Even though there has been a lot of progress there are still
issues mostly with computational cost scalability and
parameter sensitivity. Many models rely on fine-tuning
kernels loss parameters or feature extraction architectures
which can make them difficult to use in large-scale or real-
time scenarios. Additionally, some methods are less adaptable
to different environments because they mainly rely on domain-
specific preprocessing pipelines or signature databases.
Furthermore, techniques such as empirical pinball losses or
fixed threshold autoencoders show vulnerability when dealing
with noisy inputs or changing data distributions. When
considered collectively the developments show promise but
also highlight the need to strike a careful balance in novelty
detection between innovation and generalizability.



Table 1. Summary of different approaches used in novelty detection

Methods

Improvements

Limitations

DW-SVDD (SVDD
and k-NN) [22]

Ramp-OCSVM [40]

OCSVM [20]

OCSVM [43]

OCSVM [44]

OCSVM and C5
decision tree
classifier [51]

Deep Belief
Networks (DBN) and
OCSVM [47]

OCSVM [38]

Ramp-OCSVM [48]

OCSVM [46]

SVM, SVDD, and
Grasshopper
Optimization

Algorithm (GOA)

[27]

SVDD [29]

DR-SVDD [30]

DBN, SVDD, and
Sparrow Search
Algorithm (SSA) [31]

Enhances SVDD by incorporating density weights
from k-NN, prioritizing high-density regions, shifting
boundary toward dense clusters, and improving
accuracy without assuming data distribution.
Replaces hinge loss with ramp loss to improve
robustness against outliers; solves non-convex
optimization via CCCP.

Multimodal novelty detection methods are used to
ensemble OCSVMs and separate feature reduction,
enhance detection accuracy, fault diagnosis
reliability, and adaptability to unknown
electromechanical faults.

Enhanced OC-SVM by using nonlinear features and a
systematic preprocessing pipeline, which includes
advanced denoising and optimized wavelet selection.

The algorithm enhances fault detection by combining
fault-specific vibration features with parallel OCSVM
models tuned for system criticality, enabling earlier
detection than traditional methods with minimal false
alarms.

Hybrid algorithm combines decision tree and
OCSVM using a stacking ensemble, enabling
accurate detection of both known and zero-day
intrusions with reduced false alarm rates.

The hybrid model boosts anomaly detection by
extracting nonlinear, high-level geochemical features
via deep belief networks, improving accuracy and
scalability for complex, high-dimensional mineral
datasets.

The algorithm improves OCSVM by integrating
randomized nonlinear features and a bounded loss
function, reducing sensitivity to outliers, and
significantly decreasing computational complexity for
large-scale IoT anomaly detection.

The algorithm enhances spam detection by combining
semi-supervised learning with ramp loss, improving
robustness to outliers and non-review noise while
maintaining strong generalization with limited
labeled deceptive data.

The algorithm integrates Raman spectroscopy with
OCSVM for rapid, non-destructive cassava starch
adulteration detection, achieving higher accuracy and
detecting adulterants at low concentrations.

The algorithm introduces a two-stage fault diagnosis
framework using GOA-optimized SVDD and SVM,
with entropy-based feature selection tailored to
normal data, boosting early detection and
classification accuracy.

The improvement generalizes SVDD by replacing the
fixed linear slack penalty with a tuneable £,,-norm,
allowing nonlinear error weighting, better sparsity
control, and improved generalization performance in
one-class classification tasks
The method improves fault diagnosis by combining
hypersphere radius with local data distribution,
enabling dynamic radius adjustment and multi-class
fault identification with higher accuracy in the
systems.

The algorithm uses a DBN for automatic feature
extraction, optimized SVDD via SSA for accurate
degradation modelling, eliminating reliance on fault
data and manual parameter tuning.

May underperform with symmetric or multi-modal data
where density weights exert less influence, resulting in
less accurate descriptions and potential misclassification.

Non-convex and non-differentiable optimization requires
iterative CCCP, increasing computational cost and limiting
scalability on large datasets.

Risks diagnosis errors without novelty detection, struggles
with overlapping fault features, and relies on separate
feature reductions, which may introduce complexity and
affect generalizability across varied electromechanical
systems.

Despite high accuracy, the algorithm depends on tailored
preprocessing for each signal, increasing computational
burden and limiting scalability; traditional statistical
features may fail under rising nonlinearity.

The algorithm fails to reliably identify fault locations
without auxiliary methods, is sensitive to feature and
parameter selection, and cannot always distinguish
between similar fault signatures from different
components.

Hybrid system adds complexity, depends heavily on
signature database updates and kernel selection, and may
struggle to adapt quickly to evolving malware behaviors or
large-scale data.

The model relies heavily on optimal parameter tuning,
involves increased computational cost, and may struggle
with generalization across datasets with diverse
geochemical patterns.

The performance depends heavily on parameter tuning,

may struggle with highly imbalanced or noisy IoT data,

and randomized features could dilute the discriminative
power.

Requires careful ramp parameter tuning, involves non-
convex optimization, and may struggle with evolving
linguistic styles or sparse labelled deceptive data in large-
scale opinion datasets.

The detection of lower adulteration concentration remains
challenging due to Raman sensitivity and sample
heterogeneity. OCSVM also depends on careful parameter
tuning and effective preprocessing.

The algorithm depends heavily on entropy indicator
selection, requires careful parameter tuning via GOA, and
may be less effective with severely imbalanced or noisy
datasets.

The selectin of optimal p and kernel parameters is
challenging, and the performance may degrade with poor
tuning, and computational cost increases with complex
optimization in high-dimensional data.

Requires careful tuning of radius weight and neighbour
count, may struggle with noisy data, and adds complexity
with dynamic boundary calculations per test sample.

Limited testing beyond experimental datasets may cause
potential challenges in real-world variability, like
changing speed and load. Only the amplitude spectrum
was used while the other inputs were not explored, and the
anti-noise capability needs deeper analysis.
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Methods Improvements

Limitations

SVDD and Part partial uncertainty, extracts robust nonlinear features
Interval Stacked . . .
via PISAE, and combines with SVDD for accurate
Autoencoder (PISAE) o . . o
[32] process monitoring without misclassifying normal

fluctuations as faults.

Incorporates BLS-based reconstruction error as
sample weighting, introduces a few anomalous
samples during SVDD training, enhancing
robustness, generalization, and domain boundary

Broad Learning
System (BLS) and
SVDD [33]

The model improves SAE loss function to handle

accuracy in highly imbalanced datasets.

The algorithm introduces pinball loss to SVDD,
making all training data influential in sphere
formation, enhancing robustness to noise and
resampling, while preserving computational

pin-SVDD [34]

efficiency without extra preprocessing.

The method applies OCSVM to extract construction
land from multi-temporal satellite imagery data with

OCSVM [49] high accuracy, enabling efficient monitoring,
expansion analysis, and driving factor evaluation in
urban environments.
A modified OCSVM was proposed to detect leaf
OCSVM [50] image anomalies, integrates expert-scored labels,

DBN, Improved
Quarter-Sphere Based

extracts feature via neural networks, and assigns
outlier scores for fine-grained plant health evaluation.

The model combines DBN with IQSSVM for real-
time anomaly detection; reduces complexity via
sorting, removes kernel parameter dependency, and

The method relies on predefined uncertainty ranges; lacks
dynamic estimation of uncertainty levels across variables,
and may underperform with highly imbalanced or noisy
data due to fixed thresholding in error processing.

The model depends heavily on reconstruction quality, and
it may underperform if reconstruction errors do not reflect
anomaly likelihood accurately, resulting in limited
effectiveness in high-noise data or datasets with densely
overlapping normal-abnormal distributions.

Lacks dynamic adaptability to evolving data distributions,
such as assuming a static penalty structure. The pinball
parameter tuning is empirical and may risk excluding valid
targets if set improperly.

Only construction land is classified, ignoring other land
types, and therefore lacks granularity in mixed-use areas.
It requires careful sample selection, and parameter tuning

may impact accuracy across time or terrain variations.

The algorithm relies on expert-labelled data, limiting
scalability; dataset diversity and fuzzy labels affect
accuracy; feature extraction and scoring are dataset-
dependent, potentially reducing generalization to unseen
leaf types.
The model requires careful DBN tuning for feature
extraction, and hence, performance may vary with DBN
architecture. It assumes anomaly distribution

OCSVM[ 5(I6?SSVM) supports accurate unsupervised processing of high- characteristics in which the accuracy may drop if
dimensional sequential data. anomalies are not one-sided or if data noise increases.
5. CONCLUSION data drift and non-stationary circumstances particularly in

This review examined novelty detection from the
perspective of domain-description learning, focusing on
SVM-based formulations, particularly SVDD and OCSVM.
Unlike probabilistic, distance-based, and reconstruction-based
methods, domain-description approaches directly model the
boundary of normal data, which explains their broad adoption
in scenarios where abnormal samples are rare, unknown, or
difficult to label.

The reviewed literature shows that recent progress in
SVDD/OCSVM development follows several consistent
directions. First, robust loss designs (e.g., ramp, bounded,
pinball, or Huberized losses) reduce the influence of outliers
and contaminated training data; however, they often introduce
non-convex optimization or additional hyperparameters,
increasing training complexity and sensitivity. Second, hybrid
and deep integration strategies enhance representation
learning and improve detection accuracy in high-dimensional
domains, but they commonly require extensive tuning and can
increase computational cost, limiting practicality in real-time
applications. Third, acceleration and scalability techniques,
including randomized features and primal-space optimization,
reduce computational and memory burdens for large datasets;
nonetheless, these improvements may trade off boundary
precision in heterogeneous or dynamically evolving
environments.

Despite these developments a number of unresolved issues
are still present in all of the studies that were surveyed. The
sensitivity of OCSVM/SVDD performance to kernel
parameters loss settings and threshold selection is a major
problem that frequently necessitates expert-driven tuning and
decreases portability across domains. The decreased
dependability of static decision boundaries under concept drift
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streaming or long-term monitoring settings is another
persistent drawback. Lastly while many studies show good
empirical performance, they offer few theoretical assurances
about generalization and robustness under contamination and
distribution shift.

Future research should therefore prioritize: (i) self-tuning
and adaptive domain-description models that can update
boundaries under drift while maintaining stability, (ii) scalable
optimization frameworks that preserve robustness without
high computational overhead, and (iii) hybrid methods that
combine domain-description learning with modern feature
learning while minimizing parameter sensitivity. Addressing
these directions will significantly improve the deployability of
OCSVM/SVDD-based novelty detection in real-world
systems.

REFERENCES

[1] Li,S., Tung, W.L., Ng, W.K. (2014). A novelty detection
machine and its application to bank failure prediction.
Neurocomputing, 130: 63-72.
https://doi.org/10.1016/j.neucom.2013.02.043

Wu, H., Prasad, S., Priya, T. (2014). Detecting new
classes via infinite warped mixture models for
hyperspectral image analysis. In 2014 IEEE International
Conference on Image Processing (ICIP), Paris, France,
Pp. 5027-5031.
https://doi.org/10.1109/icip.2014.7026018

Duong, P., Nguyen, V., Dinh, M., Le, T., Tran, D., Ma,
W. (2015). Graph-based semi-supervised Support Vector
Data Description for novelty detection. In 2015
International Joint Conference on Neural Networks

(3]


https://doi.org/10.1016/j.neucom.2013.02.043

(4]

(6]

(7]

(8]

[9]

[10]

[12]

[14]

[15]

(IICNN), pp-
https://doi.org/10.1109/IJCNN.2015.7280565
Clifton, D.A., Clifton, L.A., Bannister, P.R., Tarassenko,
L. (2008). Automated novelty detection in industrial
systems. In Advances of Computational Intelligence in
Industrial Systems, pp- 269-296.
https://doi.org/10.1007/978-3-540-78297-1 13

Yadav, B., Devi, V.S. (2014). Novelty detection applied
to the classification problem using Probabilistic Neural
Network. In 2014 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), Orlando, FL,
USA, pp- 265-272.
https://doi.org/10.1109/CIDM.2014.7008677

Alsuwaidi, A., Grieve, B., Yin, H. (2018). Feature-
ensemble-based novelty detection for analyzing plant
hyperspectral datasets. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing,
11(4): 1041-1055.
https://doi.org/10.1109/JSTARS.2017.2788426

Ding, X., Li, Y., Belatreche, A., Maguire, L.P. (2014).

1-6.

An experimental evaluation of novelty detection methods.

Neurocomputing, 135: 313-327.
https://doi.org/10.1016/j.neucom.2013.12.002
Hoffmann, H. (2007). Kernel PCA for novelty detection.
Pattern Recognition, 40(3): 863-874.
https://doi.org/10.1016/j.patcog.2006.07.009
ZareMoodi, P., Beigy, H., Siahroudi, S.K. (2015). Novel
class detection in data streams using local patterns and
neighborhood graph. Neurocomputing, 158: 234-245.
https://doi.org/10.1016/j.neucom.2015.01.037
ZareMoodi, P., Siahroudi, S.K., Beigy, H. (2016). A
support vector based approach for classification beyond
the learned label space in data streams. In Proceedings of
the 31st Annual ACM Symposium on Applied
Computing (SAC '16), Pisa, Italy, pp. 910-915.
https://doi.org/10.1145/2851613.2851652

Farid, D.M., Rahman, C.M. (2012). Novel class
detection in concept-drifting data stream mining
employing decision tree. In 2012 7th International
Conference on Electrical and Computer Engineering,
Dhaka, Bangladesh, pp. 630-633.
https://doi.org/10.1109/ICECE.2012.6471629

Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham,
B. (2009). Integrating novel class detection with
classification for concept-drifting data streams. In
Machine Learning and Knowledge Discovery in
Databases, pp. 79-94. https://doi.org/10.1007/978-3-
642-04174-7 6

Faria, E.R., Gama, J., Carvalho, A.C.P.L.F. (2013).
Novelty detection algorithm for data streams multi-class
problems. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC '13), Coimbra,
Portugal, pp- 795-800.
https://doi.org/10.1145/2480362.2480515

Masud, M.M., Chen, Q., Khan, L., Aggarwal, C.C., Gao,
J., Han, J., Srivastava, A., Oza, N.C. (2013).
Classification and adaptive novel class detection of
feature-evolving data streams. IEEE Transactions on
Knowledge and Data Engineering, 25(7): 1484-1497.
https://doi.org/10.1109/TKDE.2012.109

Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko,
L. (2014). A review of novelty detection. Signal
Processing, 99: 215-249.
https://doi.org/10.1016/j.sigpro.2013.12.026

3197

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(24]

[25]

[26]

(27]

(28]

Domingues, R., Michiardi, P., Barlet, J., Filippone, M.
(2020). A comparative evaluation of novelty detection
algorithms for discrete sequences. Artificial Intelligence
Review, 53(5): 3787-3812.
https://doi.org/10.1007/s10462-019-09779-4

Entezami, A., Shariatmadar, H., Mariani, S. (2020).
Early damage assessment in large-scale structures by
innovative statistical pattern recognition methods based
on time series modeling and novelty detection. Advances
in Engineering Software, 150: 102923.
https://doi.org/10.1016/j.advengsoft.2020.102923

Tang, J., Tian, Y., Liu, X. (2019). LGND: A new method
for multi-class novelty detection. Neural Computing and
Applications, 31(8): 3339-3355.
https://doi.org/10.1007/s00521-017-3270-7

Oliveira, M.A., Simas Filho, E.F., Albuquerque, M.C.S.,
Santos, Y.T.B., da Silva, I.C., Farias, C.T.T. (2020).
Ultrasound-based identification of damage in wind
turbine blades using novelty detection. Ultrasonics, 108:
106166. https://doi.org/10.1016/j.ultras.2020.106166
Delgado-Prieto, M., Carino, J.A., Saucedo-Dorantes, J.J.,
Osornio-Rios, R.A., Romeral, L., Romero Troncoso, R.J.
(2018). Novelty detection based condition monitoring
scheme applied to electromechanical systems. In 2018
IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), Turin,
Italy, pp- 1213-1216.
https://doi.org/10.1109/ETFA.2018.8502503

Buczak, A.L., Guven, E. (2016). A survey of data mining
and machine learning methods for cyber security
intrusion detection. [IEEE Communications Surveys and
Tutorials, 18(2): 1153-1176.
https://doi.org/10.1109/COMST.2015.2494502

Cha, M., Kim, J.S., Baek, J.G. (2014). Density weighted
support vector data description. Expert Systems with
Applications, 41(7): 3343-3350.
https://doi.org/10.1016/j.eswa.2013.11.025

Ahsan, M., Khusna, H., Wibawati, Lee, M.H. (2023).
Support vector data description with kernel density
estimation (SVDD-KDE) control chart for network
intrusion monitoring. Scientific Reports, 13(1): 19779.
https://doi.org/10.1038/s41598-023-46719-3

Yin, L., Wang, H., Fan, W. (2018). Active learning based
support vector data description method for robust novelty
detection. Knowledge-Based Systems, 153: 40-52.
https://doi.org/10.1016/j.knosys.2018.04.020

Kim, S., Choi, Y., Lee, M. (2015). Deep learning with
support vector data description. Neurocomputing, 165:
111-117. https://doi.org/10.1016/j.neucom.2014.09.086
Wang, Z., Cha, Y.J. (2020). Unsupervised deep learning
approach using a deep auto-encoder with a one-class
support vector machine to detect damage. Structural
Health Monitoring, 20(1): 406-425.
https://doi.org/10.1177/1475921720934051

Zhang, J., Zhang, Q., Qin, X., Sun, Y. (2022). A two-
stage fault diagnosis methodology for rotating machinery
combining optimized support vector data description and
optimized support vector machine. Measurement, 200:
111651.
https://doi.org/10.1016/j.measurement.2022.111651
Wang, J., Liu, P., Lu, S., Zhou, M., Chen, X. (2023).
Decentralized plant-wide monitoring based on mutual
information-Louvain decomposition and support vector


https://doi.org/10.1109/IJCNN.2015.7280565
https://doi.org/10.1007/978-3-540-78297-1_13
https://doi.org/10.1109/CIDM.2014.7008677
https://doi.org/10.1109/JSTARS.2017.2788426
https://doi.org/10.1016/j.neucom.2013.12.002
https://doi.org/10.1016/j.patcog.2006.07.009
https://doi.org/10.1016/j.neucom.2015.01.037
https://doi.org/10.1145/2851613.2851652
https://doi.org/10.1109/ICECE.2012.6471629
https://doi.org/10.1007/978-3-642-04174-7_6
https://doi.org/10.1007/978-3-642-04174-7_6
https://doi.org/10.1145/2480362.2480515
https://doi.org/10.1109/TKDE.2012.109
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1007/s10462-019-09779-4
https://doi.org/10.1016/j.advengsoft.2020.102923
https://doi.org/10.1007/s00521-017-3270-7
https://doi.org/10.1016/j.ultras.2020.106166
https://doi.org/10.1109/ETFA.2018.8502503
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1016/j.eswa.2013.11.025
https://doi.org/10.1038/s41598-023-46719-3
https://doi.org/10.1016/j.knosys.2018.04.020
https://doi.org/10.1016/j.neucom.2014.09.086
https://doi.org/10.1177/1475921720934051
https://doi.org/10.1016/j.measurement.2022.111651

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[37]

[38]

[41]

data description diagnosis. ISA Transactions, 133:42-52.
https://doi.org/10.1016/j.isatra.2022.07.017
Rahimzadeh Arashloo, S. (2022). fp-Norm support
vector data description. Pattern Recognition, 132:
108930. https://doi.org/10.1016/j.patcog.2022.108930
Lu, J., Gao, Y., Zhang, L., Deng, H., Cao, J., Bai, J.
(2022). A novel dynamic radius support vector data
description based fault diagnosis method for proton
exchange membrane fuel cell systems. International
Journal of Hydrogen Energy, 47(84): 35825-35837.
https://doi.org/10.1016/j.ijhydene.2022.08.145

Pan, Y., Cheng, D., Wei, T., Jia, Y. (2022). Rolling
bearing performance degradation assessment based on
deep belief network and improved support vector data
description. Mechanical Systems and Signal Processing,
181: 109458.
https://doi.org/10.1016/j.ymssp.2022.109458

Wu, Q., Lu, W., Yan, X. (2022). Process monitoring of
nonlinear uncertain systems based on Part Interval
Stacked Autoencoder and Support Vector Data
Description. Applied Soft Computing, 129: 109570.
https://doi.org/10.1016/j.as0¢.2022.109570

Huang, Q., Zheng, Z., Zhu, W., Fang, X., Fang, R., Sun,
W. (2022). Anomaly detection algorithm based on broad
learning system and support vector domain description.
Mathematics, 10(18): 3292.
https://doi.org/10.3390/math10183292

Zhong, G., Xiao, Y., Liu, B., Zhao, L., Kong, X. (2022).
Pinball loss support vector data description for outlier
detection. Applied Intelligence, 52(14): 16940-16961.
https://doi.org/10.1007/s10489-022-03237-5

Huang, W., Li, Y.J., Xu, Z.N., Yao, X.W., Wan, R.C.
(2025). Improved deep support vector data description
model using feature patching for industrial anomaly
detection. Sensors, 25(1): 67.
https://doi.org/10.3390/s25010067

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J.,
Williamson, R.C. (2001). Estimating the support of a
high-dimensional distribution. Neural Computation,
13(7): 1443-1471.
https://doi.org/10.1162/089976601750264965

Panza, M.A., Pota, M., Esposito, M. (2023). Anomaly
detection methods for industrial applications: A
comparative  study. Electronics, 12(18): 3971.
https://doi.org/10.3390/electronics 12183971

Razzak, 1., Zafar, K., Imran, M., Xu, G. (2020).
Randomized nonlinear one-class support vector
machines with bounded loss function to detect of outliers
for large scale IoT data. Future Generation Computer
Systems, 112: 715-723.
https://doi.org/10.1016/j.future.2020.05.045

Zhu, W., Zhong, P. (2014). A new one-class SVM based
on hidden information. Knowledge-Based Systems, 60:
35-43. https://doi.org/10.1016/j.knosys.2014.01.002
Tian, Y., Mirzabagheri, M., Bamakan, S.M.H., Wang, H.,
Qu, Q. (2018). Ramp loss one-class support vector
machine: A robust and effective approach to anomaly
detection problems. Neurocomputing, 310: 223-235.
https://doi.org/10.1016/j.neucom.2018.05.027

Pang, J., Pu, X., Li, C. (2022). A hybrid algorithm
incorporating vector quantization and one-class support
vector machine for industrial anomaly detection. IEEE
Transactions on Industrial Informatics, 18(12): 8786-
8796. https://doi.org/10.1109/T11.2022.3145834

3198

[42]

[43]

[45]

[46]

[47]

(48]

[49]

[51]

[52]

[53]

[54]

[55]

Zhu, W., Song, Y., Xiao, Y. (2022). Huberized one-class
support vector machine with truncated loss function in
the primal space. Advances in Engineering Software, 173:
103208.
https://doi.org/10.1016/j.advengsoft.2022.103208
Sadooghi, M.S., Khadem, S.E. (2018). Improving one
class support vector machine novelty detection scheme
using nonlinear features. Pattern Recognition, 83: 14-33.
https://doi.org/10.1016/j.patcog.2018.05.002

Saari, J., Strombergsson, D., Lundberg, J., Thomson, A.
(2019). Detection and identification of windmill bearing
faults using a one-class support vector machine (SVM).
Measurement, 137: 287-301.
https://doi.org/10.1016/j.measurement.2019.01.020
Wang, K., Lan, H. (2020). Robust support vector data
description for novelty detection with contaminated data.
Engineering Applications of Artificial Intelligence, 91:
103554. https://doi.org/10.1016/j.engappai.2020.103554
Cardoso, V.G.K., Poppi, R.J. (2021). Cleaner and faster
method to detect adulteration in cassava starch using
Raman spectroscopy and one-class support vector
machine. Food Control, 125: 107917.
https://doi.org/10.1016/j.foodcont.2021.107917

Xiong, Y., Zuo, R. (2020). Recognizing multivariate
geochemical anomalies for mineral exploration by
combining deep learning and one-class support vector
machine. Computers and Geosciences, 140: 104484.
https://doi.org/10.1016/j.cageo.2020.104484

Tian, Y., Mirzabagheri, M., Tirandazi, P., Bamakan,
S.M.H. (2020). A non-convex semi-supervised approach
to opinion spam detection by ramp-one class SVM.
Information Processing and Management, 57(6): 102381.
https://doi.org/10.1016/j.ipm.2020.102381

Nie, J., Dong, Y., Zuo, R. (2022). Construction land
information extraction and expansion analysis of
Xiaogan City using one-class support vector machine.
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 15: 3519-3532.
https://doi.org/10.1109/JSTARS.2022.3170495

Yin, M., Wang, L. (2022). Outlier detection of leaf
images based on one-class support of vector machine.
Journal of Physics: Conference Series, 2179(1): 012040.
https://doi.org/10.1088/1742-6596/2179/1/012040
Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.,
Alazab, A. (2020). Hybrid intrusion detection system
based on the stacking ensemble of C5 decision tree
classifier and one class support vector machine.
Electronics, 9(1): 173.
https://doi.org/10.3390/electronics9010173

Anaissi, A., Suleiman, B., Alyassine, W. (2022). A
personalized federated learning algorithm for one-class
support vector machine: An application in anomaly
detection. In Lecture Notes in Computer Science, pp.
373-379. https://doi.org/10.1007/978-3-031-08760-8 31
Karami, A., Niaki, S.T.A. (2024). An online support
vector machine algorithm for dynamic social network
monitoring.  Neural Networks, 171: 497-511.
https://doi.org/10.1016/j.neunet.2023.12.024

Abdrabo, A. (2024). Application of online anomaly
detection using one-class classification to the Z24 Bridge.
ETH Zurich. https://doi.org/10.3929/ethz-b-000712475
Agyemang, E.F. (2024). Anomaly detection using
unsupervised machine learning algorithms: A simulation


https://doi.org/10.1016/j.isatra.2022.07.017
https://doi.org/10.1016/j.patcog.2022.108930
https://doi.org/10.1016/j.ijhydene.2022.08.145
https://doi.org/10.1016/j.ymssp.2022.109458
https://doi.org/10.1016/j.asoc.2022.109570
https://doi.org/10.3390/math10183292
https://doi.org/10.1007/s10489-022-03237-5
https://doi.org/10.3390/s25010067
https://doi.org/10.1162/089976601750264965
https://doi.org/10.3390/electronics12183971
https://doi.org/10.1016/j.future.2020.05.045
https://doi.org/10.1016/j.knosys.2014.01.002
https://doi.org/10.1016/j.neucom.2018.05.027
https://doi.org/10.1109/TII.2022.3145834
https://doi.org/10.1016/j.advengsoft.2022.103208
https://doi.org/10.1016/j.patcog.2018.05.002
https://doi.org/10.1016/j.measurement.2019.01.020
https://doi.org/10.1016/j.engappai.2020.103554
https://doi.org/10.1016/j.foodcont.2021.107917
https://doi.org/10.1016/j.cageo.2020.104484
https://doi.org/10.1016/j.ipm.2020.102381
https://doi.org/10.1109/JSTARS.2022.3170495
https://doi.org/10.1088/1742-6596/2179/1/012040
https://doi.org/10.3390/electronics9010173
https://doi.org/10.1016/j.neunet.2023.12.024
https://doi.org/10.3929/ethz-b-000712475

study. Scientific African, 26: €02386. Tp true positives

https://doi.org/10.1016/j.sciaf.2024.e02386 w weight vector
[56] Qiao, Y., Wu, K., Jin, P. (2023). Efficient anomaly x data point

detection for high-dimensional sensing data with one- z function score

class support vector machine. IEEE Transactions on
Knowledge and Data Engineering, 35(1): 404-417.
https://doi.org/10.1109/TKDE.2021.3077046

Greek symbols

a positive Lagrange multiplier
B normalization constant
NOMENCLATURE 1) Hinge loss
n scaling constant
Ap average precision £ norm
Fy false neg_at_ive K kernel function
Fp false positives A regularization paramter
H Huber-loss function v trade-off parameter
k number of neighbor ¢ transformation function
l total training samples P offset parameter
R ramp-lo_ss function Z correcting space
r group’s index o Gaussian function parameter
roc receiver operating characteristic T training data
s pre-defined parameter & slack variable
T Huberized truncated-loss function

3199


https://doi.org/10.1016/j.sciaf.2024.e02386
https://doi.org/10.1109/TKDE.2021.3077046



