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Novelty detection is a critical task in machine learning and data mining, aiming to identify 

previously unseen or abnormal patterns that are not represented during model training. 

Among the available novelty detection paradigms, domain-description approaches are 

particularly attractive because they learn an explicit boundary of normal data without strong 

distributional assumptions. This paper provides a focused review of domain-based novelty 

detection methods with emphasis on Support Vector Machine (SVM) formulations, 

particularly Support Vector Data Description (SVDD) and One-Class Support Vector 

Machines (OCSVM). We summarize the theoretical foundations of one-class classification 

and review recent research that enhances SVDD and OCSVM through robust boundary 

learning, improved feature representations, and computational efficiency. Based on the 

analyzed literature, the main technical directions for improving OCSVM and SVDD can be 

grouped into three trends: (i) robustification via modified loss functions and outlier-resistant 

formulations, (ii) integration with feature learning frameworks such as deep models and 

hybrid architectures, and (iii) acceleration strategies for large-scale and high-dimensional 

settings. Despite consistent performance improvements across applications, parameter 

sensitivity, optimization complexity, and limited adaptability under evolving data 

distributions remain persistent challenges. Finally, we outline concrete research 

opportunities toward scalable, adaptive, and self-tuning domain-description models for 

reliable deployment in real-world novelty detection scenarios. 
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1. INTRODUCTION

One of the primary problems with machine learning and 

data mining is novelty detection (ND), sometimes referred to 

as anomaly detection, outlier detection, or one-class 

classification. Differentiating recognized items (regular 

patterns) from samples that are abnormal (outliers) is ND's 

primary duty [1]. The capability to identify novel classes could 

possess a substantial and favorable outcome, wherein the test 

data (or unlabelled data) might comprise details regarding 

items not known at the time of the training process [2]. ND 

encompasses learning a model that can recognize any 

departure from normalcy by absorbing the characteristics of 

the training dataset's normal data samples. Real-world 

applications include, among other things, currency validation, 

machine failure detection, medical diagnostics, and user 

verification in computer systems. Normal data samples are 

usually abundant in ND-related applications, but abnormal 

data samples are sometimes scarce or, in certain situations, 

nonexistent. As a result, the majority of ND algorithms 

prioritize the typical data and primarily use it to create a data 

description [3]. 

The predictive performance in ND is determined by 

measuring the model’s ability to classify samples belonging to 

the normal category, i.e., elements that have properties alike 

the elements used for training, and distinguish those samples, 

referred to as novel, outliers, or abnormal [4]. The novelty 

detection technique is employed to devise a model that isolates 

new patterns from a specified dataset. The model must be 

formulated in a manner that inputs having features different 

from those used during training should have the inputs 

classified as novel patterns, while those matching the training 

inputs should be classified accordingly [5]. In recent years, 

numerous fields have focused on the function of one-class 

categorization in pattern recognition. The approach of 

simulating a widely dispersed class to categorize an unknown 

testing class is known as one-class classification, and it is 

frequently employed for ND. When there is just one known 

class available to train the model (i.e., classifier) rather than 

two or more, it is regarded as a specific case of a classification 

problem. The ability of the constructed model to differentiate 

samples of the normal class that is, samples with traits 

comparable to those used in training from the other examples, 

which are referred to be abnormal or novel, or outliers, is the 

basis for measuring prediction performance in ND [6]. 

ND can also be viewed as much like novel class detection 

[1, 7, 8]. Two circumstances should be substantiated to affirm 

the advent of a novel class: the threshold condition and the 

cohesion-separation condition. Cluster-specific assumptions 

are made for the first condition, where elements of the novel 

class are assumed to be like the other elements of the class; 

however, those elements are different from the elements 
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belonging to other classes. The second condition indicates that 

the novel class element count must exceed a specified 

threshold. The threshold is employed for differentiating 

between the novel class and outlier’s cases; when the quantity 

of applicants is fewer than the stated level, we presume that 

they represent anomalies in the current classes. Experts 

determine the requisite threshold value, and it is specific to the 

application [9]. In the wake of the specified criteria, a learner 

must evaluate sets of instances to ascertain the creation of an 

additional class. Thus, current techniques are either based on 

chunks [10-12] or according to timing limitations [13, 14]. 

Although terms such as anomaly detection, outlier detection, 

novelty detection, and one-class classification have nuanced 

differences in the literature, this review treats them 

interchangeably, focusing on their shared objective of 

identifying deviations from learned normal data using domain-

based methods. 

With a focus on domain-based methods for novelty 

detection in the machine learning literature, this survey 

attempts to present an up-to-date and organized summary of 

recent research and approaches to novelty detection using a 

semi-supervised learning approach using One-Class Support 

Vector Machines (OCSVM). The rest of the paper is organized 

in this manner: Section 2 discusses the novelty detection 

methodologies, including various categories of approaches 

from the literature. Meanwhile, Section 3 delves into Support 

Vector Machines (SVM), where this section details a support 

vector data description review (SVDD) and OCSVM are 

presented. This is followed by a detailed technical review of 

the fundamental algorithmic improvement made to OCSVM 

from the literature, and a review of real-world applications of 

novelty detection using OCSVM. At the end, the review is 

summarized in Section 4 and followed by the concluding 

remarks. 

 

 

2. NOVELTY DETECTION METHODOLOGIES 

 

Novelty detection (ND), also referred to as anomaly 

detection or one-class classification, aims to identify patterns 

that deviate from the characteristics of normal data observed 

during training. Depending on how normal behavior is 

modeled, existing novelty detection techniques can be broadly 

categorized into several methodological families. This section 

briefly reviews these categories with the specific purpose of 

positioning domain-description methods, particularly those 

based on Support Vector Machines (SVMs), relative to 

alternative approaches [15]. 

In probabilistic approaches, normal behavior is 

characterized by calculating the data's probability density 

function, and samples with low likelihood under the learned 

distribution are considered novel. While effective for low-

dimensional and well-behaved data, these methods often 

suffer in high-dimensional settings due to density estimation 

complexity and sensitivity to distributional assumptions. In 

contrast, distance-based methods rely on similarity measures, 

such as nearest-neighbor distances or clustering structures, 

under the assumption that normal data form dense regions in 

feature space; however, their effectiveness degrades with 

increasing dimensionality and data volume [16]. 

Reconstruction-based methods, including autoencoder-

based models, detect novelty by measuring reconstruction 

error when projecting input data through a learned 

representation. These approaches are capable of modeling 

complex nonlinear data structures but typically require large 

amounts of training data and careful model tuning. Moreover, 

their decision boundaries are implicit, which can limit 

interpretability and reliability in industrial or safety-critical 

applications [17]. 

In contrast to the above paradigms, domain-description 

methods explicitly aim to identify a border enclosing typical 

data without assuming a specific underlying probability 

distribution. Rather than modeling density or distances, these 

approaches characterize the support of the normal data 

distribution, making them particularly suitable for novelty 

detection scenarios involving high-dimensional data, limited 

training samples, or unknown anomaly characteristics [15]. 

Among domain-description methods, Support Vector 

Machine-based approaches, notably OCSVM and Support 

Vector Data Description (SVDD), are the most widely adopted. 

These methods formulate novelty detection as an optimization 

problem that constructs a tight boundary around normal data 

by maximizing margin or minimizing hypersphere volume in 

a high-dimensional feature space. By relying on boundary-

defining samples (support vectors), SVM-based domain-

description methods achieve strong generalization 

performance and robustness [10]. 

 

 
 

Figure 1. Categories of novelty detection methods and 

position of domain-description approaches (adapted from the 

study [18]) 

 

Figure 1 summarizes the main categories of novelty 

detection techniques and highlights the position of domain-

description methods within the broader landscape. As 

illustrated, SVM-based techniques constitute a central and 

well-established branch of domain-description approaches, 

motivating their extensive adoption across diverse application 

domains [18]. 

Given these characteristics, domain-description methods 

based on OCSVM and SVDD have become a dominant 

framework for novelty detection. The following section 

therefore focuses on the theoretical foundations of SVM-based 

domain-description methods, followed by a detailed review of 

recent algorithmic improvements and real-world applications 

[15]. 

             

            

              

     

           

         

         

              

       

         

3188



 

The novelty detection can be categorized into five broad 

classes, as shown in Figure 1 [18]. As can be seen from this 

figure, various novelty detection techniques have been 

developed, each leveraging distinct methodological 

frameworks to isolate anomalous instances. Probabilistic 

techniques calculate the density of the normal class and 

interpret low-density regions as indicative of abnormality, 

assuming novel data exhibits a low probability under the 

modeled distribution. Distance-based methods rely on nearest 

neighbor and clustering analysis, positing that normal data 

points are tightly grouped, while anomalies lie at greater 

distances from their nearest neighbors. Reconstruction-based 

approaches train models to reproduce input data and assess 

novelty through reconstruction error, where larger 

discrepancies signify deviations from the learned structure. On 

the other hand, domain-based techniques characterize the data 

distribution by forming boundaries around the normal class 

without focusing on density peaks, effectively capturing the 

support of the training distribution. Information-theoretic 

approaches evaluate the informational complexity of data 

using metrics such as entropy, detecting novelty based on 

significant changes in the information content introduced by 

new observations. These frameworks collectively address the 

diverse structural properties of data in unsupervised anomaly 

detection tasks [15]. 

Based on these, the distance-based novelty detection 

methods are the most used, which in this technique the 

statistical similarity metrics that classify features using clearly 

specified distance measurements. Statistical distances that 

quantify the (dis)similarity between two sets of features 

whether univariate or multivariate are the foundation of these 

techniques, pertinent to the damaged and undamaged 

circumstances, respectively. However, when dealing with 

enormous volumes of random high-dimensional 

characteristics, such methods do not appear to be efficient or 

successful. Because of their complicated High computing 

costs, substantial data storage requirements, and high-

dimensional features like time series model residuals may also 

negatively affect the effectiveness of machine learning and 

novelty detection algorithms and result in significant 

limitations during the decision-making stage [17].  

In certain instances, each sample was assigned a novelty 

score determined by a distance metric, such Euclidean. The 

greatest Euclidean distance between every sample of normal 

training data and the calculation of the centroid of all normal 

training data. The calculation of a test sample's distances from 

the normal data centroid defines its output. At the centroid, a 

spherical border of radius is defined by a certain threshold. If 

the distance exceeds a predetermined threshold, the test 

sample is deemed abnormal in relation to the existing normal 

training data. It could be possible to generalize to normal data 

that is absent from the training set by using a threshold value 

to define a region that is larger than the one inhabited by 

normal training data [19]. 

Domain-based methods for detecting novelty do not assume 

anything regarding the data's distribution; instead, they use 

just the data that are closest to the novelty boundary to 

establish its position. The SVM based approach is one of the 

domain-based novelty identification techniques are the most 

used in the literature. Among them, the One-Class SVM (OC-

SVM) and Support Vector Data Description (SVDD) [20]. For 

domain-based techniques, a boundary that considers the 

training dataset's structure must be established. Since these 

techniques define the target class border, or the domain, rather 

than the class density, they are usually insensitive to the 

sample and density of the target class. The placement of 

unknown data concerning the boundary then determines their 

class membership. Like two-class SVM, novelty detection 

SVM (sometimes referred to as OC-SVM in the literature) 

uses only the support vectors, or the data that are closest to the 

novelty border (in the converted space), to identify where the 

novelty boundary is. When determining the novelty, all other 

training set data those which are not support vectors, are 

ignored [15]. 

Among the various categories of novelty detection 

techniques, domain-description methods have attracted 

particular because of their capacity to model complicated data 

boundaries without strong distributional assumptions. SVM-

based approaches, especially OCSVM and SVDD, represent 

the most prominent realizations of this paradigm. The 

following section therefore focuses on these methods, their 

theoretical foundations, and recent algorithmic advancements. 

 

 

3. SUPPORT VECTOR MACHINES 

 

SVM is a widely used classifier for generating decision 

boundaries that divide data into various classes. For binary 

pattern classification of linearly separable data, the original 

SVM network is a perfect fit. A hyperplane that maximizes the 

distance between two classes is used by the SVM. Support 

vectors are the training points that are located close to the 

border, establishing this dividing edge. Numerous adjustments 

and enhancements have been made to the original concept 

since it was first proposed. A technique called Robust Support 

Vector Machines (RSVM) deals with the over-fitting issue that 

noise in the training dataset causes. With this method, the 

standard SVM is combined with an averaging technique (class 

centre) to smooth the decision surface and regulate the degree 

of regularization [21]. 

 

3.1 Support Vector Data Description 

 

One commonly used method of a one-class classifier is 

SVDD. This technique maps target data into a high-

dimensional feature space, intending to identify a set of 

support vectors (SV) representing the spherical border of the 

target data. The procedure takes place in feature space; hence, 

the description boundary of SVDD is adjustable. To make up 

for shortcomings in earlier one-class classifier research, SVM 

served as the model for the development of SVDD. Numerous 

classification techniques before the usage of support vectors 

relied on estimating the target data set's probability 

distribution [15]. 

Recently, certain SVDD technique extensions have been 

put forth to enhance the hyper-spherically shaped novelty 

boundary's boundaries. The first extension is proposed in the 

previous study [22], where a new SVDD incorporates the idea 

of density weighting—that is, assigning each data point a 

weight based on its relative density, as determined by applying 

the k-nearest neighbor (k-NN) method to the target data's 

density distribution. This novel approach emphasizes data 

points in high-density regions by incorporating the additional 

weight into the SVDD search for an ideal description. 

Eventually, the optimal description moves to these places. 

Recent studies further extend Deep SVDD by integrating 

representation learning with contrastive objectives, improving 

feature compactness for normal samples while enhancing 
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separability from abnormal patterns. For example, contrastive 

Deep SVDD frameworks combine contrastive learning and 

SVDD loss to strengthen anomaly discrimination in complex 

feature spaces [23]. 

On the other hand, Yin et al. [24] introduced an SVDD 

technique for robust novelty detection that is based on active 

learning. It may lessen the quantity of labelled data by utilizing 

a framework for active learning, generalize the data spread, 

and lessen the effect of noise by directing the selection process 

with the help of the local density. 

A deep learning neural network model that adopts the 

SVDD was proposed by Kim et al. [25]. A variation of the 

SVM, the SVDD achieves a maximal margin in one-class 

classification tasks, resulting in great generalization 

performance. The goal of the suggested model is to achieve 

deep learning's representational power. With the SVDD, 

generalization performance is preserved. In the study by Wang 

and Cha [26], according to the multivariate statistics known as 

Stahel-Donoho (SD) outlying-ness in an arbitrary kernel space, 

the authors have suggested giving each observation a weight. 

Weighted penalties, whose weights depend smoothly on the 

outlying-ness criteria, were presented as a novel robust SVDD. 

By assigning a weight to each data item based on a few chosen 

weight function families. In order to find the minimum-sized 

hypersphere, SVDD down-weights observations containing a 

lot of outliers, which could be mistakes, recordings from 

unusual situations, or members of a different population. To 

create a better model for the regular data, it is crucial to be able 

to identify these observations during SVDD training. 

A two-phase intelligent fault detection approach for rotating 

equipment that combines optimized SVDD and optimized 

SVM was proposed by Zhang et al. [27]. To be more precise, 

SVM is used for fault identification, and SVDD is used for 

fault detection. The grasshopper optimization algorithm (GOA) 

optimizes the parameters of SVM and SVDD. The input 

feature vector for SVDD and SVM is extracted using 

multiscale entropy (ME). The advantages and disadvantages 

of eight distinct entropy-based indicators for feature extraction 

are examined within the parameters of the suggested 

methodology. A technique for selecting features when 

building the SVDD model with only normal samples is shown. 

Meanwhile, to efficiently monitor the nonlinear plantwide 

processes, a decentralized fault detection and diagnosis 

technique was suggested by Wang et al. [28]. It has two main 

themes: fault diagnosis based on SVDD and mutual 

information-Louvain-based process decomposition. First, the 

plantwide process is first mapped as an undirected graph that 

matches the process structure and mechanism knowledge. A 

Louvain algorithm with MI correlation is suggested to finely 

break down the process into manageable sub-blocks. Mutual 

Information (MI) is provided to illustrate the degree of 

correlation between various nodes (i.e., process variables). For 

each sub-block, a decentralized defect detection technique 

based on SVDD is then introduced, and the associated variable 

contribution rate is calculated. Decentralized SVDD 

(DSVDD), which identifies the abnormal status and pinpoints 

the variable causing this fault, is the basis for local fault 

diagnosis and detection. The DSVDD model is used to identify 

faults and determine their causes by calculating the 

corresponding contribution rate. 

In the study by Rahimzadeh Arashloo [29], the author has 

introduced a dual norm into the goal function, demonstrating 

a way for managing the intrinsic sparsity or consistency of the 

issue to improve descriptive capacity. By generalizing the 

model to ℓ𝑝 -norm where 𝑝 ≥ 1 , the proposed approach 

enables formulating a non-linear cost for slacks. Also, extend 

the proposed works of ℓ𝑝-norm concept from a strictly one-

class environment to the training situation and demonstrate the 

benefits of the suggested extension by include marked 

negative objects. 

DR-SVDD, or dynamic radius support vector data 

description, is a new fault diagnosis technique. was proposed 

by Lu et al. [30] to efficiently identify the fuel cell system with 

proton exchange membranes faults. Compared to the classic 

SVDD and enhanced SVDDs, this approach takes into account 

the distribution properties of the training set sample as well as 

the SVDD hypersphere radius information to provide a more 

sufficient and accurate description of the sample data. New 

slack variables are added to the model to improve its 

generalization performance, resilience, fault-tolerance, and 

computational complexity. 

The Sparrow Search Algorithm (SSA) was introduced by 

Pan et al. [31] into the parameter optimization process of 

SVDD. This method reads the training data then determines 

and arranges the fitness values for every sparrow based on the 

characteristics that correspond to its location. The training 

samples are divided into two groups when SVDD is trained 

using a single group at random; While the other group 

conducts the test, one group trains the SVDD model determine 

how many samples are not in the hypersphere. This is known 

as the fitness value. The sparrow that has the lowest fitness 

was chosen as the elite, and its position data was recorded to 

ascertain whether the fitness was below or equal to the error 

rate threshold. The computed error rate is then used as the 

fitness value. 

In the study by Wu et al. [32], the authors have proposed the 

Part Interval Stacked Auto-encoder and Support Vector Data 

Description (PISAE-SVDD), a new process monitoring and 

fault diagnosis algorithm. This algorithm improves the 

Stacked Auto-encoder's (SAE) loss function. The mean square 

error of the initial input and output data is the reconstruction 

error value in certain measurement data. In contrast, a specific 

acceptable range for the reconstruction error value is provided 

by uncertain measurement data. Within this range, the 

measurement data's error value is regarded as zero. In the same 

manner as for specific measurement data, the reconstruction 

error value of measurement data that exceeds the permitted 

range is computed. Meanwhile, SAE's powerful nonlinear 

characterization capability is used to retrieve the distinctive 

information of the industrial process. Then, using the SAE 

feature information data taken from normal samples, SVDD is 

utilized to determine the control limit of the fluctuation range 

of the normal functioning state. 

A Broad Learning Systems (BLS)-based weighted SVDD 

algorithm was proposed by Huang et al. [33], this increases the 

SVDD model's robustness during training by introducing 

reconstruction of a few atypical samples and error weights. 

SVDD was utilized to address issues where the proportion of 

sample categories of data is highly uneven, and the BLS was 

enhanced to produce a new model for data reconstruction. 

On the other hand, a novel approach of a pinball loss SVDD 

was suggested in order to find outliers in the previous study 

[34]. In this approach, the sphere classifier uses all the training 

data, including the ones that are located inside the sphere. 

Because a little quantity of noisy data has minimal effect 

regarding the classifier, this technique is more resistive to 

noise and achieves dispersion minimization in the sphere 

center. This technique is superior in two ways: first, it employs 
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the pinball loss, which improves our approach's robustness and 

reduces scatter in the sphere center, in contrast to the 

traditional SVDD, which uses the hinge loss function and is 

noise-sensitive; second, it can be distinguished from the 

existing weight-varying anti-noise SVDD techniques, which 

take more pre-processing time to produce. 

In industrial anomaly detection, recent improvements to 

Deep SVDD emphasize robust feature extraction and patch-

level representation to handle localized defects, demonstrating 

improved detection stability in real deployment contexts [35]. 

 

3.1.1 Summary 

Overall, the reviewed SVDD extensions reveal a clear 

research trend toward improving robustness and adaptability 

of the hypersphere boundary under real-world data 

imperfections. Density-weighted and active-learning-based 

SVDD variants consistently enhance sensitivity to local data 

structure, particularly in noisy or imbalanced datasets. 

Meanwhile, integration with deep learning models enables 

SVDD to handle high-dimensional and nonlinear feature 

representations more effectively. However, these 

improvements often introduce increased computational 

complexity and additional hyperparameters, which can limit 

scalability and hinder deployment in real-time systems. 

Despite performance gains, most SVDD variants remain 

sensitive to kernel and parameter selection, highlighting the 

need for adaptive or self-tuning mechanisms in future research. 

 

3.2 One-Class Support Vector Machines 

 

OCSVM is a popular method that is a reliable classifier for 

unsupervised anomaly detection. However, in some cases, it is 

not resistant to outliers. A few of its variations have recently 

been put forth to increase the resilience against outliers. The 

fundamental concept of OCSVM is to locate in the feature 

space a hyperplane (𝑤 ⋅ 𝜙(𝑥)) − 𝜌 = 0 that, with the greatest 

possible margin, divides sample images from the origin. The 

following is the primal optimization problem [36]. 

 

min
𝑤,𝜉,𝜌

1

2
‖𝑤‖2 − 𝜌 +

1

𝜈𝑙
∑ 𝜉𝑖
𝑛
𝑖=1   

s.t. (𝑤. 𝜑 (𝑥𝑖)) ≥  𝜌 𝜉𝑖 , 𝜉𝑖  ≥ 0, 𝑖 = 1,… , 𝑛 
(1) 

 

where, 𝑙 represents all of the training samples, 𝜈 is a trade-off 

parameter, and 𝜉 are slack variables. Meanwhile, 𝑤, 𝜌, and 𝜉 

are the weight vector, offset parameter, and 𝑖 -th training 

sample, respectively. This is a convex optimization problem, 

and its dual problem, which is represented below, can be used 

to solve it. 

 

max
𝛼
−
1

2
∑ 𝛼𝑖𝛼𝑗𝜅(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑖,𝑗,=1

 

s.t. 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑙
,∑𝛼𝑖 = 1 

(2) 

 

where, 𝜅(𝑥𝑖 , 𝑥𝑗) denotes a kernel function. A typical kernel 

function adopted by researchers is the Gaussian Radial Basis 

Function (RBF), which is given as follows: 

𝜅(𝑥𝑖 , 𝑥𝑗) = exp (−
1

2𝜎2
‖𝑥𝑖 − 𝑥𝑗‖

2
) (3) 

 

where, 𝜎  is a Gaussian function parameter. Because of its 

capacity to represent intricate and non-linear decision 

boundaries, this RBF is employed as the kernel function. The 

RBF kernel calculates the relationship between two data 

points' similarity and the Euclidean distance between them 

[37]. 

Let's say sample 𝑥𝑖  lies outside of the classification 

hyperplane, 𝜉𝑖 is greater than 0, and the Karush-Kuhn-Tucker 

(KKT) condition states that 𝛼𝑖 = 1/𝜈𝑙. This indicates that in 

traditional OCSVM, samples outside of the surface are defined 

by SVs. It is well known that the normal vector 𝑤 =
∑ 𝛼𝑖𝜙(𝑥𝑖)
𝑙
𝑖=1  can be written in terms of the mappings of SVs. 

When 𝜈  is set large to create outliers that are outside the 

surface, these outliers become SVs and their respective 𝛼𝑖 are 

equal to 1/𝜈𝑙, which gives them more magnitude control over 

the normal vector and the surface; conversely, when 𝜈 is set 

small, the surface surrounds the outliers, thereby influencing 

the surface. 

There are two components to the strategy suggested by 

Schölkopf et al. [36]; getting the surface around the target 

cluster core is the first step; using this surface and find outliers 

and remove them from the training set so that the final 

OCSVM model may be trained. It is anticipated that the 

surface will identify the outliers outside and, more crucially, 

will not be affected by these outside-located outliers to better 

contain the cluster core of the target class. By adjusting 𝜈, the 

first expectation can be fulfilled since this value represents the 

upper bound for training samples that are situated outside of 

the surface or hyperplane. 

 

3.2.1 Algorithmic improvements to the OCSVM 

Anomaly detection makes considerable use of a OCSVM. 

To detect anomalies, OCSVM looks for the ideal hyperplane 

in high-dimensional data that can maximally separate the data 

from anomalies. However, conventional OCSVM' hinge loss 

is unlimited, leading to greater loss from outliers and 

impairing their ability to detect anomalies. Outlier influence is 

decreased using the bounding hinge loss function [38]. 

In this section, the most recent development in the 

fundamental research on OCSVM at the algorithmic level is 

discussed. The implementation of the OCSVM in the earlier 

research is always centered around the original formulation, 

such as in Eqs. (1) and (2). However, recently, more research 

found in the literature has made significant changes to the 

OCSVM formulation at the algorithmic level. 

For example, a new OCSVM algorithm based on hidden 

information was proposed by Zhu and Zhong [39]. They 

proposed a modified OCSVM that exploits so-called “hidden” 

or group information present in the training data. Unlike the 

standard OCSVM, which models all training samples using a 

single set of slack variables, their approach assumes that 

samples can be meaningfully partitioned into groups (e.g., 

based on demographic, acquisition, or contextual attributes). 

The key motivation is that deviations from the learned 

boundary may have different significance across groups, and 

a single global slack mechanism may bias the novelty 

boundary, particularly when training data are limited or 

heterogeneous. To address this, the method introduces a 

second learning space, referred to as the correcting space, in 

addition to the conventional decision space. While all samples 

contribute to defining the decision boundary in the decision 

space, group-specific correcting functions are learned in the 

correcting space to model slack variables. These correcting 

functions regulate how much each group is allowed to violate 

the boundary, effectively imposing group-dependent 

constraints on the slack variables. Importantly, the correcting 
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space does not perform classification; instead, it modulates the 

influence of training errors during optimization. This two-

space formulation enables the OCSVM to incorporate 

auxiliary group information, improving generalization by 

preventing dominant or noisy groups from disproportionately 

shaping the novelty boundary. 

In another approach, an algorithm for resilient and sparse 

anomaly detection was put forth by Tian et al. [40]. They have 

added the ramp loss function with comparison to the initial 

implementation of OCSVM. The primary goal of this work is 

to create a sparse and robust semi-supervised method by using 

the non-convexity aspects of the ramp loss function. 

Additionally, the derived model was solved using the 

Concave-Convex Procedure (CCCP), which solves a non-

differentiable non-convex optimization problem. The authors 

have introduced a ramp loss function in this manner: 

 

𝑅𝜌,𝑠 = {
0, 𝑧 ≥ 𝜌
𝜌 − 𝑧, 𝜌 − 𝑠 < 𝑧 < 𝜌
𝑠, 𝑧 ≤ 𝜌 − 𝑠

 (4) 

 

where, 𝑧  and 𝑠  are the loss function score and pre-defined 

parameter, respectively. Therefore, the ramp loss function as 

in Eq. (4) was employed to strengthen the resilience of 

OCSVM and prevent the outliers from being excluded as 

support vectors. Based on this function, for those 𝑧 ≤ 𝜌 − 𝑠, 
the ramp loss will be flat, and its value will be a constant 𝑠. 
Ramp loss OCSVM can be reformulated as: 

 

min
𝑤,𝜌,𝑠

1

2
‖𝑤‖2

2 +
1

𝜈𝑙
∑𝑅𝜌,𝑠(𝑤

𝑇𝜙(𝑥𝑖))

𝑙

𝑖=1

 (5) 

 

To accurately categorize samples that resemble training 

data, OCSVM seeks to choose an appropriate region from an 

unknown probability distribution that includes the majority of 

the input samples. This algorithm can be used to locate the 

hypersphere with the smallest radius to discover outliers. 

However, a conventional OCSVM’s hinge loss is unlimited, 

leading to greater loss from outliers and impairing their ability 

to detect anomalies, which in turn results in the lessened 

outlier’s influence [40]. 

On the other hand, a new method for detecting anomalies in 

big amounts of data using randomized nonlinear features in 

SVM was proposed [38]. This method reduces computing 

complexity by doing away with the requirement to handle 

enormous kernel matrices for large datasets. Instead of looking 

for support vectors that are optimized using an unlimited loss 

function, the authors have proposed an iterative approach with 

a bounded loss function using a half-quadratic optimization 

technique. 

In this case, the random projection can reduce the 

optimization method's computational cost needed for large 

nonlinear kernels. Hence, a similar effect can be observed 

when using nonlinear features. Considering these issues, the 

authors in the research [38] proposed OCSVM's optimization 

issue with a bounded loss function as: 

 

max
𝑤,𝜌

1

2
‖𝑤‖2

2 −
1

𝜈𝑙
∑𝜉𝑖

𝑟 − 𝜌

𝑙

𝑖=1

 (6) 

 

where, randomized slack variables, 𝜉𝑖
𝑟 = 𝛽(1 − 𝑒−𝜂𝜉𝑖), with 

normalization constant, 𝛽 given as follows: 

𝛽 =
1

1 − 𝑒−𝜂
 (7) 

 

where, the scaling constant is 𝜂 ≥ 0. The fundamental goal of 

constraining the loss function of 𝜉𝑖
𝑟 = 1  is ensured by the 

normalizing constant 𝛽. The scale constant, 𝜂, sets the upper 

bound, and the loss function becomes conventional hinge loss 

when 𝜂 = 0  The above formula demonstrates that the 

bounded loss function OCSVM is convex and monotonic, just 

like conventional OCSVM. It is evident that 𝜂 regulates the 

limit of the loss function, substituting the unbounded loss 

function of the conventional SVM with a bounded one. 

Greater 𝜂 values indicate higher degrees of scaling, and vice 

versa [38]. 

In terms of kernel parameters, for example σ in Eq. (3), 

whose selection is not simple for anomaly detection situations, 

has a significant role in OCSVM's performance. Furthermore, 

in certain complex and unequal data distributions, the densities 

and shapes of distinct data regions can differ significantly, 

which makes it challenging for OCSVM to use a global kernel 

parameter to generate good boundaries in every region. Hence, 

in the study by Pang et al. [41], they have suggested a hybrid 

technique combining vector quantization and OCSVM, known 

as VQ-OCSVM, to address the problems. 

To be more precise, distribution information about normal 

data is extracted via vector quantization, and the resulting 

information is utilized to build a clear mapping function that 

creates a high-dimensional feature space from data. The 

classifier is then constructed within the feature space using 

OCSVM. Through the addition of the explicit mapping to 

OCSVM, two regularization hyperparameters exist, 𝜆1 and 𝜆2 

have been introduced in VQ-OCSVM. For 𝜆2, the traditional 

OCSVM algorithm is referred to, and it is suggested to be 

fixed to the value of 1. As for 𝜆1, they have introduced the 

subsequent practical yet empirical approach to determine its 

value.  

In order to achieve feature auto-selection and model sparsity, 

keep in mind that 𝜆1 regulates the weight of the 𝐿1 -norm 

regularization in the objective function. It makes sense that a 

model with a 𝜆1 that is too small will overfit the typical 

training data and be too complex, whereas a model with a 

𝜆1 that is too large will be too simple and underfit the typical 

training data [41]. 

The dual problem, which is a quadratic programming 

problem, is solved using the conventional OCSVM in order to 

solve the primal problem. Nevertheless, quadratic 

programming is ineffective for training large-scale problems 

since its computation is cubic and its storage complexity 

increases quadratically with problem scale. Therefore, Zhu et 

al. [42] proposed to directly train OCSVM in primordial space. 

Unfortunately, the gradient-based optimization approach, a 

first-order method that converges quickly, cannot solve it 

because of the non-differentiability of hinge loss utilized in 

OCSVM. 

Furthermore, the OCSVM is less resilient to outliers 

because of the unbounded hinge loss. Because of the outliers, 

the decision boundary will diverge greatly from the ideal 

hyperplane. A nonconvex differentiable function, a Huberized 

truncated loss function, was suggested as a solution to the 

problems to increase the OCSVM's resilience [42]. As an 

alternative to hinge loss in conventional OCSVM, the 

Huberized truncated loss function was proposed to be used due 

to its insensitiveness to outliers. Unlike regular OCSVM, 

robust OCSVM has a differentiable primal objective function. 
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The primordial space's resilient OCSVM can be solved using 

a method for rapid proximal gradients. The following are the 

two Huber loss functions that the authors have suggested: 

 

𝐻1(𝑟) =

{
 

 𝜌 − 𝑟 −
𝛿

2
, 𝑟 ≤ 𝜌 − 𝛿

(𝜌−𝑟)2

2𝛿
, 𝜌 − 𝛿 < 𝑟 ≤ 𝜌

0, 𝑟 > 𝜌

  (8) 

 

𝜅𝐻𝑠(𝑟) =

{
 

 𝑠 − 𝑟 −
𝛿

2
, 𝑟 ≤ 𝜌 − 𝛿

(𝑠−𝑟)2

2𝛿
, 𝑠 − 𝛿 < 𝑟 ≤ 𝑠

0, 𝑟 > 𝑠

  (9) 

 

The continuous and differentiable nature of 𝐻1(𝑟)  and 

𝐻𝑠(𝑟)  was readily apparent. It can be observed that these 

functions diminish to the hinge loss when 𝛿 → 0 and expand 

linearly as 𝑖 lowers. Following the combination of 𝐻1(𝑟) and 

−𝐻𝑠(𝑟) , the Huberized truncated loss function, 𝑇𝑠(𝑟) =
𝐻1(𝑟) − 𝐻𝑠(𝑟) can be written as follows: 

 

𝑇𝑠(𝑟) = 𝐻1(𝑟) − 𝐻𝑠(𝑟) =

{
  
 

  
 
𝜌 − 𝑠, 𝑟 ≤ 𝑠 − 𝛿

𝜌 − 𝑟 −
𝛿

2
−

(𝑠−𝑟)2

2𝛿
, 𝑠 − 𝛿 < 𝑟 ≤ 𝑠

𝜌 − 𝑟 −
𝛿

2
, 𝑠 < 𝑟 ≤ 𝜌 − 𝛿

(𝜌−𝑟)2

2𝛿
, 𝜌 − 𝛿 < 𝑟 ≤ 𝜌

0, 𝑟 > 𝜌

  
(10) 

 

As presented above, the development of OCSVM began 

with a modification that added further restrictions to the slack 

variables for the instances belonging to various groups. Then, 

later, the ramp loss function was introduced, where this loss 

function's non-convexity properties were used to create a 

robust, sparse semi-supervised method. After that bounded 

loss function was integrated utilizing OCSVM's randomized 

nonlinear characteristics, removing the requirement to handle 

big kernel matrices for big datasets, which lowers the 

complexity in terms of time and space. In another method, it 

was developed by utilizing the vector quantization technique 

combined with the OCSVM, which is more capable of 

generalization complex data distribution. Later, a Huberized 

truncated loss function was proposed to overcome the hinge 

loss function's drawbacks and increase the OCSVM's 

robustness. 

 

(1) Synthesis of algorithmic advancesment in OCSVM 

Algorithmic improvements to OCSVM can be broadly 

categorized into three dominant directions: loss-function 

modification, integration with auxiliary learning models, and 

computational acceleration. Loss-based approaches, such as 

ramp, bounded, and Huberized loss functions, consistently 

improve robustness against outliers by limiting the influence 

of extreme samples; however, they often introduce non-

convex optimization challenges and heightened parameter 

sensitivity. Hybrid approaches that combine OCSVM with 

deep learning or vector quantization enhance representational 

power but increase model complexity and training cost. Efforts 

aimed at accelerating OCSVM through randomized features or 

primal-space optimization improve scalability for large 

datasets, yet may trade off accuracy in highly heterogeneous 

data distributions. Overall, existing methods exhibit a 

recurring tension between robustness, computational 

efficiency, and generalization capability. 

 

3.2.2 Applications of OCSVM 

There are many areas or fields of applications that have 

made use of OCSVM in dealing with the challenge of novelty 

detection. In this section, some of the recent research that has 

applied OCSVM is discussed. For example, Delgado-Prieto et 

al. [20] proposed a multi-modal strategy to enhance the 

effectiveness of novelty detection. The approach used in this 

work is broken down into three primary steps. The first step is 

a specific feature calculation and reduction over all accessible 

physical magnitudes. Next, a group of OCSVM-based novelty 

detection models was developed to detect previously 

unconsidered events. Lastly, a diagnosis model that consists of 

a feature fusion scheme was introduced to classify faults 

accurately. 

A new scheme was proposed to be utilized for denoising, 

which displays the optimal thresholding rule and mother 

wavelet combination for every signal [43]. This scheme 

requires features to be collected from the time-frequency and 

time-domains, and the energy-to-frequency analysis shows the 

optimal mother wavelet for feature extraction from each signal. 

The criterion of the Shannon entropy ratio. In this work, it is 

also demonstrated because by making the signals more 

nonlinear, the statistical traditional or mixtures of statistical 

traditional and solely nonlinear features have the ability to 

fully classify data; nonlinear features are unable to do so. 

Hence, three rotating systems' vibration data are detected 

using OC-SVM; nevertheless, the focus is on data pre-

processing techniques such denoising, dimension reduction, 

vectorization, feature extraction, and normalization. In 

particular, for the first time, the impact of both classical and 

nonlinear statistical feature extraction on novelty detection. 

Saari et al. [44] have used OCSVM to use fault-specific 

characteristics taken from vibration signals in order to detect 

and identify wind turbine bearing problems. By training 

models using these attributes as input for a OCSVM, 

automatic identification was accomplished. By adjusting the 

model tuning settings, detection models with varying 

sensitivity were trained concurrently. Additionally, efforts 

were made to determine a process for choosing the model 

tuning parameters by first determining the system's criticality 

and then using that information to estimate the detection 

model's accuracy. 

An unsupervised deep learning method was proposed 

founded on an OCSVM-based deep auto-encoder, where the 

classifier was used in the measurement of the reaction data 

obtained from baseline or intact structures as training data, 

making it possible to identify structural degradation in the 

future [45]. The well-crafted deep auto-encoder, which is 

utilized as an extractor to extract damage-sensitive features 

from the observed acceleration response data, and the OCSVM, 

which is employed as a damage detector, are the main 

innovations and contributions of the suggested approach. 

On the other hand, Cardoso and Poppi [46] suggested a 

novel technique that uses one-class modeling and Raman 

spectroscopy to examine the adulteration in cassava starch. 

OCSVM was found to have achieved higher accuracy than 

other techniques. This study evaluated two methods for one-

class classifier models: OC-SVM and soft independent 

modelling by class analogy (SIMCA). 

A new hybrid model was proposed in the previous study [47] 

that combines an unsupervised deep belief network (DBN) and 
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OCSVM to solve the difficulty of detecting high-dimensional 

geochemical abnormalities. This model uses DBN to initially 

extract the pertinent features, which are then fed into the 

OCSVM. The hybrid method's decision function values are 

used to map the geochemical patterns associated with iron 

deposits. The OCSVM is then trained using the features 

discovered from the original data in order to successfully 

distinguish the multivariate geochemical anomaly from the 

geochemical background. Ramp OC-SVM, a robust and 

nonconvex semi-supervised technique, was proposed by Tian 

et al. [48]. OCSVM was used to handle the lack of labelled 

data for deceptive opinions and by utilizing the Ramp loss 

functions, non-convex features to its advantage, where it 

removes the impact of non-reviewed opinions and outliers. 

In the other work, the large building land area was able to 

be retrieved from Landsat image data using an OCSVM-based 

approach [49]. Their works have demonstrated that OCSVM 

is appropriate for the research of remote sensing image 

classification when only one class of features is extracted, and 

expanding the use of OCSVM in remote sensing picture 

building recognition, demonstrating its effectiveness and 

precision in this context. In the study by Yin and Wang [50], a 

new strategy was put forward to detect the outliers of 

unhealthy leaf images from the massive leaf images dataset 

using OCSVM. They have established that their modified 

OCSVM has produced very efficient and robust results in 

detecting the anomalous data from the extensive dataset of leaf 

images. 

The decision tree classifier and OCSVM were used to create 

a hybrid intrusion detection system [51]. This system is 

designed to detect both known Very highly accurate zero-day 

cyberattacks with low false alarm rates. Using OCSVM as the 

classifier inside their ensemble learning model, the 

experimental results have shown that this system outperforms 

traditional single classifier approaches and proves to be more 

effective than other machine learning techniques. 

On the other hand, a novel personalized federated learning 

method based on OCSVM was proposed by Anaissi et al. [52]. 

In this work, the method aims to address the transmission and 

data privacy concerns raised by central machine learning 

models by customizing the support vectors that are generated 

at each client in the distributed learning model structure. Their 

results have shown that the proposed OCSVM-based 

personalized federated learning method has achieved 

significant accuracy and can precisely generalize the clients’ 

models compared to the other techniques. 

Recently, an OCSVM-based algorithm was proposed by 

Karami and Niaki [53] to overcome the limited sensitivity of 

fast change point detection, high computing costs, poor 

scalability with large networks, and excessive reliance on 

case-based features. It is adaptable to a variety of social 

network applications and efficiently identifies network 

disruptions by utilizing both nodal and network-level 

characteristics. The approach reduces the processing of input 

data by using a well-defined training data dictionary with an 

evolutionary network update procedure, improving memory 

and time efficiency. 

Recent application studies also demonstrate the practicality 

of one-class classification for structural health monitoring 

using online anomaly detection, emphasizing real-time 

deployment under limited anomaly labels and evolving 

operating conditions [54].  

 

(1) Summary of application-oriented implementation 

Across diverse application domains, including fault 

diagnosis, medical analysis, remote sensing, and cybersecurity, 

OCSVM-based novelty detection demonstrates strong 

adaptability and consistent performance when labeled 

anomaly data are scarce. Application-driven studies highlight 

the importance of domain-specific feature engineering and 

preprocessing pipelines, which often play a decisive role in 

detection accuracy. Nevertheless, reliance on handcrafted 

features or expert knowledge reduces portability across 

domains. Furthermore, many application-oriented models 

require careful parameter tuning and exhibit sensitivity to 

operating conditions, limiting robustness under data drift or 

evolving environments. These observations suggest that future 

application-focused research should emphasize adaptive 

feature learning and automated parameter calibration to 

improve long-term reliability.  

Recent comparative studies continue to include OC-SVM 

as a primary baseline for unsupervised anomaly detection. For 

example, Agyemang [55] evaluated OC-SVM against 

Isolation Forest, Local Outlier Factor, Robust Covariance, and 

an SGD-based OC-SVM variant, reporting that OC-SVM 

remains among the most effective methods for identifying 

outliers, achieving strong recall performance, while 

highlighting trade-offs with precision depending on the dataset 

characteristics.  

 

 

4. SUMMARY 

 

Table 1 summarizes the review of the OCSVM and SVDD 

algorithms in the context of novelty detection. The works are 

arranged in this table from the most recent implementation to 

the oldest research. Consistent improvements of fundamental 

algorithms like OCSVM and SVDD are revealed in this review 

of novelty detection techniques. Using methods like ramp loss 

functions deep belief networks (DBNs) ensemble classifiers 

and metaheuristic optimizations like Grasshopper or Sparrow 

Search researchers have enhanced these algorithms. These 

integrations are intended to increase the accuracy of fault 

detection strengthen resilience to outliers and support complex 

or high-dimensional datasets from spam filtering and plant 

health monitoring to electromechanical faults and 

geochemical analyses. Dynamic adaptations like quarter-

sphere methods and variable-radius SVDD further highlight 

the fields emphasis on efficiency and generalization across a 

range of applications. 

Even though there has been a lot of progress there are still 

issues mostly with computational cost scalability and 

parameter sensitivity. Many models rely on fine-tuning 

kernels loss parameters or feature extraction architectures 

which can make them difficult to use in large-scale or real-

time scenarios. Additionally, some methods are less adaptable 

to different environments because they mainly rely on domain-

specific preprocessing pipelines or signature databases. 

Furthermore, techniques such as empirical pinball losses or 

fixed threshold autoencoders show vulnerability when dealing 

with noisy inputs or changing data distributions. When 

considered collectively the developments show promise but 

also highlight the need to strike a careful balance in novelty 

detection between innovation and generalizability. 
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Table 1. Summary of different approaches used in novelty detection 

 
Methods Improvements Limitations 

DW-SVDD (SVDD 

and 𝑘-NN) [22] 

Enhances SVDD by incorporating density weights 

from 𝑘-NN, prioritizing high-density regions, shifting 

boundary toward dense clusters, and improving 

accuracy without assuming data distribution. 

May underperform with symmetric or multi-modal data 

where density weights exert less influence, resulting in 

less accurate descriptions and potential misclassification. 

Ramp-OCSVM [40] 

Replaces hinge loss with ramp loss to improve 

robustness against outliers; solves non-convex 

optimization via CCCP. 

Non-convex and non-differentiable optimization requires 

iterative CCCP, increasing computational cost and limiting 

scalability on large datasets. 

OCSVM [20] 

Multimodal novelty detection methods are used to 

ensemble OCSVMs and separate feature reduction, 

enhance detection accuracy, fault diagnosis 

reliability, and adaptability to unknown 

electromechanical faults. 

Risks diagnosis errors without novelty detection, struggles 

with overlapping fault features, and relies on separate 

feature reductions, which may introduce complexity and 

affect generalizability across varied electromechanical 

systems. 

OCSVM [43] 

Enhanced OC-SVM by using nonlinear features and a 

systematic preprocessing pipeline, which includes 

advanced denoising and optimized wavelet selection. 

Despite high accuracy, the algorithm depends on tailored 

preprocessing for each signal, increasing computational 

burden and limiting scalability; traditional statistical 

features may fail under rising nonlinearity. 

OCSVM [44] 

The algorithm enhances fault detection by combining 

fault-specific vibration features with parallel OCSVM 

models tuned for system criticality, enabling earlier 

detection than traditional methods with minimal false 

alarms. 

The algorithm fails to reliably identify fault locations 

without auxiliary methods, is sensitive to feature and 

parameter selection, and cannot always distinguish 

between similar fault signatures from different 

components. 

OCSVM and C5 

decision tree 

classifier [51] 

Hybrid algorithm combines decision tree and 

OCSVM using a stacking ensemble, enabling 

accurate detection of both known and zero-day 

intrusions with reduced false alarm rates. 

Hybrid system adds complexity, depends heavily on 

signature database updates and kernel selection, and may 

struggle to adapt quickly to evolving malware behaviors or 

large-scale data. 

Deep Belief 

Networks (DBN) and 

OCSVM [47] 

The hybrid model boosts anomaly detection by 

extracting nonlinear, high-level geochemical features 

via deep belief networks, improving accuracy and 

scalability for complex, high-dimensional mineral 

datasets. 

The model relies heavily on optimal parameter tuning, 

involves increased computational cost, and may struggle 

with generalization across datasets with diverse 

geochemical patterns. 

OCSVM [38] 

The algorithm improves OCSVM by integrating 

randomized nonlinear features and a bounded loss 

function, reducing sensitivity to outliers, and 

significantly decreasing computational complexity for 

large-scale IoT anomaly detection. 

The performance depends heavily on parameter tuning, 

may struggle with highly imbalanced or noisy IoT data, 

and randomized features could dilute the discriminative 

power. 

Ramp-OCSVM [48] 

The algorithm enhances spam detection by combining 

semi-supervised learning with ramp loss, improving 

robustness to outliers and non-review noise while 

maintaining strong generalization with limited 

labeled deceptive data. 

Requires careful ramp parameter tuning, involves non-

convex optimization, and may struggle with evolving 

linguistic styles or sparse labelled deceptive data in large-

scale opinion datasets. 

OCSVM [46] 

The algorithm integrates Raman spectroscopy with 

OCSVM for rapid, non-destructive cassava starch 

adulteration detection, achieving higher accuracy and 

detecting adulterants at low concentrations. 

The detection of lower adulteration concentration remains 

challenging due to Raman sensitivity and sample 

heterogeneity. OCSVM also depends on careful parameter 

tuning and effective preprocessing. 

SVM, SVDD, and 

Grasshopper 

Optimization 

Algorithm (GOA) 

[27] 

The algorithm introduces a two-stage fault diagnosis 

framework using GOA-optimized SVDD and SVM, 

with entropy-based feature selection tailored to 

normal data, boosting early detection and 

classification accuracy. 

The algorithm depends heavily on entropy indicator 

selection, requires careful parameter tuning via GOA, and 

may be less effective with severely imbalanced or noisy 

datasets. 

SVDD [29] 

The improvement generalizes SVDD by replacing the 

fixed linear slack penalty with a tuneable ℓ𝑝-norm, 

allowing nonlinear error weighting, better sparsity 

control, and improved generalization performance in 

one-class classification tasks 

The selectin of optimal p and kernel parameters is 

challenging, and the performance may degrade with poor 

tuning, and computational cost increases with complex 

optimization in high-dimensional data. 

DR-SVDD [30] 

The method improves fault diagnosis by combining 

hypersphere radius with local data distribution, 

enabling dynamic radius adjustment and multi-class 

fault identification with higher accuracy in the 

systems. 

Requires careful tuning of radius weight and neighbour 

count, may struggle with noisy data, and adds complexity 

with dynamic boundary calculations per test sample. 

DBN, SVDD, and 

Sparrow Search 

Algorithm (SSA) [31] 

The algorithm uses a DBN for automatic feature 

extraction, optimized SVDD via SSA for accurate 

degradation modelling, eliminating reliance on fault 

data and manual parameter tuning. 

Limited testing beyond experimental datasets may cause 

potential challenges in real-world variability, like 

changing speed and load. Only the amplitude spectrum 

was used while the other inputs were not explored, and the 

anti-noise capability needs deeper analysis. 
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Methods Improvements Limitations 

SVDD and Part 

Interval Stacked 

Autoencoder (PISAE) 

[32] 

The model improves SAE loss function to handle 

partial uncertainty, extracts robust nonlinear features 

via PISAE, and combines with SVDD for accurate 

process monitoring without misclassifying normal 

fluctuations as faults. 

The method relies on predefined uncertainty ranges; lacks 

dynamic estimation of uncertainty levels across variables, 

and may underperform with highly imbalanced or noisy 

data due to fixed thresholding in error processing. 

Broad Learning 

System (BLS) and 

SVDD [33] 

Incorporates BLS-based reconstruction error as 

sample weighting, introduces a few anomalous 

samples during SVDD training, enhancing 

robustness, generalization, and domain boundary 

accuracy in highly imbalanced datasets. 

The model depends heavily on reconstruction quality, and 

it may underperform if reconstruction errors do not reflect 

anomaly likelihood accurately, resulting in limited 

effectiveness in high-noise data or datasets with densely 

overlapping normal-abnormal distributions. 

pin-SVDD [34] 

The algorithm introduces pinball loss to SVDD, 

making all training data influential in sphere 

formation, enhancing robustness to noise and 

resampling, while preserving computational 

efficiency without extra preprocessing. 

Lacks dynamic adaptability to evolving data distributions, 

such as assuming a static penalty structure. The pinball 

parameter tuning is empirical and may risk excluding valid 

targets if set improperly. 

OCSVM [49] 

The method applies OCSVM to extract construction 

land from multi-temporal satellite imagery data with 

high accuracy, enabling efficient monitoring, 

expansion analysis, and driving factor evaluation in 

urban environments. 

Only construction land is classified, ignoring other land 

types, and therefore lacks granularity in mixed-use areas. 

It requires careful sample selection, and parameter tuning 

may impact accuracy across time or terrain variations. 

OCSVM [50] 

A modified OCSVM was proposed to detect leaf 

image anomalies, integrates expert-scored labels, 

extracts feature via neural networks, and assigns 

outlier scores for fine-grained plant health evaluation. 

The algorithm relies on expert-labelled data, limiting 

scalability; dataset diversity and fuzzy labels affect 

accuracy; feature extraction and scoring are dataset-

dependent, potentially reducing generalization to unseen 

leaf types. 

DBN, Improved 

Quarter-Sphere Based 

OCSVM (IQSSVM) 

[56] 

The model combines DBN with IQSSVM for real-

time anomaly detection; reduces complexity via 

sorting, removes kernel parameter dependency, and 

supports accurate unsupervised processing of high-

dimensional sequential data. 

The model requires careful DBN tuning for feature 

extraction, and hence, performance may vary with DBN 

architecture. It assumes anomaly distribution 

characteristics in which the accuracy may drop if 

anomalies are not one-sided or if data noise increases. 

 

 

5. CONCLUSION 

 

This review examined novelty detection from the 

perspective of domain-description learning, focusing on 

SVM-based formulations, particularly SVDD and OCSVM. 

Unlike probabilistic, distance-based, and reconstruction-based 

methods, domain-description approaches directly model the 

boundary of normal data, which explains their broad adoption 

in scenarios where abnormal samples are rare, unknown, or 

difficult to label. 

The reviewed literature shows that recent progress in 

SVDD/OCSVM development follows several consistent 

directions. First, robust loss designs (e.g., ramp, bounded, 

pinball, or Huberized losses) reduce the influence of outliers 

and contaminated training data; however, they often introduce 

non-convex optimization or additional hyperparameters, 

increasing training complexity and sensitivity. Second, hybrid 

and deep integration strategies enhance representation 

learning and improve detection accuracy in high-dimensional 

domains, but they commonly require extensive tuning and can 

increase computational cost, limiting practicality in real-time 

applications. Third, acceleration and scalability techniques, 

including randomized features and primal-space optimization, 

reduce computational and memory burdens for large datasets; 

nonetheless, these improvements may trade off boundary 

precision in heterogeneous or dynamically evolving 

environments. 

Despite these developments a number of unresolved issues 

are still present in all of the studies that were surveyed. The 

sensitivity of OCSVM/SVDD performance to kernel 

parameters loss settings and threshold selection is a major 

problem that frequently necessitates expert-driven tuning and 

decreases portability across domains. The decreased 

dependability of static decision boundaries under concept drift 

data drift and non-stationary circumstances particularly in 

streaming or long-term monitoring settings is another 

persistent drawback. Lastly while many studies show good 

empirical performance, they offer few theoretical assurances 

about generalization and robustness under contamination and 

distribution shift.  

Future research should therefore prioritize: (i) self-tuning 

and adaptive domain-description models that can update 

boundaries under drift while maintaining stability, (ii) scalable 

optimization frameworks that preserve robustness without 

high computational overhead, and (iii) hybrid methods that 

combine domain-description learning with modern feature 

learning while minimizing parameter sensitivity. Addressing 

these directions will significantly improve the deployability of 

OCSVM/SVDD-based novelty detection in real-world 

systems. 
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NOMENCLATURE 

 

𝐴𝑃 average precision 

𝐹𝑁 false negative 

𝐹𝑃 false positives 

𝐻 Huber-loss function 

𝑘 number of neighbor 

𝑙 total training samples 

𝑅 ramp-loss function 

𝑟 group's index 

    receiver operating characteristic  

𝑠 pre-defined parameter 

𝑇 Huberized truncated-loss function 

𝑇𝑃 true positives 

𝑤 weight vector 

𝑥 data point 

𝑧 function score 

 

Greek symbols 

 

𝛼 positive Lagrange multiplier 

𝛽 normalization constant 

𝛿 Hinge loss 

𝜂 scaling constant 

ℓ norm 

𝜅 kernel function 

𝜆 regularization paramter 

𝜈 trade-off parameter 

𝜙 transformation function 

𝜌 offset parameter 

𝒵 correcting space 

𝜎 Gaussian function parameter 

𝜏 training data 

𝜉 slack variable 
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