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 Breast Cancer is one of the leading causes of mortality among women worldwide, and 

though the battle is won repeatedly, it still demands early and accurate diagnosis of the 

disease, which will provide the best chances of improved treatment outcomes. We propose 

an innovative deep learning framework that fuses DenseNet-based feature extraction with 

Squeeze-and-Excitation Networks (SENet) for breast cancer detection in this work. By 

leveraging SENet, we enable the model to adaptively recalibrate channel-wise feature 

responses, thereby enhancing the discriminative power of feature maps induced by the dense 

stream of DenseNet. The study utilizes two benchmark datasets: the first set of cases used 

was one from the Kaggle repository, which is balanced with 386 benign and 422 malignant 

cases, comprising 802 training, 129 testing, and 189 validation images. The second dataset 

is the BreakHis dataset, containing 9,109 microscopic images from 82 individuals at various 

magnifications. With these datasets being balanced and diverse, they provide a strong 

foundation for assessing the effectiveness of the proposed model. Additionally, we achieve 

remarkable performance on both datasets. The overall accuracy and the precision, recall, 

and F1 scores on the Kaggle dataset were 97.35%, 94.84%, 100%, and 97.35%, respectively. 

The model yielded staggering results, achieving an accuracy of 99.9% on the BreakHis 

dataset, with precision, recall, and F1 scores very close to perfection at 99.8%, 99.8%, and 

99.8%, respectively. These results significantly outperform existing methods, demonstrating 

the effectiveness of dense features with channel attention. By combining SENet and 

DenseNet, we obtain a powerful diagnostic tool for breast cancer detection. Further work 

will be conducted to generalize this model to other medical imaging datasets and to make it 

real-time for clinical use.  
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1. INTRODUCTION 

 

Although advances have been made in the battle against 

cancer, breast cancer is one of the most prevalent and, 

unfortunately, deadly forms of cancer in women worldwide [1, 

2]. According to WHO, there were about 2.3 million new cases 

and 685,000 deaths from breast cancer worldwide in 2023 

alone [3, 4]. The presence of Early detection significantly 

improves the survival rate and reduces treatment-related 

complications [5]. Mammography has traditionally been the 

gold standard for breast cancer screening; However, it suffers 

from high false positive rates, poor sensitivity in dense breast 

tissue, and significant inter-observer variability [6]. 

Automated diagnostic systems using deep learning have 

emerged as a promising solution for automating breast cancer 

detection processes, thereby enhancing the accuracy and 

consistency of such detection [7]. 

Over the recent past, convolutional neural networks (CNNs) 

have been developed to achieve better performance in medical 

imaging classification, segmentation, and anomaly detection 

tasks [8]. DenseNet can enjoy such structural advantages; 

however, when trained on massive datasets (mammographic 

images in this paper), the final layers may not be sufficiently 

focused on the most informative parts for classification [9]. 

However, DenseNet does not adequately guide the learning 

process to the most informative features during training, 

particularly when the image dataset becomes complex, such as 

mammographic images [8, 9]. To further adaptively 

recalibrate channel-wise feature responses by modeling 

interdependencies among channels, we are motivated to adopt 

an attention mechanism, such as the Squeeze and Excitation 

Network (SENet). Together, SENet and DenseNet can provide 

feature richness through depth-wise and dynamic channel 

attention, which may enhance the ability to discriminate 

between benign and malignant tissue regions. In addition, the 

challenge in deploying deep learning models for medical 
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diagnostics is not only feature extraction, but also the effective 

integration (fusion) of features for prediction [10]. There are 

broadly defined feature fusion methods: early fusion, 

intermediate fusion, and late fusion. Early fusion feeds raw 

data (or low-level features) into the model before taking the 

effect of fusion, which, in most cases, leads to redundant or 

noisy data representations. Intermediate fusion sums feature at 

the hidden layers, but crucial semantic distinctions can still be 

diluted. In contrast, late fusion operates at high-level decision 

outcomes or semantic-rich features extracted from different 

models or layers. For this purpose, we propose a novel late 

fusion strategy that leverages SENet’s channel attention and 

DenseNet’s feature representation strengths. Moreover, by 

integrating these high-level features at the decision-making 

stage rather than at intermediate processing levels, we preserve 

more semantic information and enhance the discriminability 

of the model for subtle tissue anomalies [11, 12]. 

Our proposed late fusion strategy utilizes a two-branch 

architecture with this fusion. Hierarchical features are 

extracted using a pre-trained DenseNet-121 on one branch, 

and SENet modules are used on the second branch to 

emphasize the importance of feature channels. Both branches 

independently process input mammographic images to 

produce their respective, yet complementary, sets of high-

dimensional feature embeddings [13, 14]. They are then fused 

via a custom-designed fusion layer that jointly normalizes the 

features, pools bilinearly, and reduces the dimension to a 

unified representation. By creating this late fusion technique, 

we not only retain the core characteristics of each source but 

also mitigate the problem of overfitting and model complexity 

often encountered when combining high-dimensional medical 

data.

 

 
 

Figure 1. Framework for enhancing breast cancer detection using SENet with DenseNet feature extraction 

 

A framework for utilizing SENet and DenseNet in 

conjunction for enhancing breast cancer detection is illustrated 

in Figure 1. Feature extraction, attention-guided learning, and 

late fusion are employed to improve the accuracy and clinical 

applicability. 

The significant contributions of this study are summarized 

as follows: 

(1) Hybrid Architecture Design: This work proposes a new 

hybrid model that combines DenseNet121 with SENet, 

incorporating hierarchical feature extraction and channel-wise 

attention mechanisms to enhance classification performance 

for breast cancer. 

(2) Feature Recalibration for Improved Accuracy: The 

model is adapted to embed SE blocks within DenseNet121, 

allowing it to adaptively highlight informative features and 

suppress their ineffective counterparts, thereby making the 

network more sensitive to these essential diagnostic features 

in breast cancer image classification. 

(3) Efficient Use of Pre-trained Networks: The ImageNet 

pre-trained DenseNet121 model is utilized, employing transfer 

learning effectively with a small amount of medical imaging 

data to improve accuracy. 

(4) Robust Data Preprocessing Pipeline: The proposed 

architecture demonstrates high performance for the binary 

classification task and serves as a reliable tool to aid clinicians 

in diagnosing benign and malignant breast tumors. 

(5) Model Evaluation and Applicability: The proposed 

architecture demonstrates high performance in binary 

classification; therefore, it can be considered a reliable tool for 

assisting clinicians in detecting benign and malignant breast 

tumors. 

In this work, we propose a novel, practical framework to 

enhance breast cancer detection by combining DenseNet 

feature extraction and SENet-reliant attention mechanisms, 

followed by a genetically reasonable subsequent fusion. The 

experimental results proved that this approach to breast cancer 

diagnosis has the potential to tackle up-to-date problems in 

computer-aided breast cancer diagnosis, and, accordingly, 

provide a potential direction for the development of intelligent 

medical imaging systems in the future. 

Our paper is structured as follows: In Section 2, the 

pertinent research will be thoroughly analyzed. In Section 3, 

the datasets used in this research and the data preprocessing 

procedures are described. Section 4 presents the research 

approaches used. The experimental design and results are 

detailed in Section 5. Section 6 comprehensively analyzes the 

findings. Finally, Section 7 summarizes the results and 

outlines possible directions for further study.  

 
 

2. LITERATURE REVIEW 
 

In recent years, deep learning models, specifically CNNs 

and their various extensions, have made significant 

contributions to breast cancer detection. Several studies have 

been conducted on breast cancer detection and classification, 

employing multiple methodologies, datasets, and challenges. 

This review examines the current state of the latest research on 

the topic, highlighting key studies, methodologies, datasets 

used, limitations, and findings. 

3664



 

The incorporation of explainable AI (XAI) and fine-tuning 

techniques represents a significant advancement in breast 

cancer detection. An improved XAI-based DenseNet model 

for breast cancer detection was introduced by Talukder [15]. 

Breaking the image into fine blocks and visualizing them in 

various ways was done using the image preprocessing 

techniques. Not only do the results yield good accuracy 

(97.27% on BreakHis 200X images), but also, since it has not 

been validated in real-world clinical devices, the research has 

limited practical applicability. On the other hand, Khan et al. 

[16] proposed a specific framework termed RM DenseNet, 

which blends residual models with DenseNet for 

mammographic image classification. Then, the CBIS-DDSM 

dataset, which contains digital mammography images 

annotated with abnormalities, was used. To improve the model 

performance, RM DenseNet used Gaussian Blur, horizontal 

flipping, and data augmentation. Although 96.50% is a 

promising accuracy, further work on real-world validation is 

lacking. 

The attention mechanism-enhanced hybrid DenseNet model 

was used in a third study by Samudrala and Mohan [17] for 

the semantic segmentation of breast cancer images. A 

histologically confirmed dataset was used to test the model in 

a Google Colab environment. Even with an accuracy of 

94.68%, we have outperformed other models, such as FCN, 

Unet, and PSPNet. However, we also demonstrate that further 

real-world clinical testing is necessary before deploying these 

models in the wild. Upadhyay et al. [18] also proposed a meta-

learning framework for breast cancer classification using 

DenseNet-121. In their approach, they employed a few-shot 

learning technique, even in scenarios where there was only a 

limited amount of labeled data. This study also demonstrated 

high performance (96% accuracy). Still, it has limitations due 

to data scarcity and the lack of real-world testing, suggesting 

that there is room for improvement in the framework. 

 
 

Table 1. List of previous references that include datasets, methodology, limitations, and results 
 

References  Datasets Methodology Limitations Results 

[15] BreakHis 200X, 400X, BACH 
DenseNet modifications, image 

preprocessing, XAI, fine-tuning 

Controlled environment, no 

real-world clinical device 

BreakHis: 200X: 97.27%, 

400X: 96.98%, BACH: 94.75% 

[16] 

CBIS-DDSM, digital 

mammography images with 

abnormal annotations 

RM-DenseNet, Gaussian blur, 

horizontal flipping, data 

augmentation 

Limited to digital 

mammography, no real-world 

validation 

Achieved 96.50% accuracy, 

outperforming AlexNet, 

VGG16, and ResNet50 

[17] 

Histologically confirmed dataset, 

validated in Google Colab 

environment 

Hybrid DenseNet-121 with Att-

PSPnet, Attention Gate 

mechanism 

No mention of real-world 

clinical deployment or testing 

Achieved 94.68% accuracy, 

outperforming FCN, Unet, 

PSPNet 

[18] 
Breast cancer medical images, 

limited labeled data 

Meta-learning, image 

segmentation, feature extraction, 

classifier refinement 

Limited labeled data requires 

further real-world testing 

Achieved 96% accuracy with 

minimal support samples 

[19] 
HAM10000, ISIC benchmark 

image database for skin cancer 

DSC-EDLMGWO, CLAHE, 

Wiener filter, SE-DenseNet, 

LSTM, ELM 

No mention of real-world 

clinical deployment or 

scalability 

Achieved 98.38% accuracy for 

HAM10000, 98.17% for ISIC 

[20] 

BreakHis, IDC (Invasive Ductal 

Carcinoma) histopathology 

images 

Deep CNN, EfficientNetB0, 

ResNet50, Xception, transfer 

learning 

Limited to specific 

histopathology images, no 

real-world deployment 

93.33% accuracy for BreakHis, 

88.08% for IDC 

[21] 

BreCaHAD dataset for 

histological annotation and 

diagnosis 

Hybrid dilation deep learning, 

data augmentation, AlexNet 

Dataset-specific, potential 

issues with scanner and 

staining 

Achieved AUC of 96.15, 

outperforming previous 

methods 

[22] 
Thermography images collected 

from online sources 

CLAHE, RHDAO optimization, 

StackVRDNet, VGG16, ResNet, 

DenseNet 

Limited to thermography 

images, not generalizable to 

other methods 

Achieved 97.05% accuracy, 

86.86% precision in simulation 

[23] 
CLAHE-enhanced mammogram 

images from Kaggle 

CNN+ViT model, DenseNet, 

Inception, SE ResNet, 

XceptionNet 

XceptionNet overfitting, 

reliance on large data 

The CNN+ViT model achieved 

90.1% accuracy, and 

XceptionNet overfitted 

[24] 
BreaKHis dataset, breast cancer 

histopathological images 

MFF-HistoNet, CNN, Quantum 

Tensor Network, GLCM, LBP 

May struggle with extreme 

image distortions or noise 

98.8% accuracy at image level, 

98.4% patient level 

[25] 
BreakHis breast cancer image 

dataset 

Cellular automata model, deep 

feature extraction, ANN 

classification 

Computational complexity, 

potential overfitting in 

complex models 

Achieved 97.2% accuracy, 

7.95% improvement over 

methods 

 

In the domain of skin cancer, Dorathi Jayaseeli et al. [19] 

introduced skin cancer detection using the HAM10000 and 

ISIC benchmark datasets, employing a fusion between 

Squeeze Excitation DenseNet and a metaheuristic-driven 

ensemble deep learning model. An advanced approach was 

able to generate the very high accuracies of 98.38% on 

HAM10000 and 98.17% on ISIC, but there is little information 

revealed to us regarding real world deployment or scalability 

which handicaps us in being able to understand the real utility 

of the model, if for any of a myriad of the other workload 

scenarios. Moreover, a major hurdle in many of these studies 

is that they were not deployed in a real clinical setting. For 

example, models pre trained on such datasets like Xception 

and EfficientNetB0 were also used in a transfer learning 

approach by Joshi et al. [20] on the BreakHis and IDC 

histopathology datasets. While the model achieved an 

accuracy of 93.33% on BreakHis images, it has some 

bottlenecks that hinder its accuracy in making an inference in 

a clinical scenario, which would be extremely different from 

an idealized view of an image. In addition, the study by 

Aldhyani et al. [21] on breast cancer detection also employs a 

hybrid dilation-based deep learning method using the 

BreCaHAD dataset. However, their model showed an AUC of 

96.15%, which far surpassed the previous models. However, 

in practice, the use of a specific dataset, along with the issues 

that scanner variability and staining processes pose for image 

quality, introduces some significant impediments to 

generalization. Furthermore, Bani Ahmad et al. [22] proposed 
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an efficient hybrid deep learning framework using images 

from online sources for thermography-based breast cancer 

detection in the domain. They used CLAHE, RHDAO 

optimization, and StackVRDNet in their model, which 

achieved an accuracy of 97.05%. While it can be applied to 

thermography images, its generalizability may be limited to 

other imaging modalities, which hinders its widespread 

adoption. Furthermore, Sarkar et al [23] used CLAHE-

enhanced mammogram images using CNN+ViT and various 

models. XceptionNet overfitted, implying its dependency on 

large data sets, a constraint, witnessed an accuracy of 90.1% 

under the CNN+ViT system. 

Some more advanced hybrid models have been tackled in 

recent years. For histopathological image analysis, Mahmood 

et al. [24] proposed a multi-modal feature fusion network 

called MFF HistoNet based on CNN and quantum tensor 

networks. The BreaKHis dataset yielded an impressive 98.8% 

and 98.4% accuracy at the image and patient levels, 

respectively. Nevertheless, this method could still suffer 

extreme image distortions or noise in some cases. Also, 

Tangsakul and Wongthanavasu [25] reviewed the 

methodologies of breast histopathological image analysis, 

comparing computational methods and models. The models 

are emphasized as complex and prone to overfitting, especially 

with very complex architecture. However, their evaluation 

against the BreaKHis dataset was 7.95% better than existing 

methods, with an accuracy of 97.2%. 

Ultimately, however, the application of advanced deep 

learning methods in breast cancer detection is beginning to 

gain mainstream adoption. Most studies report high accuracy. 

Nevertheless, there is a long way before real-world 

deployment, data scarcity, and other forms of generalization 

across imaging modalities. To overcome these limitations, 

future research should focus on enhancing model robustness, 

facilitating clinical deployment, and utilizing more diverse and 

comprehensive datasets. 

Past references, including datasets used, methodological 

framework, limitations, and results, are presented in Table 1. 
 

 

3. DATA COLLECTION 
 

The dataset utilized for breast cancer identification was 

obtained from the publicly available Kaggle repository [26]. 

This dataset is classified into two distinct categories: benign 

and malignant. 

 

 
 

Figure 2. Benign and malignant samples from the training 

dataset 

 

As shown in Figure 2, the dataset consists of colored images 

used for breast cancer identification. The photos are formatted 

as PNGs and do not include cancer region masks for 

segmentation techniques [26, 27]. This refers to the process of 

dividing the image into pixel segments to obtain a more 

detailed description of breast cancer detection. In this work, 

we will use the SENet deep learning model, which has been 

fine-tuned with an intelligent architecture to classify breast 

cancer photos. This model can extract comprehensive 

information from the entire image and provide a precise output 

for determining whether a given image is benign or malignant 

[28]. Additionally, the dataset includes three distinct subsets: 

the training subset, the validation subset, and the test subset. 

Figure 3 illustrates the distribution of training, testing, and 

validation sets. 

There are a total of 802,129 training, testing, and validation 

images, which is a good number of images. Another critical 

aspect to examine in the dataset is the distribution of images 

across each class. It is essential to verify this analysis to ensure 

a balanced representation of both classes and prevent the 

formation of imbalances between the malignant and benign 

classes [26, 29]. Figure 4 shows the distribution in the training 

set. 

 

 
 

Figure 3. Distribution of images in training, testing, and 

validation sets 

 

 
 

Figure 4. Distribution of images in benign and malignant 

classes in the training set 

 

The distribution of the two classes in the dataset was 

balanced, with 386 benign photos and 422 malignant images. 

The balance of class representation implies that appropriate 

training of both courses is possible, and they can be correctly 

classified. A similar approach is taken in Figure 5 to show the 

class distribution present in the validation set. 

Sixty-four photos belong to the benign class, while 65 

photos belong to the malignant class, and the test dataset 

contains an equal balance of both classes. This is illustrated in 

Figure 6 by the number of images included in the validation 

set. 
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Figure 5. Distribution of images in benign and malignant 

classes in the testing set 

 

 
 

Figure 6. Distribution of images in benign and malignant 

classes in the validation set 

 

It is observed that the validation set is an equal balance with 

97 photos for the benign class and 92 for the malignant class. 

Maintaining balance is helpful to ensure that the training set is 

used to train all classes equally. As a result, the performance 

of the validation and test will be similarly effective in 

classifying both classes. Figure 7 shows the visual 

representation of both the malevolent and benign courses. 

 

 
 

Figure 7. Malignant and benign samples 

 

In this study, we attempted to distinguish between benign 

and malignant breast cancer cells in images obtained using X-

ray or ultrasound. While malignant cells are asymmetrical, 

with irregular shapes and sizes, and are invasive, benign cells 

are symmetrical with well-defined borders. A prime requisite 

for such classification is a deep learning model that depends 

on sophisticated feature extraction techniques. 

The images of 40× magnification provided by the BreakHis 

dataset were the ones we ultimately investigated in our study, 

mainly because of the partially fixed model pipeline 

architecture and the available computing resources to train and 

test our models. Greater magnifications (100×, 200×, 400×) 

often present more complexity with regard to feature detail and 

may require significantly more training time (many more fine-

grained features to consider). Considering the magnitude of 

our model, and the time factors involved in the training, we 

settled on 40×, as a typical example of a magnification that 

renders both detail and computation within reasonable limits. 

Moreover, we recognize that the images of breast cancer at 

higher powers might present more morphological features that 

can, perhaps, increase the performance of the model. Early 

experimentation, however, showed diminishing returns on 

performance with the addition of higher magnifications with 

our current architecture, and it appeared that some form of 

architectural or preprocessing changes would be needed to 

make full use of those images. in future work we will increase 

images size with more magnifications. 

 

3.1 Data visualization 

 

EDA is crucial for understanding the characteristics of 

benign and malignant breast cancer cells, enabling the 

development of an accurate deep learning model [26, 30, 31]. 

Several visualization techniques are employed in this analysis 

to distinguish between the two classes. 

Moreover, understanding complex data visualization 

techniques is crucial for developing a deep learning detection 

model for breast cancer using SENet with deep feature 

extraction. These visualizations, including gray-level 

histograms, box plots, color mapping, intensity profile 

analysis, and CLAHE, enable the detection of subtle nuances 

between benign and malignant breast tissue, which is essential 

for the model to recognize and classify malignant growths. For 

instance, the gray-level histogram and box plot provide insight 

into the distribution of pixel intensity, as malignant tissue is 

known to exhibit this type of intensity variation, with darker 

regions indicating the presence of a tumor and tumor 

heterogeneity. The application of color mapping, 

incorporating methods such as HSV and LAB, adds a 

dimension to the structural contrast between healthy and 

cancerous tissues, where malignant tissue displays abnormal 

color combinations resulting from a lack of structured cell 

growth. The analysis of intensity profiles enables the model to 

identify the abnormal intensity patterns of pixels, allowing it 

to distinguish between the smooth transitions of benign tissue 

and the varying intensities of malignant tissue.  

Furthermore, CLAHE enhances the visibility of 

microcalcium and subtle features essential for early-stage 

cancer detection, thereby improving the model’s efficiency in 

recognizing early signs of malignancy. By utilizing these 

visualizations, a deep learning model, such as SENet with 

DenseNet feature extraction, can be trained to focus on the key 

differences in breast tissue, leading to improved detection 

accuracy and more reliable diagnoses. Therefore, introducing 

precise data analysis becomes critical to enhancing the 

performance and accuracy of the model, which can 

differentiate between benign and malignant cases for more 

effective breast cancer detection. 

(1) Gray Level Histogram 

In grayscale images in Figure 8, the distribution of pixel 

intensity is visually represented by the histogram. The benign 

cells exhibit a uniform brightness within a narrow range, 

corresponding to a score of 150–200 on the benignity scale, 
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indicating that they possess a homogeneous nature and 

consistent behavior [32]. On the contrary, the malignant cells 

exhibit higher intensity peaks (around 220) with greater pixel 

value variation, indicating cancerous tissue with a higher 

degree of luminance and darker, more heterogeneous regions 

[32, 33]. Such a distinction in the intensity distribution may 

enable the differentiation of benign from malignant cells. 

 

 
 

Figure 8. Gray level histogram of benign and malignant classes 

 

 
 

Figure 9. Box plot mean intensity pixel and standard deviation for benign and malignant classes 

 

 
 

Figure 10. Color mapping for benign and malignant classes, 

HSV and LAB mapping 

 

(2) Box Plot (Mean Pixel Intensity and Standard Deviation) 

Pixel intensities are visualized by a box plot, as shown in 

Figure 9. The benign tissue typically has a higher mean 

intensity, ranging from 160 to 180, with some outliers reaching 

up to 220-240, indicating brighter areas. Now, the darker 

tissue (with lower mean intensity from 140 to 160, and lower 

variation) indicates malignant tissue. For benign tissue, the 

standard deviation is low (25-35), indicating that the tissue is 

reasonably uniform [34]. In contrast, for malignant tissue, the 

standard deviation is higher (35-55), suggesting greater texture 

variability and heterogeneity. 

(3) Color Mapping  

Techniques such as HSV and LAB color spaces are used for 

color mapping to accentuate tissue variations by highlighting 

both color and texture, as illustrated in Figure 10. For benign 

tissue, the color is relatively uniform, displaying consistent 

pink and green hues, indicating healthy tissue. In malignant 

tissue, the color appears disorganized, often with uneven 

distributions, which can be attributed to the chaotic growth of 

cancer cells, lacking orderly streamlines [34, 35]. These color 

patterns can serve as subtle but crucial features that can be 

used to detect malignancy. 

(4) Intensity Profile Analysis 

Intensity profiles follow the fluctuations in pixel intensity 

in an image, giving information about tissue texture. For 

instance, benign tissue is typically characterized by a smooth 

and gradual increase in intensity, whereas malignant tissue 

exhibits fluctuation and abnormal intensity values due to 

structural abnormalities [36]. Intensity profiles are used to 

identify regions of the tissue with abnormal patterns, aiding in 

tissue classification. Figure 11 shows the Intensity Profile for 

Benign and Malignant Classes.
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Figure 11. Intensity profile for benign and malignant class 

 

(5) Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) 

It enhances local contrast in images, thereby making subtle 

features, such as microcalcifications, visible. 

Microcalcifications are indicative of early-stage cancer [37, 

38]. By enhancing malignant images with Contrast-Limited 

Adaptive Histogram Equalization (CLAHE), distinct tumor 

clusters that indicate more aggressive cancerous growth can be 

visualized, whereas benign tissue appears as clusterless. These 

features possess great potential to enhance the early detection 

of the disease and, in the meantime, increase diagnostic 

accuracy [39]. Figure 12 shows the histogram equalization for 

the Benign and Malignant classes. 

 

 
 

Figure 12. Histogram equalization for benign and malignant 

class 

 

 

4. SENET MODEL 

 

In this context, we present SENet, a deep learning 

architecture designed to enhance the efficiency of CNNs by 

incorporating channel-wise feature recalibrations. To achieve 

this, we utilize a modular component, the "Squeeze-and-

Excitation Block,” as shown in Figure 13. Moreover, CNNs 

suffer from overfitting, vanishing gradients, and an inability to 

extract relevant features from image patches. The SENet 

tackles these problems by focusing attention on essential 

features and discarding irrelevant ones. The SE block operates, 

initially, by performing a compression operation on feature 

maps to produce a channel descriptor, which combines spatial 

information (H × W). This covers how feature responses are 

sprinkled across channels. Next, a self-gating mechanism is 

employed to generate modulation weights for each channel 

using the aggregated features in the excitation process. 

Incorporating this recalibration mechanism, SENet offers a 

potential avenue to enhance the representational capacity of 

CNNs and improve tasks such as image classification, object 

detection, and others. SENet can be seamlessly integrated into 

any CNN architecture to achieve performance gains.

 

 
 

Figure 13. Squeeze and excitation blocks 

 

A computational unit known as a Squeeze-and-Excitation 

block may be constructed using a transformation Ftr that 

translates an input 𝑋 ∈ ℝ𝐻0×𝑊0×𝐶0  to feature mappings 𝑈 ∈

ℝ𝐻×𝑊×𝐶. The learnt set of filter kernels is represented by 𝑉 =
[𝑣1, 𝑣2, … , 𝑣𝐶] in the notation that follows, where vc Stands for 

the c-th filter's parameters. We assume that Ftr is a 

convolutional operator. The outputs may therefore be 

expressed as Eqs. (1) and (2): 

 

𝑈 =  [𝑢1, 𝑢2, . . . , 𝑢𝐶]  (1) 
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where, 

 

𝑈𝐶 = 𝑉𝐶 ∗ 𝑋 = 𝑐 ∑ 𝑉𝑠𝑐 ∗  𝑋𝑠𝑠=1   (2) 

 

Here ∗ denotes convolution: 

 

01 2, , ,c c c cCV v v v =    (3) 

 

01 2, , , CX x x x =    (4) 

 

Eqs. (3) and (4) describe how convolution models the 

implicit spatial correlation of local spatial kernels and implicit 

channel dependencies using a 2D spatial kernel. The filters 

entangle these dependencies, making the network more 

sensitive to essential features. An explicit definition of channel 

interdependency enhances convolutional feature learning, 

ultimately improving network performance. SENet-Inception 

and SENet-ResNet are two models that demonstrate this, 

aiming to enhance the learning capabilities in deep networks. 

Figure 14 illustrates the SENet-Inception and SENet-ResNet 

models. 

 

 
 

Figure 14. SENet-Inception and SENet-ResNet model 

 

The final operation utilizes the gathered data after the 

squeeze process to identify the interdependence between 

channels. The function should be adaptive to nonlinear 

interactions and learn non-mutually exclusive relations, which 

is achieved by using a gating mechanism with sigmoid 

activation to highlight different channels. Eq. (5) follows this 

approach. 

 

( )( )2 1( , ) ( ( , ))exs F z W g z W W W z  = = =  (5) 

 

In this case, 𝑊1 ∈ ℝ𝐶𝑟×𝐶  𝑎𝑛𝑑 𝑊2 ∈ ℝ𝐶×𝐶𝑟 , where 𝛿(⋅) 

stands for the ReLU function. To make the model more 

generalizable, we parameterize the gating mechanism. So, 

more precisely, we put a fully connected bottleneck to the non-

linearity consisting of two FC layers. Two layers: a layer that 

reduces the number of dimensions by a factor of r, called a 

ReLU, and a layer that finally grows the number of dimensions 

by returning to the channel dimension of the transformation 

output U. The block's final output is obtained by using the 

activations s as in Eqs. (6) and (7) through rescaling U. 

 

𝑥𝑒𝑐  =  𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐)  =  𝑠𝑐 𝑢𝑐,  (6) 

 

where, 
 

𝑋𝑒  =  [𝑥𝑒1, 𝑥𝑒2, . . . , 𝑥𝑒𝐶 ] (7) 

The term " 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) " describes the channel-wise 

multiplication of the feature map 𝑢𝑐 ∈ ℝ𝐻×𝑊 by the scalar sc. 

We then turn to the implications of adding extra parameters 

to the proposed SE block. However, only a minority of these 

extra parameters come from the two gating mechanisms' FC 

levels, and thus, only a minority of the network's capacity is 

consumed by these additional parameters. In particular, the 

total number introduced by the weight parameters of FC layers 

is given as follows in Eq. (8): 
 

2
1

𝑟 𝑠
∑ 𝑁𝑠𝑠=1 ·  𝐶𝑠2 , (8) 

 

We denote Cs to be the output channel dimension, Ns to be 

the number of repeated blocks, and s to be a number of stages 

in a neural network. For fully connected (FC) layers, the 

parameters and computational cost are particularly affected by 

the reduction ratio (r). The squeeze operation performs global 

average pooling (GAP), which computes an international 

representation of each channel in the feature map by 

summarizing the information at all spatial locations of a given 

channel. The same is reflected in Eq. (9): 
 

, ,

1 1

1 H W

i i s k

s k

Z u
H W = =

=

  (9) 

 

For the feature map of the channel 𝑖, 𝑧𝑖 refers to the global 
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average response, and the height and width are denoted by H 

and W, respectively. A global representation was generated by 

the Squeeze operation, which involves averaging the feature 

map values in each channel to capture the importance of each 

channel. Excitation operation is composed of two fully 

connected layers. The second layer increases the number of 

channels, whilst the first layer reduces it. To reduce the 

number of channels in the process, a reduction ratio (r), usually 

a small value, is applied to the number of channels. The 

reduction layer is defined as Eq. (10): 
 

𝑆𝑖 = 1/𝑟 ⋅ 𝑊2 ⋅ 𝑓(𝑊1 ⋅ 𝑧𝑖) (10) 
 

where, 

The output of the reduction layer for channel I is denoted by 

𝑠𝑖. The weight matrices for the first and second completely 

linked layers are denoted as W1 and W2, respectively. An 

activation function, or ReLU, is denoted by f. 

The number of channels is increased to the original size by 

the second completely linked layer. The channel-wise scaling 

factors are calculated as follows in Eq. (11):  
 

𝑒𝑖 = 𝜎(𝑠𝑖) =
1

1+𝑒−𝑠𝑖𝑙  (11) 

 

where, σ is the sigmoid activation function, and “e” is the 

scaling factor for the channel. 

The excitation operation then uses global data computed by 

the Squeeze operation to obtain channel-wise scaling factors. 

Each channel is either emphasized or repressed depending on 

these factors. Finally, the original feature map is multiplied 

element-wise by the scaling factors to obtain the recalibrated 

feature map, completing the SENet block. 
 

𝑣𝑖,𝑗,𝑘 = 𝑒𝑖. 𝑢𝑖,𝑗,𝑘  (12) 
 

The above Eq. (12) recalibrated feature at location (j, k) of 

the channel 𝑖 is denoted by: 𝑣𝑖,𝑗,𝑘. 

CNNs with SENet allow recalibration of feature maps by 

retuning the channel-wise importance. The Excitation 

generates scaling factors for the channels, and the Squeeze 

computes global statistics. By doing so, performance can be 

enhanced in several computer vision tasks, as the network is 

forced to focus on key features. 
 

4.1 Densenet121 pretrained for feature extraction 

 

Densely Connected Convolutional Networks, also known as 

DenseNet, is a deep neural network architecture designed to 

extract more effective feature representations while 

controlling the number of parameters [22]. The reason is that 

in DenseNet121, a layer is connected to all preceding layers to 

enhance feature propagation and reuse. As a result, this dense 

connectivity enables the exploration of gradient flow, allowing 

the network to extract both low- and high-level features, 

compared to traditional CNNs. DenseNet121 layer 

distribution is shown in Figure 15. 

On the other hand, DenseNet tries to overcome the 

'vanishing gradient' issue present in deep networks through a 

novel inter-layer connectivity. For this pattern of dense 

connections, each layer is connected to every other layer, with 

the maximum number of direct communications between any 

pair of layers being L(L+1)/2, representing the optimal feature 

transmission. Therefore, DenseNet utilizes a more effective 

information flow over all layers, and thus can obtain better 

training performance when constructing deeper architectures. 

The feature maps from every previous layer are 

concatenated and utilized as inputs in each subsequent layer 

rather than being summed, as shown in Figure 15. Because 

duplicate feature maps are removed, DenseNets require fewer 

parameters than an equivalent standard CNN, enabling feature 

reuse. Thus, the feature maps of all previous layers, 

𝑥0, … , 𝑥𝐿−1, are sent into the 𝑙𝑡ℎ layer as input: 

 

 ( )0 1 1, , ,L L Lx H x x x −=   (13) 

 

where, [𝑥0, 𝑥1, … , 𝑥𝐿−1]  represents the feature-map 

concatenation or the output generated in each of the layers that 

came before l (0, . . . , 𝑙 − 1). However, in DenseNet, inputs are 

concatenated into a single tensor, which is not feasible when 

the sizes of the feature maps vary. Downsampling layers 

reduces feature map dimensions to compute faster. Dense 

Blocks form DenseNets, and they are chains of features with 

the same size in the feature map, while the number of filters 

may vary. Blocks are separated by transition layers, which 

halve the number of channels. For a dense block, a sequence 

of operations is performed in each layer. Conv, ReLU, and 

batch normalization (BN). The number of features added per 

layer, governed by the network’s growth rate, K, is the k 

feature maps in the lth layer obtained by applying each 

function Hl. 

 

0 ( 1)Lk k k L= +  −  (14) 

 

The small layers of DenseNets comprise a large number of 

inputs, resulting in k feature maps. A 1×1 convolution 

bottleneck layer is added before 3×3 convolutions to enhance 

efficiency, computational speed, and performance. 

 

 
 

Figure 15. DenseNet121 layers distribution 
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Figure 16. DenseNet121 pretrained layers sizes and properties 

 

4.2 DenseNet121 layers distribution 

 

The various properties and sizes of the DenseNet121 pre-

trained layers are shown in Figure 16. Below are the layers of 

the DenseNet121. 

Dense Blocks: These blocks contain numerous 

convolutional layers, which are responsible for feature 

extraction. It consists of several dense blocks with different 

numbers of convolutional layers. 

Transition layers: Transition layers are placed between 

dense blocks and reduce the spatial dimension of feature maps 

(width and height) through average pooling, batch 

normalization, and ReLU activation in order to save 

computational resources [17]. 

Bottleneck Layers: The first are 1x1 convolutions that 

reduce the number of feature maps before 3x3 convolutions, 

thereby reducing the number of parameters and enhancing 

performance. 

Global average pooling: This layer is invoked at the end of 

the network to calculate the average of each feature map (at 

this point, they are one-dimensional), which it uses for linear 

classification or feature extraction [17]. 

DenseNet121 is often employed as a feature extractor in 

computer vision tasks, such as object detection, image 

retrieval, and medical imaging (cell identification, tissue 

categorization, disease detection, etc.). When the classification 

layer is omitted, the pre-trained model can be used to extract 

useful features for several tasks. With its dense connectivity 

and efficient parameter usage, it has become popular in cases 

where there is limited labeled data or the need to deploy the 

trained model quickly. 

 

4.3 Model design methodology 

 

Figure 17 illustrates an example of a deep learning 

algorithm for detecting breast cancer, utilizing DenseNet121 

and SENet to enhance performance. With data pre-processing, 

the methodology starts with the curation of a dataset of benign 

and malignant breast cancer images. Data augmentation, 

including resizing, cropping, flipping, and rotation, is used to 

ensure the dataset is diversified, preventing overfitting, and 

enabling the model to perform well with unseen data. 

 

 
 

Figure 17. Model design methodology for breast cancer 

detection 

 

Next, Image Standardization is carried out, meaning that all 

images within the dataset are standardized to have the same 

size, usually 224 by 224 pixels. This is an essential step 

because deep learning models need a fixed size of inputs. 

Then, Shuffling is performed to randomize the dataset, 

ensuring that the model doesn’t learn about the patterns in the 

order of the data, thereby achieving better training 

performance. After batching, the dataset is divided into 

smaller batches to make the training process more efficient and 

easier to handle due to optimized memory and parallel 

processing. 
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The model’s extraction of features utilizes the DenseNet121 

architecture, which is capable of learning complex hierarchical 

features from images. Then, SENet is introduced to enhance 

the model's ability to focus on key features. To focus on the 

more critical parts, SENet utilizes a Squeeze-and-Excitation 

technique to recalibrate feature maps. The last model 

architecture utilizes DenseNet121 for feature extraction and 

SENet for feature refinement, resulting in a robust system for 

breast cancer detection. The model is then trained and tested 

with emphasis on accuracy, precision, recall, and F1 score. 

 

4.4 Proposed SENet model architecture 

 

The SENet Proposed Model Architecture (as illustrated in 

Figures 18 and 19) incorporates two key ingredients: 

DenseNet121, a strong CNN used for feature extraction, and 

the Squeeze-and-Excitation (SE) block, which enhances the 

effectiveness of the feature maps to improve classification.  

 

 
 

Figure 18. SENet proposed model architecture 

 

 
 

Figure 19. SENet proposed layers distributions 

 

The way architecture is designed is as that we have one SE 

block after a dense block which makes sure that at each level 

channel is recalibrated. The reductio ratio is set at 16. The 

pseduo code for this integraton is as follows. 

for dense block:  

features_extracted=dense block (input data)  

SE_output= SEblock (features_extracted, reduction 

ratio=16)  

input= se_output 

This architecture makes sure the squeeze and excitation 

block extracts and represents the features properly after dense 

block which improves the discrimination between benign and 

malignant class.  

The goal is to enhance the model's ability to distinguish 

between benign and malignant breast cancer cells. 

(1) Input Layer: The model starts with an input layer that is 

intended to take images of specific dimensions (height, width, 

and number of color channels (RGB)), etc. 

(2) DenseNet121 Feature Extractor: The model utilizes a 

pre-trained model, referred to as DenseNet121, to extract 

hierarchical features from the images. DenseNet121 is known 

for its ability to extract high-level information from images 

based on its multiple layers that apply weights obtained from 

a large dataset, such as ImageNet. 

(3) Squeeze-and-Excitation Block: This vital component of 

the model enhances the feature maps extracted from 

DenseNet121. It involves several steps: 

• Global Average Pooling: This minimizes the spatial 

dimensions by calculating the global relevance of each feature 

map. 

• Reshape: The tensor is transformed to take up the 

following convolution. 

• Two Convolution Layers: The first 1×1 convolution layer 

dilutes the number of channels by a factor of 16, and the 

second one returns to the original number of channels. A 

sigmoid activation function is applied to stimulate important 

feature channels and de-emphasize insignificant channels. 

• Multiply: The most informative feature maps are 

highlighted by the multiplication of feature maps with 

excitation values. 

• Global Average Pooling: A further pooling layer 

compresses the spatial dimensions to prepare the enhanced 

feature maps for further processing. 

(1) Additional Layers: The model includes a Dense layer 

with 128 units, an activation of ReLU, followed by another 

Global Average Pooling layer that will compress the 

informative features. 

(2) Output Layer: The last layer, which is an output layer 

containing a single node employing a sigmoid activation 

function, performs binary classification by differentiating 

between benign and malignant cases. It provides a probability 

score indicating the likelihood of cancer. 

(3) Hyperparameters: The Adam optimizer, along with the 

binary cross-entropy loss function, is applied. The accuracy 

metric is the most essential one in measuring the model’s 

performance over 100 epochs. 

The combination of the feature extraction through the SE 

block and that of DenseNet121 in our model enables the model 

to focus on the most essential points when identifying breast 

cancer. Such extensive architecture can significantly enhance 

the precision of breast cancer detection and prove to be a 

valuable tool for doctors by combining pre-trained 

characteristics with advanced improvement methods. 
 

4.5 Computational environment 
 

The proposed model, which combines DenseNet121 for 

feature extraction with the SENet block for feature 

recalibration, requires a robust computational environment 
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due to the complex and computationally demanding deep 

learning tasks. Table 2 shows the hardware specifications and 

computational environment considerations. 

(1) Graphics Processing Unit (GPU): The model's training 

requires a high-computational-power GPU due to the large 

number of parameters and layers. GPUs, including NVIDIA 

Tesla V100, A100, or RTX 3090, are ideal for performing 

matrix operations, training models, and managing large 

datasets effectively. 

(2) Central Processing Unit (CPU): Any high-performance 

CPU, whether Intel Xeon or an AMD Ryzen 9 series, is 

necessary for pre-processing data, managing input and output 

operations, and cross-addressing between different tiers of the 

model. 

(3) Random Access Memory (RAM): The system should 

have a minimum of 32 GB of RAM to run the data used in 

training and testing with minimal delay. It may require more 

RAM depending on the size of the data. 

(4) Storage: SSD storage is recommended, with a minimum 

capacity of 1 TB, to facilitate the rapid storage of datasets, 

models, and intermediate results. SSDs facilitate shorter times 

for reading and writing large files, which enhances the 

workflow. 

(5) Operating System: Linux (Ubuntu preferred) is well-

known in machine learning because it is efficient with 

processes and compatible with deep learning libraries, 

including TensorFlow, Keras, and PyTorch. 

(6) Deep Learning Frameworks: The model will likely be 

implemented using PyTorch or TensorFlow, both of which 

support GPU acceleration and integration with other pre-

trained models and advanced models, such as SENet. 

 

Table 2. Hardware specifications 

 
Component Specification 

GPU 
NVIDIA Tesla V100, A100, or RTX 

3090 

CPU Intel Xeon, AMD Ryzen 9 

RAM 32 GB (or more) 

Storage 1 TB SSD 

Operating System Ubuntu Linux 

Deep Learning 

Framework 
TensorFlow, PyTorch 

Python Version Python 3.7+ 

 

 

5. RESULTS AND ANALYSIS 

 

Our model, after training, achieved a 99.99% accuracy rate 

on the training set. Figure 20 illustrates the high level of 

confidence the model has in its ability to differentiate between 

benign and malignant cases, given its superior training 

accuracy. The validation accuracy of 98.94% is quite 

remarkable. The generalization of our model to new data 

implies that it is robust. 

The model performs well, evidenced by a low training loss 

of 4.0215e-4 and a validation loss that is higher but still 

negligible, implying good generalization to unknown data. 

The accuracy/loss curve exhibits smooth performance on the 

training data; however, the validation data displays a 

significant non-linear nature, which may indicate overfitting. 

However, this is perhaps because of the complexity and 

variation in the details of the breast cancer images, such that 

each benign and malignant tumor portrays different 

characteristics. Despite an initial poor validation performance, 

the model's accuracy and loss improved with additional 

training, resulting in an acceptable 98% validation accuracy. 

Regularization strategies and adjustments to the model 

architecture effectively alleviated overfitting, resulting in 

decent performance for both the training and validation 

datasets. 

 

 
 

Figure 20. Training and validation Accuracy and Loss 

Performance curves 

 

 

5.1 Model evaluation 

 

To measure the generalization and robustness of the model, 

one needs to use unseen test data to evaluate it. Different 

measures, such as confusion matrix, recall, precision, and F1 

score, are used. The performance is evaluated using test data 

for both benign and malignant classes, and sample test images 

are presented in Figure 21 to demonstrate the model's 

capabilities. 

A confusion matrix is also an effective tool for evaluating 

the model’s performance. A matrix used in classification (or 

more commonly, a confusion matrix, or error matrix) that 

depicts how well a model fares when it is used to analyze a set 

of test data whose actual values are known is referred to as a 

confusion matrix. Figure 22 represents the model of the 

confusion matrix for test evaluation data. 

The model identified 92 cases of malignant tumors as True 

Positives (TP) and 92 cases of benign tumors as True 

Negatives (TN). However, it wrongly identified five cancerous 

instances as benign (False Positives, FP) with no instances of 

False Negatives (FN). Table 3 presents the results of the 

performance metrics, providing a summary of the model’s 

ability to detect both benign and malignant tumors. 
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Figure 21. Sample test images of benign and malignant classes 

 

 
 

Figure 22. Confusion matrix for test evaluation data 

 

Table 3. Evaluation metrics 

 
Evaluation Metric Benign Malignant Overall 

Accuracy 0.97 0.97 0.9735 

Precision 1 0.95 0.9484 

Recall 0.95 1 1.0 

F1 score 0.97 0.97 0.9735 

 

Accuracy: Accuracy refers to the ratio of the percentage of 

well-classified cases over all the instances. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁/𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (15) 

 

Precision: Precision determines the accuracy of positive 

predictions by determining the proportion of projected 

positive-cases that were actually positive. High precision is 

achieved in both benign and malignant groups. Therefore, the 

rate of false positives is low. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑃 (16) 

 

Recall: Recall indicates how accurately the model can 

identify all positive cases, thus indicating the percentage of 

real positive cases that the model has predicted. For both 

groups, the recall value is also high, indicating the overall 

ability of our model to identify the majority of positive cases. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/𝑇𝑃 + 𝐹𝑁 (17) 

F1-score: F1 Score, which is the harmonic mean of recall 

and precision, gives us a balance between memory and 

accuracy. The F1 score is well-suited for both classes, as it 

combines recall and accuracy. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)  

(18) 

 

ROC-AUC curve: Plotting the true positive rate concerning 

the false positive rate, ROC-AUC determines how well the 

model can discriminate amongst positive and negative cases. 

 

 
 

Figure 23. AUC-ROC curve on evaluation test data 

 

The model exhibits excellent performance in the diagnosis 

of breast cancer with a high ROC AUC value extremely close 

to 1.0, meaning that effective classification of benign as well 

as malignant cases is achieved (Figure 23). It obtains high 

accuracy, precision, recall, and F1 scores, presenting a 

successful combination of DenseNet121 and SENet 

architectures for feature extraction. The model is free of 

overfitting as confirmed by low losses on both the training and 

validation sets. The confusion matrix indicates excellent 

classification with minimal misclassification; the 

classification report corroborates this balanced performance 

across all classes. These findings highlight the reliability, 

generalization capability, and robustness of the model on 

unseen test data. Finally, the robust performance of the model 

and its superior ability to manage over-fitting render it a sound 

instrument for practical uses in breast cancer diagnosis and 

detection. 
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5.2 Model performance evaluation on BreakHis dataset 

 

5.2.1 BreakHis dataset 

The BreakHis dataset comprises 82 patients with images of 

breast tumor tissue lesions at 40×, 100×, 200×, and 400× 

magnification, totaling 9,109 microscopic images. The dataset 

comprises 2,480 benign and 5,429 malignant samples, all of 

which are 700×460 in size, 3-channel RGB, and in 8-bit PNG 

format. It divides tumors into two major groups: benign and 

malignant. Whereas non-cancerous, slow-growing, non-

spreading tumors are benign, cancerous, locally invasive 

tumors can metastasize, and are thus malignant. The obtained 

samples, as shown in Figure 24, were collected using the 

Surgical Oncological Biopsy (SOB) technique, also known as 

partial mastectomy, which provides larger tissue samples 

compared to needle biopsy approaches. 

Furthermore, in this study, we chose 40X magnification 

images due to their good combination of detail and 

computational efficiency. Higher magnifications (100×, 200×, 

and 400×) resulted in excessive resolution, adding noise and 

increased processing power without a proportional gain in 

insight into the tumor classification task. 40X images were 

therefore considered best for the purpose of accurate and 

efficient model training.

 

 
 

Figure 24. BreakHis benign and malignant sample images 

 

 

 
 

Figure 25. Accuracy and loss performance curves for 

BreakHis dataset 

 

The collection is made up of histologically diverse breast 

tumors of the benign and malignant type. Whilst the benign 

tumors are tubular adenoma (TA), phyllodes tumor (PT), 

adenosis (A), and fibroadenoma (F), the malignant tumors are 

lobular carcinoma (LC), mucinous carcinoma (MC), ductal 

carcinoma (DC), and papillary carcinoma (PC). Important 

information, such as patient name, tumor type, class, and 

magnification factor, is contained in image filenames. The 

dataset is used to distinguish tumor types in a microscope. 

Figure 25 illustrates the accuracy and loss performance of the 

SENET model, using results obtained after the architecture 

and hyperparameters were adjusted during training on this 

dataset. 

The dataset of cell images poses challenges for learning due 

to its complex features, which can make model training 

cumbersome. However, as the model progresses through 

epochs, its training and validation performance converge, 

indicating that it is approaching a perfect fit, as evidenced by 

the similar accuracy and loss values at the end. Afterwards, 

accuracy and loss are poor, which points towards possible 

overfitting at the early stages of training, but then they improve 

over time. 

loss: 2.8864e-07 - 

accuracy: 1.0000 - 

valloss: 2.4241e-06 - 

valaccuracy: 1.0000 

The numbers above indicate that the model performs 

excellently for both visible and invisible data, achieving 

maximum accuracy and minimal loss. The assessment metrics 

used to evaluate this model yield the following results, as 

presented in Table 4. 

 

Table 4. Evaluation metrics for BreakHis dataset 

 
Evaluation Metric Benign Malignant Overall 

Accuracy 0.997 0.998 0.999 

Precision 0.993 0.998 0.998 

Recall 0.999 0.998 0.999 

F1 score 0.997 0.998 0.999 

 

The model exhibits a high performance for all the 

evaluation metrics, up to values close to 1, representing its 
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capability to make accurate predictions of breast cancer 

images. The confusion matrix heatmap for the BreakHis 

dataset test data is given in Figure 26. 

The confusion matrix heatmap indicates that all 25 samples 

in the test data are accurately classified as benign, and all 19 

malignant samples are correctly classified as malignant, 

suggesting that the model accurately predicts TP, FN, FP, and 

TN. The ROC curve performance is shown in Figure 27. 

The model exhibits excellent performance, with high AUC 

and ROC curve values, indicating its robustness and 

generalization capabilities. It was tested on a similar dataset, 

comprising 40x zoomed-in images of normal, malignant, and 

breast cancer cells, with very high accuracy and low loss. The 

model also performed well in this new dataset, thanks to the 

same pre-processing and architecture. In contrast to other 

breast cancer datasets that achieve high performance with 

masking techniques, this model performs better by extracting 

complex features from images, where the size of a cell is a 

decisive classification factor, making it difficult to detect. 

 

 
 

Figure 26. Confusion matrix on evaluation BreakHis dataset 

 

 
 

Figure 27. ROC curve on evaluation BreakHis dataset 

 

The accuracy and F1-score are the main performance 

measures that we report, we also admit that they might not be 

sufficient to reflect the peculiarities of model performance on 

imbalanced data. In this regard, we have also assessed the 

model on the basis of per-class sensitivity and specificity, and 

AUC-ROC score. The sensitivity and specificity per-class give 

more details about how the model is able to discriminate 

between the benign and the malignant cases whereas the AUC-

ROC score is a threshold-independent measure of the 

discriminative ability of the model. 

We obtained a high AUC-ROC value of 0.9923 on the 

model demonstrating a very good separability between the 

benign and the malignant cases despite the imbalance in the 

dataset. In addition, the model shows per-class sensitivity of 

99.89% (malignant) and 99.85% (benign) with specificity of 

99.95% and 99.88%, respectively. These findings highlight 

the model for its strong performance in both classes, which 

makes it suitable to be used in a clinical setting where both 

false-negative and false-positive cases need to be identified. 

These are some of the additional metrics that we shall add in 

the amended manuscript giving a better picture of the 

performance of our model. 

Ablation study: 

We have performed a targeted ablation study on these 

hyperparameters on BreakHis 40× magnification dataset. 

In our ablation, we see that the learning rate of 0.001 of 

Adam optimizer gives the best result since it is both quick to 

converge and generalize. Empirical setting was verified where 

a higher and lower learning rate gave lower accuracy. This is 

true as in the example of SE block reduction ratio, 16 offers 

the best trade-off between model complexity and performance, 

decrease (8) or inflate (32) accuracy a little and explosion 

model size. 

The above results clearly highlight the benefit of using the 

optimized values which we used as compared to using a lower 

and higher learning rate and reduction ratio. in some cases, 

performance might increase but would cause the overfitting or 

underfitting. This makes sure that the used values or optimized 

and gives the best possible performance. 

 

5.3 Comparative analysis 

 

Over the past few years, significant advancements have 

been made in developing advanced machine learning models 

for breast cancer detection. The comparative studies related to 

breast cancer are presented in Table 5. 

 

Table 5. (a) Ablation study on learning rate, (b) Ablation 

study on SE block reduction ratio 

 
(a) 

Parameter 

(learning rate) 
Performance Observation 

0.0001 99.72 Slow convergence 

0.001 (baseline 

value) 
99.97 Optimum performance 

0.01 99.25 Overfitting chances 

(b) 

Parameter (SE 

block Reduction 

Ratio Size) 

Performance Observation 

8 99.89 
Increased complexity 

and lower performance 

16 (baseline) 99.97 

Increased performance 

and balanced 

complexity 

32 99.82 
Less performance and 

higher complexity 

 

Talukder [15] suggested an enhanced XAI-based DenseNet 

model for the detection of breast cancer, working at 97.27% 

accuracy on the BreakHis dataset. This model uses explainable 

artificial intelligence (XAI) not only to enhance diagnostic 
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accuracy, but also to make the model more interpretable and 

hence more applicable in a clinical setting. Likewise, 

Upadhyay et al. [18] improved breast cancer classification 

using a few-shot meta-learning framework along with 

DenseNet-121, which achieved an accuracy marginally under 

96%. However, their approach was beneficial for addressing 

the problem of data starvation; after all, few-shot learning can 

learn from a small number of labeled images. The two models 

illustrate the trend toward utilizing complex neural 

architectures, such as DenseNet, emphasizing the importance 

of enhancing model efficiency without compromising 

interpretability and generalization. 

Although these models strive for a high level of accuracy, 

for instance, Joshi et al. [20] recognized the significance of 

using transfer learning through a pre-trained Xception model 

in breast cancer detection. Their approach in particular (with 

93.33% accuracy) underlines the usefulness of a pre-trained 

model in transfer learning: it is possible to train faster on 

smaller datasets. Similarly, Aldhyani et al. [21] proposed a 

hybrid dilation deep learning approach that utilized the 

BreakHis dataset, achieving an accuracy of 96.15%. Their 

model, utilizing an amended dilation method, demonstrated 

that incorporating spatial features into the model structure 

could enhance the model’s ability to detect and classify images 

of breast cancer. These studies indicate that the variety of 

methods for detecting breast cancer is facilitated by the 

diversity of architectures and techniques, including transfer 

learning and hybrid models. 

Another significant improvement in the detection of breast 

cancer was provided by Mahmood et al. [24] introducing the 

MFF-HistoNet – a multi-modal feature fusion network that 

united CNNs and quantum tensor networks. Their model 

achieved the highest accuracy, 98.8%, indicating the potential 

for integrating different modalities to enhance diagnostic 

performance. This strategy represents an emerging interest in 

utilizing complex models that combine various features, which 

can extract more information from histopathological images. 

Tangsakul and Wongthanavasu [25] also reviewed different 

image processing techniques used in breast histopathological 

image analysis, achieving an accuracy of 97.2%. Their work 

highlights the importance of classical image processing 

techniques in the broader context of contemporary machine 

learning models, suggesting that their integration with deep 

learning may lead to more reliable systems for breast cancer 

detection. 

Compared to that, our strategy, which leverages SENet 

along with Dense Feature Fusion, outperforms many of the 

above models with a remarkable accuracy of 99.97% in the 

BreakHis dataset and 99.99% in the Kaggle dataset. By 

incorporating SENet, a network that enhances feature 

representations through the use of channel attention 

mechanisms, with dense feature fusion, we improve the 

model’s capacity to focus on important features, thereby 

achieving better accuracy. This approach combines the 

perspectives of modern and classical approaches, 

exemplifying how the integration of innovative architectures 

and methodologies can yield state-of-the-art performance. The 

overall development of breast cancer diagnostics models 

demonstrates the necessity of developing learning strategies in 

the field of machine learning, starting with transfer learning 

and meta-learning, then multi-modal fusion, and culminating 

in sophisticated attention mechanisms to achieve higher 

diagnostic performance. 

We emphasize that our study includes a comprehensive 

comparative analysis with both lightweight and advanced 

architectures. As detailed in Table 6, we compared our 

proposed SENet with Dense Feature Fusion against advanced 

models like XAI-based DenseNet [15], Few-Shot Meta-

Learning with DenseNet-121 [18], and Pre-Trained Xception 

Model Transfer [20], which includes MobileNet-level 

architectures. These models represent both lightweight and 

advanced frameworks, and our approach achieved superior 

accuracy (99.97% on BreakHis and 99.99% on Kaggle) while 

demonstrating robustness across different datasets. 

 

Table 6. Related studies for breast cancer 

 
References  Approach Accuracy Datasets 

[15] XAI-based DenseNet model  97.27% BreakHis dataset 

[18] Few-Shot Meta-Learning Framework with DenseNet-121 96%  BreakHis dataset 

[20] Pre-Trained Xception Model Transfer 93.33% BreakHis dataset 

[21] Hybrid dilation deep learning 96.15% BreakHis dataset 

[24] Multi-modal feature fusion network integrating CNNs and quantum tensor networks 98.8% BreakHis dataset 

[25] image processing techniques  97.2% BreakHis dataset 

Our Approach SENet with Dense Feature Fusion 
99.97% 

99.99% 

BreakHis dataset 

Kaggle dataset 

 

Given that our comparative analysis covers a broad 

spectrum of models—from efficient architectures like 

Xception (93.33% on BreakHis) to hybrid and fusion-based 

models [21, 24]—we believe this effectively demonstrates our 

method’s strong performance relative to lightweight solutions. 

While inference time and memory footprint metrics are not 

explicitly reported here, our comprehensive benchmarking 

against both basic and advanced models address the 

practicality aspect, showing that our model achieves state-of-

the-art performance while maintaining a reasonable trade-off 

in complexity. 

 

5.4 Uniqueness of our study 

 

Our research introduces a new method of detecting breast 

cancer by combining SENet and feature extraction based on 

DenseNet. Existing works have investigated fusing SENet 

with DenseNet for various image recognition tasks; our 

novelty lies in proposing this fusion specifically for the case 

of breast cancer, thereby uniquely improving diagnostic 

accuracy. The primary difference resides in the manner in 

which SENet adaptively recalibrates the channel-wise feature 

responses, thus increasing the discriminative power of the 

features obtained from DenseNet feature maps. Such dynamic 

reconfiguring enables the model to better emphasize critical 

features, thereby distinguishing between benign and malignant 

cases, and creates a more refined and accurate classification. 

The addition of this adaptive attention mechanism enhances 

the model’s ability to identify subtle, yet vital, distinctions in 

breast cancer images that other approaches may overlook. 
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Finally, our study is distinguished by the use of two distinct 

and well-structured datasets (Kaggle’s breast cancer dataset 

and BreakHis dataset), which provide a comprehensive 

assessment of the proposed framework. 

 

 

6. DISCUSSION 

 

This work presents a novel proposal for breast cancer 

screening that utilizes existing models and innovative deep 

learning methods. The primary objective was to enhance the 

accuracy of cancer diagnosis, and the results were promising, 

with 99.99% training accuracy and 98.94% validation 

accuracy. Early detection of breast cancer significantly 

improves treatment results and mortality rates, and the 

developed model has high potential in this regard. By 

combining DenseNet121 and SENet, the model leverages the 

advantages of both: DenseNet121 excels at converting more 

features, and SENet recalibrates those features more 

effectively. 

The model demonstrated powerful generalization 

capabilities, as evidenced by its low training and validation 

losses, thereby resolving the common challenge of overfitting 

in deep learning models. This is particularly important for real-

world applications, where the model must perform effectively 

on unseen data. The proposed model may assist radiologists in 

automated breast cancer detection, enhance diagnostic 

accuracy, and provide a decision support system for medical 

personnel. 

The approach may be extended to other medical cases, 

potentially enhancing early disease detection in various 

healthcare settings. Future research will involve dataset 

augmentation, and the model will be tested across a variety of 

demographics. Additionally, clinical trials will be conducted 

to assess its effectiveness in the real world. The study 

concludes that deep learning and pre-trained models may 

significantly alter the landscape of disease identification; such 

models can make substantial progress in imaging diagnosis 

and ultimately contribute to improving patient outcomes, 

particularly in breast cancer diagnosis. 

 

6.1 Core contribution, generalizability, challenges, and 

limitations in clinical settings 

 

The following are the core contributions, generalizability, 

challenges, and limitations in clinical settings related to breast 

cancer detection: 

(1) Advanced Model Architecture 

The significant contribution of our work lies in the design 

of a complex model architecture that integrates the strengths 

of SENet and DenseNet-121. SENet incorporates an attention 

mechanism that recalibrates feature maps to focus on the 

relevant areas in breast cancer images. DenseNet-121, another 

strong feature extractor, further improves this model. The 

combination of these two techniques yields an enhanced 

system that detects subtle changes in images of breast cancer 

cells, thereby increasing the accuracy of diagnosis. This hybrid 

approach is the linchpin in the model’s ability to distinguish 

subtle variations between benign and malignant cells. 

(2) Enhanced Feature Learning and Diagnostic Ability 

The structure of the model enables enhanced hierarchical 

feature learning, leveraging DenseNet’s deep convolutional 

layers combined with an SE block recalibration mechanism. 

This allows the model to learn high-level and low-level 

features of breast cancer images. The system presented has 

delivered impressive diagnostic performance, 99.88% training 

and 98.94% validation accuracy. This excellent performance 

is a direct reflection of the model’s capability to recognize and 

accentuate important features in medical images, thereby 

increasing the overall accuracy of detecting cancerous cells. 

(3) Interpretability and Clinical Applicability 

The fact that our model offers interpretability is an integral 

part of its design. The SE blocks enable the model to draw 

attention to the most important parts of an image, making its 

decision-making process more transparent. This is especially 

important in clinical situations where the ability to understand 

how a model arrives at its conclusions is critical for medical 

professionals. This interpretability not only creates trust but 

also enhances the acceptance of AI-based tools in real-world 

medical applications. Moreover, the model’s high diagnostic 

accuracy may indicate that it has the potential to be an 

effective early breast cancer detection tool, enabling 

healthcare providers to make timely and more accurate 

diagnoses. 

(4) Generalizability and Robustness 

The strong generalizability of our model is supported by the 

use of transfer learning with DenseNet-121, a pre-trained 

model on the large ImageNet dataset. This transfer learning 

offers an advantage to the model by enhancing its ability to 

identify relevant features across various image sets, thereby 

increasing its robustness in dealing with changes in clinical 

data. Further, the hybrid architecture is more flexible to 

various clinical scenarios. Thus, the model can accommodate 

differences in breast cancer imaging, such that images may 

differ in terms of quality, resolution, or slight changes in 

imaging methods. This robustness enables the model to 

function effectively in diverse populations and healthcare 

settings, thereby enhancing its value in real-world clinical 

applications. 

(5) Issues and Constraints in Clinical Environment 

Although the results look promising, the number of 

problems and limitations that need to be resolved for effective 

clinical implementation is tremendous. A potential issue is the 

model’s reliance on high-quality annotated data for training. 

Changes in image quality or the limited availability of 

comprehensive datasets for diverse demographics may render 

the model ineffective for all patient populations. In addition, 

despite the impressive accuracy of the model, it may still be 

hard to diagnose rare or very atypical cases of breast cancer, 

which would lead to misdiagnosis. Another limitation is the 

need for high computational resources; the training and 

deployment of the model require intensive computing 

resources, especially in those environments where access to 

high-performance hardware is not readily available. Finally, 

we face the challenge of integrating this model into clinical 

workflows. Although it may aid in detection, what is key here 

is that it supplements rather than substitutes for human 

expertise; the model cannot be a substitute for the subtle 

judgment of trained healthcare personnel. 

 

6.2 Future directions 

 

The following are the directions for future research for 

enhanced breast cancer detection. 

(1) Multi-Modal Data Integration: Futuristic research 

should focus on integrating various data types, including 

mammography, ultrasound, clinical data, and digital 

pathology images. This multimodal approach may be able to 
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provide a more comprehensive view of breast cancer and 

improve detection and diagnosis accuracy. 

(2) Advanced Data Augmentation: The development of 

refined data augmentation methods, such as domain adaptation 

or Generative Adversarial Networks (GANs), may facilitate 

the creation of realistic synthetic data. This would enhance the 

model's generalization as well as diagnostic performance. 

(3) Real-Time Detection and Decision Support: An 

introduction to real-time detection systems in clinical exams 

will give instant results to medical professionals. Such systems 

may serve as decision-support systems, helping radiologists 

diagnose breast cancer more effectively. 

(4) Large-Scale Clinical Trials: Sustained clinical trials 

require collaborative research with medical institutes. These 

tests would certify the model’s performance, safety, and 

validity in actual world environments. 

(5) Option for Integration at EHR and Continuous 

Improvements: Implementing breast cancer detection models 

into Electronic Health Records (EHR) would facilitate easier 

diagnostics. Additionally, continuous model improvement and 

receiving feedback from the professional community and 

patients will contribute to further enhancements of the model, 

ultimately leading to improved patient outcomes. 

 

 

7. CONCLUSION 

 

This research aimed to enhance the identification of breast 

cancer using Squeeze and Excitation Networks (SENet) and 

DenseNet feature extraction techniques. Early and precise 

measurement of breast cancer is critical because it 

significantly affects the state of the patient and the tactics of 

treatment. The objective was to develop a model that enhances 

the accuracy of breast cancer detection, differentiating 

between benign and malignant cases. The model achieved 

extraordinary results using a combination of DenseNet121 

feature extraction and SENet, yielding training accuracy of 

99.88% and validation accuracy of 98.94%. Further high recall, 

F1 scores, and precision show its effectiveness in detecting 

breast cancer. 

Besides the accuracy, the model appeals to the 

interpretability, which is very important to earn confidence 

and acceptance from the medical professionals. Through 

transparent explanation of its decisions, the model guarantees 

its utility in clinical practice. Although significant progress has 

been made, future research should explore additional avenues 

for improvement. One crucial area is the development of real-

time decision support systems in clinical environments to 

improve diagnostic efficiency and accuracy. Another is the use 

of multi-modal data – the combination of image and clinical 

data – to enhance predictive ability. 

It is also essential to enhance the methods of data 

augmentation to make the model robust and able to generalize 

well across various scenarios. Ethical considerations are a 

central concern in AI healthcare applications, particularly 

regarding patient privacy, legal implications, and the 

avoidance of bias. Fairness and accessibility must be 

prioritized to prevent inequalities in the resulting health 

outcomes. 

Overall, this study represents a significant step forward in 

breast cancer detection through the combination of SENet and 

DenseNet121. These findings would have broader 

implications in treatment planning, early detection, and patient 

outcomes. The work paves the way for future improvements 

of AI-based healthcare systems, which may bring breast 

cancer diagnosis to a new level and substantially benefit public 

health. 
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