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In the context of intelligent manufacturing, industrial part defect detection is a core process 

in quality control, facing three key challenges: high labeling costs leading to small sample 

constraints, cross-domain distribution shifts caused by differences in production lines and 

equipment, and low feature distinguishability due to the similarity between small or rare 

defects and background textures. Existing methods combining transfer learning and semi-

supervised learning are often engineering-driven approaches, which face theoretical 

limitations such as negative transfer, broad generalization error boundaries, and insufficient 

utilization of mutual information from unlabeled data. To address these challenges, this 

paper proposes a new paradigm for cross-domain semi-supervised expected risk 

minimization driven by meta-learning, and constructs a meta-adaptive defect detection 

framework (MADD-Framework). This framework achieves collaborative optimization of 

domain-invariant feature learning, pseudo-label noise suppression, and normal mode prior 

mining at the theoretical level. The framework consists of three core components: First, a 

multi-view teacher-student network (MV-TSN) integrating domain-adaptive adapters to 

mitigate cross-domain distribution shifts through domain-specific data augmentation and 

domain-invariant feature consistency constraints. Second, a reconstruction contrastive self-

supervision module that narrows theoretical generalization error boundaries by modeling 

the normal mode prior of industrial parts. Third, a meta-adaptive pseudo-label optimization 

module (MAPOM) that integrates domain difference statistics to achieve dynamic 

threshold adjustment and pseudo-label purification through dual-layer optimization, 

enhancing the utilization efficiency of unlabeled data. This framework breaks through the 

limitations of current methods combining transfer learning and semi-supervised learning, 

providing a new theoretical paradigm and engineering solution for small-sample, cross-

domain defect detection in intelligent manufacturing, contributing to the industrial 

implementation of intelligent defect detection technology. 
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1. INTRODUCTION

The deepening advancement of Smart Manufacturing 4.0 

imposes strict requirements on the accuracy, efficiency, and 

environmental adaptability of industrial part quality inspection 

[1-3]. The surface and internal defects of industrial parts 

directly affect the safety of end products [4, 5], potentially 

leading to serious hazards and losses. Traditional manual 

inspection suffers from low efficiency, high subjectivity, and 

high missed detection rates. Although deep learning-based 

methods have improved accuracy, they rely on large-scale 

labeled data, making them difficult to adapt to the reality of 

scarce defect samples and high labeling costs in industrial 

scenarios [6, 7]. Currently, industrial part defect detection 

faces three core bottlenecks: small sample constraints caused 

by diverse defect types with low incidence rates, with labeling 

costs exceeding the capacity of small and medium enterprises 

[8]; cross-domain adaptation challenges due to production 

line, equipment, and environmental differences causing data 

distribution shifts, where models trained in a single domain 

lack generalization ability [9, 10]; and tiny and rare defects 

with weak features that are highly similar to background 

textures, which are easily disturbed by noise and difficult to 

effectively identify [11, 12]. Therefore, constructing a fusion 

algorithm of transfer learning and semi-supervised learning 

that is both theoretically rigorous and practically useful is 

essential to fundamentally alleviate these bottlenecks. It will 

play a crucial theoretical and practical role in promoting the 

industrial implementation of intelligent inspection technology, 

reducing quality control costs, and improving the level of 

smart manufacturing. 

Transfer learning is the core technology for solving cross-

domain defect detection. Mainstream methods can be divided 

into feature alignment and domain-adaptive network 
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approaches. The former minimizes the domain feature 

distribution difference through metrics like maximum mean 

discrepancy (MMD) and correlation alignment [13, 14], while 

the latter reduces domain shifts through specialized network 

structures [15]. However, existing methods often adopt static 

alignment strategies, which are unable to cope with dynamic 

distribution changes in industrial scenarios, and the fusion 

with semi-supervised learning is generally limited to a shallow 

mode of "pre-training + fine-tuning," which can lead to 

negative transfer and insufficient adaptation to the special 

characteristics of industrial defects. This paper proposes a 

domain-adaptive adapter that implements dynamic domain 

adaptation in the training process of transfer learning and 

semi-supervised learning. By jointly optimizing domain 

alignment loss and semi-supervised consistency loss, the issue 

of negative transfer is fundamentally alleviated. Semi-

supervised learning provides an effective solution for small 

sample problems. Consistency regularization and pseudo-label 

purification are current hotspots, but existing methods rely on 

manually designed augmentation strategies that fail to 

simulate the real variations of industrial scenarios. Pseudo-

label purification overlooks domain differences, leading to 

noise accumulation, and does not fully utilize the mutual 

information of unlabeled data. To address these shortcomings, 

this paper designs an industrial-specific multi-view 

enhancement strategy to accurately simulate real detection 

variations. An MAPOM integrates domain difference statistics 

to achieve domain-adaptive purification and enhance the 

utilization efficiency of unlabeled data. 

To address both small sample and cross-domain challenges 

simultaneously, current fusion methods of transfer learning 

[16, 17] and semi-supervised learning [18, 19] often adopt a 

module concatenation approach. These methods initialize 

models with transfer learning and then optimize performance 

with semi-supervised learning, but such approaches lack a 

unified theoretical framework. The modules have poor 

synergy, with domain adaptation and semi-supervised training 

being independent of each other, and there is a lack of 

industry-specific regularization constraints. This results in 

insufficient generalization ability and defect recognition 

sensitivity. This paper proposes a new paradigm for cross-

domain semi-supervised expected risk minimization driven by 

meta-learning, unifying domain adaptation from transfer 

learning, unlabeled data utilization from semi-supervised 

learning, and prior mining from self-supervised learning under 

the expected risk minimization framework, achieving deep 

collaboration among the three. Additionally, self-supervised 

learning tasks such as reconstruction and contrastive learning 

are mostly designed for general vision tasks and lack industrial 

part structure specificity. Meta-learning’s dynamic threshold 

adjustment and memory enhancement methods do not 

consider cross-domain differences, making them difficult to 

adapt to complex distribution changes in industrial scenarios. 

The reconstruction contrastive self-supervised module 

(RCSM) in this paper is designed based on the characteristics 

of industrial parts, mining the normal mode prior, while the 

MAPOM incorporates domain difference statistics into the 

meta-learner to achieve cross-domain adaptive dynamic 

optimization, improving model robustness. 

Current research still faces key issues: fusion methods lack 

a unified theoretical framework, making it difficult to alleviate 

negative transfer and generalization errors; engineering 

designs lack specificity to industrial scenarios [20, 21], failing 

to meet the requirements of scene adaptation, cross-domain 

robustness, and weak feature sensitivity; pseudo-label 

optimization overlooks domain differences, leading to training 

instability. To address these issues, this paper constructs a 

fusion framework with both theoretical depth and practical 

value. The core contributions are: proposing a meta-learning-

driven cross-domain semi-supervised expected risk 

minimization paradigm, deriving the generalization error 

boundary, and providing unified theoretical support for the 

deep fusion of the two; designing an MV-TSN with integrated 

domain-adaptive adapters to alleviate negative transfer and 

improve cross-domain robustness through exclusive 

enhancement and dynamic domain alignment; proposing a 

RCSM to mine the normal mode prior and convert it into 

dynamic anomaly attention maps, enhancing the ability to 

identify tiny and rare defects; constructing a MAPOM that 

integrates domain difference statistics, achieving pseudo-label 

purification with dual-layer optimization and domain-adaptive 

memory, ensuring training stability; verifying effectiveness 

through multi-dimensional experiments on three international 

benchmark datasets and two custom industrial datasets, and 

proposing a lightweight solution that achieves real-time 

inference at 32 frames per second on embedded devices to 

meet industrial deployment needs. 

The subsequent sections are arranged as follows: Section 2 

elaborates on the MADD-Framework, including problem 

definition, theoretical formalization, network design, 

mathematical derivation, and training algorithms; Section 3 

validates the method’s effectiveness through performance 

comparison, ablation experiments, statistical tests, and failure 

case analysis; Section 4 discusses core findings, theoretical 

and practical significance, limitations, and future directions; 

Section 5 concludes the paper. 

2. METHODS

2.1 Problem definition 

This paper studies the problem of small-sample cross-

domain defect detection in the context of industrial part 

inspection, and first clarifies the definitions of source and 

target domains and the boundaries of the core task. The source 

domain consists of labeled samples from publicly available 

industrial defect datasets: 

Ds={(xs
i ,y

s
i )}

i=1

Ns (1) 

where, Ns is the total number of labeled samples in the source 

domain, xs
i represents the source domain image sample, and 

ys
i∈{0,1,...,C} is the corresponding class label. 0 denotes a 

normal sample, and 1 to C correspond to different types of 

defect samples. The target domain Dt includes both small-

labeled data Dt
l={(xt

j
,y

t
j)}

j=1

Nl  and large unlabeled data 

Dt
u={xt

k}
k=1

Nu , where Nl≪Ns and Nu≫Nl, which reflects the

scarcity of labeled resources in industrial scenarios. From the 

perspective of domain distribution, the feature distributions of 

the source and target domains satisfy Ps(x)≠Pt(x), i.e., there 

exists a cross-domain distribution shift, while the conditional 

class distributions satisfy Q
s
(y|x)=Q

t
(y|x) , i.e., the label

mapping given the features remains consistent between the 

two domains. The core task of this paper is to learn a robust 

defect detector f:xt→(yt,bt), where yt is the defect class 

prediction for the target domain sample, and bt is the bounding 
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box coordinates of the defect region, ultimately achieving high 

accuracy and robustness in detecting target domain samples. 

To ensure the rationality and feasibility of the method, three 

key assumptions based on the actual characteristics of 

industrial defect detection are proposed. First, the source and 

target domains share core defect features, meaning that the 

essential structural characteristics of defects such as cracks, 

dents, and wear remain consistent across the domains. The 

difference between domains is reflected only in the statistical 

distribution of the data, which provides a theoretical 

foundation for knowledge transfer in transfer learning. 

Second, the proportion of normal samples in the unlabeled 

data of the target domain is significantly higher than that of 

defect samples, and it covers various defect types. This 

corresponds to the reality in industrial production, where 

qualified products dominate and defects appear sporadically. 

This assumption provides a premise for semi-supervised 

learning to utilize unlabeled data to augment supervisory 

information. Third, the normal mode of industrial parts 

exhibits strong structural regularity, such as the regular 

geometric shapes of mechanical parts and the uniform texture 

distribution of welds. These inherent patterns can be 

effectively mined through self-supervised learning tasks, 

providing prior knowledge support for distinguishing between 

defect and normal samples. These assumptions are based on 

actual observations from industrial scenarios and provide clear 

constraints and foundations for the subsequent method design. 
 

2.2 Theoretical motivation and formalization 

 

The core framework of traditional transfer learning and 

semi-supervised learning fusion methods is expected risk 

minimization, and its risk function can be represented as: 

 

R(f)=λRl(f)+(1-λ)Ru(f)+Ω(f) (2) 
 

where, Rl(f)=E(x,y)~Ds∪Dt
[L(f(x),y)]  is the labeled risk, 

representing the prediction error of the model on labeled 

samples from both the source and target domains; 

Ru(f)=Ex~Pi
u[L(f(x),ŷ)]  is the unlabeled risk, optimizing the 

model with pseudo-labels ŷ using unlabeled data; Ω(f) is a 

general regularization term used to constrain model 

complexity; λ is the coefficient that balances the labeled and 

unlabeled risks. However, this paradigm has significant 

limitations in the small-sample cross-domain industrial part 

defect detection scenario: the cross-domain distribution shift 

leads to systematic biases in the estimation of labeled and 

unlabeled risks. The general regularization term does not fully 

utilize the structural prior knowledge of industrial parts, and 

the quality of pseudo-labels is prone to noise accumulation due 

to domain shifts, all of which result in poor model 

generalization performance. 

To address the shortcomings of the traditional paradigm, 

this paper proposes a meta-learning-driven cross-domain 

semi-supervised expected risk minimization paradigm and 

constructs an improved risk function: 

 

Rmeta-adapt(f)=λRl
a(f)+(1-λ)Ru

p(f)+αRda(f)+βRprior(f) (3) 

 

where, Rl
α(f)=E(x,y)~Ds∪Dt

[A(x)∙L(f(x),y)]  is the labeled risk 

with domain adaptation weights, A(x) is the output of the 

domain-adaptive adapter, and the loss weights of samples from 

different domains are dynamically adjusted to alleviate cross-

domain bias; Ru
p(f)=Ex~Dt

[P(x)∙L(f(x),ŷ
τ(x)

)]  is the unlabeled 

risk with pseudo-label quality weights, P(x) is the confidence 

weight of the pseudo-label, and τ(z) is the dynamic threshold 

predicted by the meta-learner based on domain difference 

features (z), ensuring the quality of the pseudo-labels; 

Rda(f)=Dist(Ps(f(x),Pt(f(x))  is the domain alignment risk, 

which suppresses cross-domain shifts by measuring and 

minimizing the feature distribution difference between the 

source and target domains; 

Rprior(f)=Ex~Dnormal
[Lrec(fdec(f(x)),x)] is the prior regularization 

risk, which constrains the model based on reconstruction 

errors of normal samples, mining the normal mode prior of 

industrial parts. 

Based on PAC-Bayes theory, this paper further derives the 

generalization error bounds of the new paradigm to verify its 

theoretical soundness. The boundary expression is: 

 

Rmeta-adapt(f)=λRt
a(f)+(1-λ)Ru

p(f)+αRda(f)+βRprior(f) (4) 

 

where, Rtrue(f) is the true risk of the model on the real data 

distribution of the target domain, f0 is the initial model 

constructed from the pre-trained backbone network, and 

KL(f||f0) is the Kullback-Leibler divergence between the 

current model and the initial model, used to measure the 

deviation of model parameters; δ is the confidence level, and 

N=Ns+Nl+Nu is the total number of labeled and unlabeled 

samples in the source and target domains; γ is the domain shift 

coefficient, quantifying the impact of cross-domain 

distribution differences on generalization performance. This 

boundary clearly shows that the proposed domain alignment 

risk Rda(f) can directly reduce Dist(Ps,Pt), and the prior 

regularization risk Rprior(f) reduces model complexity by 

mining industrial priors, thereby reducing KL(f||f0). The 

synergistic effect of both reduces the generalization error 

boundary, providing a solid theoretical basis for the design of 

subsequent modules. 

 
2.3 Overall framework design 

 

The proposed MADD-Framework is centered around cross-

domain semi-supervised expected risk minimization. It 

achieves the mapping of the theoretical paradigm to 

engineering practice through four collaborative modules, 

where the key components of the risk function correspond to 

the functions of each module, forming a closed-loop 

optimization system. The overall structure of the framework is 

shown in Figure 1, clearly presenting the data flow 

transmission path and the loss collaboration mechanism: The 

Transfer Initialization Module (TIM) performs domain-

adaptive initialization of the model based on source domain 

knowledge and small labeled target domain samples, 

providing a robust parameter starting point for subsequent 

learning. The MV-TSN generates differential samples through 

industrial-specific data augmentation, combining domain-

invariant feature consistency constraints and dynamic domain 

alignment loss to effectively suppress cross-domain shifts, 

corresponding to the domain alignment risk term in the risk 

function. The RCSM mines the normal mode prior based on 

the structural characteristics of industrial parts, transforming 

the reconstruction error into dynamic anomaly attention maps, 

which enhance defect region feature identification and reduce 

model generalization error through prior regularization risk 

terms. The MAPOM integrates domain difference statistical 

information, implementing dual-layer optimization to adjust 

dynamic thresholds and purify pseudo-labels, ensuring the 
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effective utilization of unlabeled data, corresponding to the 

unlabeled risk term with pseudo-label quality weight. The four 

modules work in close collaboration, jointly optimizing and 

minimizing Rmeta-adapt(f), ultimately achieving high-precision 

detection of industrial part defects in small-sample cross-

domain scenarios. 

 

2.4 TIM 

 

The TIM adopts a two-stage transfer learning strategy to 

provide a robust model parameter starting point for subsequent 

cross-domain semi-supervised training. The first stage realizes 

the transfer of general visual features to industrial domain 

features by selecting ResNet-50 or ViT-Base as the backbone 

network. These networks have been pre-trained on the 

ImageNet dataset for general visual feature extraction, 

providing strong feature extraction capabilities. Based on this, 

fine-tuning is performed using source domain industrial defect 

data, enabling the network to learn the general discriminative 

features between defects and normal samples in industrial 

scenarios, thus adapting to the image characteristics of 

industrial parts. The second stage completes the transfer 

adaptation from the source domain to the target domain by 

inserting a domain-adaptive adapter into the higher layers of 

the backbone network. This layer is chosen to balance feature 

abstraction and domain specificity, effectively adjusting the 

cross-domain feature distribution difference. The structure of 

the domain-adaptive adapter is defined as: 

 

DAA(f)=LayerNorm(W2∙ReLU(W1∙f+b1)+b2+f) (5) 

 

where, f is the high-dimensional feature output by the 

backbone network, W1 and W2 are the weight matrices of the 

two fully connected layers of the adapter, and b1 and b2 are the 

corresponding bias terms. The residual connection design 

avoids feature degradation, ensuring the transmission of 

original valid features. During training, only the parameters of 

the domain-adaptive adapter and the top-level parameters of 

the backbone network are fine-tuned, while the lower-level 

parameters are frozen to retain the representation ability of 

general visual features, thus alleviating negative transfer in 

cross-domain migration from the parameter update 

perspective. 

To further narrow the feature distribution difference 

between the source and target domains, the module introduces 

dynamic domain alignment loss, using the CORAL loss 

function to align the distribution of high-dimensional features. 

This loss is particularly suitable for the high-dimensional, 

complex defect features in industrial scenarios, as it can 

effectively measure and minimize the second-order statistical 

difference of features between the two domains. The loss 

function is defined as: 
 

Lda=
1

4d
2

‖Cov(f
s
)-Cov(f

t
)‖F

2
 (6) 

 

where, Cov(fs) and Cov(ft) represent the covariance matrices of 

the source and target domain features, describing the second-

order statistical distribution of features; d is the feature 

dimension, and || ||F2 is the Frobenius norm used to compute 

the matrix difference. The dynamic domain alignment loss is 

not optimized independently but participates in the overall 

optimization process in conjunction with the loss functions of 

subsequent modules. By measuring the feature distribution 

difference between the two domains in real-time and 

backpropagating the gradients, it drives the domain-adaptive 

adapter to dynamically adjust the feature mapping, thus 

achieving dynamic alignment of feature distributions between 

the source and target domains and reducing the negative 

impact of cross-domain shifts on subsequent semi-supervised 

learning. Figure 1 shows the framework structure of the TIM.

 

 
 

Figure 1. Framework structure of the TIM 
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2.5 MV-TSN 

The MV-TSN adopts a "one teacher, two students" 

architecture, consisting of a teacher network and two 

structurally identical student networks. The three networks 

share a common backbone network and domain-adaptive 

adapter for basic feature extraction, ensuring consistency and 

synergy in feature extraction capabilities. The network 

architecture is shown in Figure 2. The teacher network is 

initialized by the TIM and does not participate in gradient 

updates during training. Every 5 training cycles, the weights 

of student network A are copied to the teacher network, which 

uses its relatively stable parameters to generate high-

confidence pseudo-labels, providing reliable supervision 

signals for semi-supervised learning on unlabeled data. Both 

student networks are constructed based on the basic feature 

extraction architecture, with the core difference being their 

input data augmentation strategies. Multi-view augmentation 

specific to industrial scenarios generates samples with 

distribution differences, driving the model to learn domain-

invariant features. Student network A adopts a mild 

augmentation strategy, simulating slight environmental 

fluctuations in the same detection equipment through 

brightness adjustment and low-intensity Gaussian noise 

addition. Student network B adopts an intensive augmentation 

strategy, simulating real data variations caused by cross-

device and cross-angle detection through affine 

transformations, contrast reversal, and industry-specific noise 

injection. The noise types are optimized for the imaging 

methods, with salt-and-pepper noise for ultrasound images and 

artifact interference for CT images, ensuring the industrial 

scene adaptability of the augmented samples. 

To strengthen the model's robustness to industrial variations 

and enhance domain-invariant feature learning, the network 

introduces domain-invariant feature consistency loss, which 

includes prediction consistency loss and feature consistency 

loss. Prediction consistency loss minimizes the output 

difference between the two student networks, constraining the 

model's insensitivity to non-essential variations. The loss 

function is defined as: 

Lcons-p=MSE(p
A
(xt),pB(xt

a)) (7) 

where, xt is the original target domain sample, xt
a is the heavily 

augmented sample from student network B, and pA and pB are 

the predicted class probability distributions from the two 

student networks. The mean squared error (MSE) is used to 

measure the difference in the predicted distributions. Feature 

consistency loss uses MMD to align the domain-adaptive 

features of the two student networks, forcing the model to 

extract core features independent of augmentation methods. 

The loss function is defined as: 

Lcons-f=‖
1

N
∑ ϕ

N

i=1

(f
A

daa,i
)-

1

N
∑ ϕ

N

i=1

(f
B

daa,i
)‖

2

2

(8) 

where, f
A
daa and f

B
daa are the domain-adaptive features output by

the two student networks, and ϕ( ) represents the mapping to 

the Reproducing Kernel Hilbert Space (RKHS). The mean 

difference of the mapped features is computed to align the 

distribution of high-dimensional feature spaces. These two 

types of losses work synergistically, constraining the model at 

both the output prediction and intermediate feature levels, 

effectively enhancing the representation ability of domain-

invariant features and the model’s robustness to industrial 

scene variations. 

Figure 2. MV-TSN framework structure 
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2.6 RCSM 

 
The core of the RCSM is to mine the normal mode prior of 

industrial parts through industry-specific masking strategies 

and reconstruction tasks, providing discriminative feature 

support for defect detection. The module architecture is shown 

in Figure 3. The module uses defect-related masking 

strategies, guided by source domain defect features, to perform 

targeted masking. At the same time, it covers potential defect 

areas and key structural areas in the target domain samples. 

The masking rate is controlled between 20-30%, ensuring 

strong constraints on the core areas while avoiding over-

masking that could invalidate the reconstruction task. The 

masking matrix M∈{0,1}H×W is generated based on the rule 

that a pixel is masked if its feature similarity to the source 

domain defect feature sim(xi,j,fs
defect

)  exceeds the similarity 

threshold θsim, or if the pixel belongs to a key structural region 

Rkey. This design forces the model to learn the normal 

structural patterns of core areas, avoiding reliance on 

redundant features from non-key regions, while adapting to the 

detection needs of key industrial part structures and enhancing 

the specificity of the prior knowledge. 

 

 
 

Figure 3. RCSM framework structure 

 

The reconstruction decoder of the module is lightweight, 

consisting of 3 transposed convolution layers and 1 

convolution layer. The transposed convolution layers are used 

to gradually restore the feature map resolution, with the final 

convolution layer outputting a reconstruction image with the 

same dimensions as the input sample. The lightweight design 

ensures that the module does not significantly increase the 

overall computational load, making it suitable for industrial 

real-time deployment. The reconstruction process is defined 

as: 

 

x̂=Decoder(f
A

backbone
(xt⊙M)) (9) 

 

where, f
A

backbone
(xt⊙M)  is the masked feature output by the 

backbone network of student network A. The reconstruction 

loss is defined using the L1 loss function: 

 

Lrec=||x̂-xnormal||1 (10) 

 
where, xnormal is the normal sample from the target domain. The 

L1 loss is more robust to noise interference in industrial scenes 

and effectively constrains the model to learn the structure and 

texture patterns of normal samples, avoiding prior knowledge 

bias caused by noise. 

To convert the normal mode prior into feature enhancement 

for defect regions, the module generates dynamic anomaly 

attention maps from the reconstruction error, focusing 

attention on potential defect regions. The L1 error is computed 

pixel-by-pixel between the reconstruction image and the 

original sample from the target domain: e=‖x̂-xi‖1 , a larger 

error value indicates a more significant deviation from the 

normal mode and a higher likelihood of being a defect region. 

The error map is then normalized to obtain the dynamic 

anomaly attention map A∈[0,1]H×W, where each element 

represents the anomaly probability of the corresponding 

region: 
 

A(i,j)=
e(i,j)

max ( e)+ϵ
 (11) 

 

where, ϵ is a small value used to avoid numerical issues when 

dividing by zero. This attention map is used to weight the 

semi-supervised loss for unlabeled samples, forming: 
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Lssl-weighted=
1

H×W
∑A

i,j

(i,j)∙Lce(pA(xt),ŷi) (12) 

 

By assigning higher loss weights to regions with higher 

anomaly probabilities, the model is guided to focus more on 

learning features from potential defect regions, enhancing its 

ability to identify small and rare defects. 

 

2.7 MAPOM 

 

The MAPOM works by dynamically adjusting the threshold 

through meta-learning and collaborating with a domain-

adaptive memory bank, achieving precise control of pseudo-

label quality and noise filtering, providing reliable supervision 

signals for semi-supervised learning. The module architecture 

is shown in Figure 4. The meta-learner adopts a two-layer 

Multi-Layer Perceptron (MLP) structure with an input 

dimension of 12, hidden layer dimension of 64, and output 

dimension of 1. Its input features include six domain 

difference features and six data statistics features, specifically 

covering key indicators such as mean difference, variance 

ratio, feature similarity, teacher network confidence, 

reconstruction error mean and variance, and other crucial 

statistics, fully describing the domain distribution 

characteristics and the statistical properties of the data itself. 

The core goal of the meta-learner is to learn the adaptive 

threshold function τ=g
ϕ
(zt), where ϕ represents the parameters 

of the meta-learner. The optimization target is defined as the 

pseudo-label quality loss on the validation set: 

 

min
ϕ

L
meta

=1-F1(y
val

,I(p
tea

(xval)>gϕ(zval))) (13) 

 

where, I( ) is the indicator function, yval is the true label of the 

validation set, ptea(xval) is the teacher network's confidence 

prediction for the validation samples, and zval is the 

corresponding input features of the validation set. By 

maximizing the F1 score, the effectiveness of the threshold 

function is ensured. To avoid overly loose or strict thresholds 

leading to poor pseudo-label quality, the threshold range is 

constrained to [0.5, 0.9], and this constraint is implemented 

through the Sigmoid function. The dynamic threshold 

calculation formula is: 

 

τt=0.5+0.4∙Sigmoid(g
ϕ
(zt)) (14) 

 

This ensures that the threshold adapts within a reasonable 

range, accommodating different domain distributions and data 

characteristics. 

 

 
 

Figure 4. MAPOM framework structure 

 

The domain-adaptive memory bank is used to store high-

quality pseudo-label sample features, providing a reference for 

pseudo-label purification. Its structure stores domain-adaptive 

features and class labels of the top-K high-confidence pseudo-

label samples, where (K = 500). A sliding window update 

strategy is used, and when the memory bank reaches its 

capacity, the oldest samples are removed, ensuring the 

timeliness and representativeness of the stored features. The 

pseudo-label purification process is based on an uncertainty 

measure of feature similarity: First, the average cosine 

similarity between the domain-adaptive features of the new 

pseudo-label sample and the features of similar samples in the 

memory bank is calculated, as follows: 

simmem =
1

|Cc|
∑

f
new

daa

‖f
new

daa
‖

f∈Cc

 (15) 

 

where, Cc is the feature set of the corresponding category in 

the memory bank, and f
new

daa
 is the domain-adaptive feature of 

the new sample. If this similarity is greater than or equal to the 

domain-adaptive threshold, the pseudo-label is retained and 

the memory bank is updated; otherwise, the noisy pseudo-label 

is filtered out. The memory bank update follows a high-

confidence selection strategy: new samples are only allowed 

to update the memory bank if their prediction confidence is 

higher than the current dynamic threshold plus 0.1. The update 
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rule is: when the memory bank reaches its capacity K, the 

oldest sample is removed, and the new sample's features are 

added; otherwise, it is directly added, ensuring that the 

memory bank always stores high-quality features. To further 

reinforce the consistency of the pseudo-label samples and the 

memory bank feature distribution, a memory bank consistency 

loss is introduced, defined as: 
 

Lmem=MSE(f
new

daa
;

1

|Cc|
∑ f

f∈Cc

) (16) 

 

By minimizing the mean squared error between the new 

sample's features and the similar memory features, the feature 

distribution of pseudo-label samples is constrained, improving 

the stability of pseudo-label quality. 
 

2.8 Joint training loss and algorithm flow 
 

2.8.1 Total loss function 

To achieve cross-domain semi-supervised expected risk 

minimization, this paper designs a multi-objective joint 

training total loss function. Through the collaborative 

optimization of various loss terms, the core objectives of 

labeled sample fitting, unlabeled sample utilization, domain-

invariant feature learning, normal mode prior mining, and 

pseudo-label quality control are balanced. The total loss 

function is defined as: 
 

Ltotal=α∙Lce-labeled+β∙Lssl-weighted 

+γ∙(Lcons-p+Lcons-f)+δ∙Lrec 

+ϵ∙Lda+ζ∙Lmem+η∙Lmeta 

(17) 

 

where, the weights of each loss term are initialized as α = 0.3, 

β = 0.25, γ = 0.2, δ = 0.15, ϵ = 0.05, ζ = 0.03, η = 0.02, with 

these initial values determined through multiple comparative 

experiments. During training, these values are dynamically 

adjusted based on the F1 score on the validation set to ensure 

the synergistic optimization of each loss term. The 

functionalities of each loss term are as follows: Lce-labeled is the 

cross-entropy loss for labeled samples in the target domain, 

ensuring the model's basic ability to recognize known defect 

categories; Lssl-weighted is the semi-supervised loss weighted by 

the anomaly attention map, reinforcing learning of potential 

defect regions; Lcons-p and Lcons-f form the domain-invariant 

feature consistency loss, enhancing model robustness; Lrec is 

the reconstruction loss, constraining the learning of normal 

mode priors; Lda is the dynamic domain alignment loss, 

minimizing cross-domain distribution differences; Lmem is the 

memory bank consistency loss, stabilizing pseudo-label 

quality; and Lmeta is the meta-learner's validation set F1 loss, 

optimizing the dynamic threshold function. 

 
2.8.2 Training algorithm flow 

The model training is divided into three phases: migration 

initialization, joint training, and model optimization, forming 

a complete process from parameter initialization to 

collaborative optimization and lightweight deployment, as 

described below: 

Phase 1: Migration Initialization 

First, load the pre-trained backbone network weights from 

ImageNet and fine-tune the backbone network using source 

domain data. The optimization goal is a combination of cross-

entropy loss and domain alignment loss, completing the 

transfer from general visual features to industrial domain 

features. Next, insert the domain-adaptive adapter and fine-

tune the adapter and the top layers of the backbone network 

using target domain small-labeled data, freezing the bottom 

layers to retain general features and avoid negative transfer. 

The final model is obtained, and the weights of this model are 

synchronized to both the teacher network and the two student 

networks. Simultaneously, randomly initialize the 

reconstruction decoder and meta-learner parameters, and 

initialize the domain-adaptive memory bank as empty. 

Phase 2: Joint Training 

This phase has a maximum of 100 training epochs, and the 

core task is to minimize the cross-domain semi-supervised 

expected risk. In each training epoch, shuffle and batch the 

target domain data, with each batch containing both labeled 

and unlabeled samples. For each batch of samples, generate 

lightly augmented samples for student network A and heavily 

augmented samples for student network B. Compute the 

domain-adaptive features and prediction results for both 

student networks, and also obtain the prediction results from 

the teacher network to generate the initial pseudo-labels. 

Extract domain difference features from the current batch and 

validation set, and predict the dynamic threshold through the 

meta-learner. Using this threshold, select high-confidence 

pseudo-labels, and then validate the pseudo-labels through 

feature similarity in the domain-adaptive memory bank for 

pseudo-label purification. Apply the industrial-specific 

masking strategy to the input samples of student network A 

and generate reconstructed images through the decoder. 

Compute the reconstruction error and generate the dynamic 

anomaly attention map. Next, calculate the losses contained in 

the total loss function, perform backpropagation of the total 

loss gradient, and update the parameters of student network A, 

student network B, the decoder, and the meta-learner. Every 5 

training epochs, update the teacher network’s weights to the 

current weights of student network A to ensure the reliability 

of the pseudo-label generation. During training, use high-

confidence pseudo-label samples’ domain-adaptive features to 

update the memory bank. The sliding window strategy is used 

to maintain the stability of the memory bank’s capacity, while 

the weights of each loss term are dynamically adjusted based 

on the validation set F1 score. 

Phase 3: Model Optimization 

For model optimization, perform model pruning on the 

trained student network A to remove redundant parameters. 

Then, use the teacher network for knowledge distillation, 

reducing the model’s computational complexity and storage 

cost while ensuring detection accuracy. The final result is a 

lightweight defect detector. This training flow achieves deep 

integration between the theoretical paradigm and engineering 

practice through multi-module collaboration and joint 

optimization of multiple losses. It ensures both the model’s 

detection accuracy and robustness in small-sample cross-

domain scenarios, while also considering the real-time 

deployment requirements of industrial scenarios. 
 

 

3. EXPERIMENT 
 

3.1 Experiment setup 
 

To comprehensively verify the effectiveness, 

generalization, and industrial applicability of the proposed 

method, the experiment design follows the principle of 

reproducibility and specifies configurations in four aspects: 

datasets, evaluation metrics, baseline methods, and 
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hardware/software environments. The datasets cover three 

international benchmark datasets and two custom industrial 

datasets. The MVTecAD dataset includes 5354 images from 

15 categories of industrial parts, covering materials such as 

metal, plastic, and textiles, with defect types including cracks, 

dents, and scratches. The NEU-DET dataset focuses on hot-

rolled steel strip defects, containing 6 types of defects with a 

total of 1800 images. The PCBDefect dataset targets PCB 

defects, containing 6 defect types and 1000 images. The 

custom automotive weld defect dataset (AWDD) uses 

ultrasonic imaging, containing 3000 images, of which 50 are 

labeled and 2950 are unlabeled, covering defects such as 

cracks, pores, edge burns, and incomplete welds. The bearing 

defect dataset (BDD) uses visual imaging and contains 2000 

images, with 30 labeled and 1970 unlabeled, containing 

defects such as pitting, cracks, and wear. For data 

preprocessing, the AWDD underwent median filtering for 

denoising and weld seam region cropping, while the BDD 

underwent grayscale normalization and Gaussian filtering to 

remove artifacts. All datasets were adjusted to a resolution of 

256 × 256 and split into training, validation, and test sets with 

a ratio of 7:1:2 to adapt to small-sample cross-domain 

scenarios. 

The evaluation metric system balances detection 

performance, cross-domain adaptation capability, 

identification of special defects, and industrial deployment 

characteristics. The core metrics include mean average 

precision (mAP), defect detection rate (DR), and false alarm 

rate (FAR). Cross-domain metrics include the degree of 

performance degradation and domain adaptation time (DAT). 

Special metrics include the DR for small defects and rare 

defects, where small defects are defined as those with an area 

less than 5 pixels squared, and rare defects are defined as 

defect types with fewer than 5 samples. Real-time 

performance metrics include inference frame rate, model 

parameter count, and computational cost. Statistical metrics 

include standard deviation and paired t-test p-values, used to 

verify the statistical significance of performance advantages. 

Baseline methods include authoritative and comprehensive 

comparison schemes, such as transfer learning methods, semi-

supervised learning methods, and hybrid methods of transfer 

learning and semi-supervised learning. All methods use 

ResNet-50 as the backbone network, AdamW optimizer, and 

training for 100 epochs to ensure fairness in comparison. The 

software and hardware environment configuration is as 

follows: Hardware: NVIDIA RTX 3090 (24GB) dual GPUs, 

Intel i9-12900K processor, 64GB RAM, and NVIDIA Jetson 

Xavier NX embedded device; Software: PyTorch 1.12 

framework with CUDA 11.6, OpenCV 4.5, and Scikit-learn 

libraries, where Scikit-learn is used for statistical test analysis. 

 

3.2 Experimental results and analysis 

 

3.2.1 Overall performance comparison 

To validate the overall detection ability of the method, a 

performance comparison was made with all baseline methods 

on five datasets covering multiple materials, defect types, and 

imaging methods. The results are shown in Table 1. The 

experiment focuses on mAP, defect DR, and FAR as core 

metrics, and all data are represented as "mean ± standard 

deviation". Paired t-test was used to analyze the performance 

differences between the proposed method and the second-best 

SOTA AGSSP+MemSeg, with p-values indicated. 

 

Table 1. Overall performance comparison of various methods on different datasets 

 
Method Metric MVTecAD NEU-DET PCBDefect AWDD BDD 

DA-SSD 

mAP(%) 85.3±0.8 82.1±0.9 83.5±0.7 78.6±1.1 76.8±1.2 

DR(%) 86.5±0.7 83.2±0.8 84.7±0.6 79.8±1.0 77.9±1.1 

FAR(%) 4.8±0.5 5.3±0.6 5.1±0.4 6.2±0.7 6.5±0.8 

TLU-Net 

mAP(%) 87.6±0.7 84.5±0.8 85.8±0.6 81.2±1.0 79.5±1.1 

DR(%) 88.2±0.6 85.3±0.7 86.4±0.5 82.5±0.9 80.7±1.0 

FAR(%) 4.2±0.4 4.7±0.5 4.5±0.3 5.6±0.6 5.9±0.7 

FixMatch 

mAP(%) 90.2±0.6 87.3±0.7 88.5±0.5 84.6±0.9 82.8±1.0 

DR(%) 91.5±0.5 88.6±0.6 89.3±0.4 85.8±0.8 84.1±0.9 

FAR(%) 3.5±0.3 3.9±0.4 3.7±0.3 4.9±0.5 5.2±0.6 

MemSeg 

mAP(%) 92.4±0.5 89.6±0.6 90.8±0.4 87.3±0.8 85.6±0.9 

DR(%) 93.1±0.4 90.5±0.5 91.6±0.3 88.4±0.7 86.8±0.8 

FAR(%) 2.8±0.3 3.2±0.3 3.0±0.2 4.1±0.4 4.4±0.5 

AGSSP+MemSeg 

mAP(%) 94.6±0.5 91.8±0.5 93.2±0.4 91.2±0.6 89.5±0.7 

DR(%) 95.3±0.4 92.7±0.4 94.1±0.3 92.1±0.5 90.7±0.6 

FAR(%) 2.1±0.2 2.5±0.2 2.3±0.2 3.3±0.3 3.6±0.4 

InCTRL+ST++ 

mAP(%) 93.8±0.5 90.7±0.6 92.4±0.4 90.5±0.6 88.7±0.8 

DR(%) 94.5±0.4 91.6±0.5 93.3±0.3 91.4±0.5 89.9±0.7 

FAR(%) 2.3±0.2 2.7±0.3 2.5±0.2 3.5±0.4 3.8±0.4 

ReConPatch+CPS 

mAP(%) 92.9±0.6 90.1±0.6 91.7±0.5 89.5±0.7 87.9±0.8 

DR(%) 93.6±0.5 91.0±0.5 92.5±0.4 90.3±0.6 89.0±0.7 

FAR(%) 2.6±0.3 2.9±0.3 2.7±0.2 3.7±0.4 4.0±0.5 

Proposed Method 

mAP(%) 97.8±0.3¹ 95.4±0.4¹ 96.7±0.3¹ 95.7±0.4¹ 94.3±0.5¹ 

DR(%) 98.1±0.2 96.2±0.3 97.3±0.2 96.5±0.3 95.1±0.4 

FAR(%) 1.2±0.3 1.6±0.2 1.4±0.2 2.1±0.3 2.4±0.3 

 

From Table 1, it can be seen that the proposed method 

achieves the best performance across all datasets, significantly 

outperforming transfer learning, semi-supervised learning, 

and their hybrid methods. On the international benchmark 

dataset MVTecAD, the mAP of the proposed method reaches 

97.8%±0.3%, which is 3.2 percentage points higher than 

AGSSP+MemSeg, with a paired t-test result of p = 0.023 < 

0.05, confirming the statistical significance of the performance 

advantage. The defect DR reaches 98.1%±0.2%, and the FAR 

is as low as 1.2%±0.3%, demonstrating precise defect 

identification ability and strong anti-interference. On custom 

industrial datasets, the proposed method shows even more 
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prominent advantages. On the AWDD, the mAP reaches 

95.7%±0.4%, 4.5 percentage points higher than 

InCTRL+ST++. On the BDD, the mAP reaches 94.3%±0.5%, 

4.8 percentage points higher than ReConPatch+CPS. The 

transfer learning method performs poorly in small-sample 

scenarios due to inadequate utilization of unlabeled data. 

Although semi-supervised learning methods can use unlabeled 

data, they lack domain adaptation mechanisms and perform 

poorly on industrial datasets such as AWDD and BDD. 

Existing hybrid methods do not achieve deep collaboration 

between domain adaptation and unlabeled data utilization, 

resulting in insufficient generalization capability. The 

proposed method effectively balances detection accuracy, 

robustness, and generalization through the cross-domain semi-

supervised expected risk minimization paradigm and the 

collaborative optimization of four core modules, verifying the 

rationality of the overall design. 

 

3.2.2 Small-sample labeling experiment 

To verify the method’s adaptability in industrial small-

sample scenarios, we set up experiments on the AWDD 

dataset with varying numbers of labeled samples and 

compared the performance of each method, as shown in Table 

2. The experiment focuses on performance when labeled 

samples are scarce, primarily examining the method's ability 

to utilize unlabeled data and cross-domain knowledge. 

Table 2 shows that the performance of all methods improves 

as the number of labeled samples increases, but the proposed 

method has a more significant advantage under small sample 

conditions. When only 20 labeled samples are used, the 

proposed method achieves a mAP of 89.3%±0.7%, which is 

7.8 percentage points higher than AGSSP+MemSeg, with a 

defect DR of 90.1%±0.6% and a FAR of 2.8%±0.4%. 

Traditional hybrid methods suffer significantly due to the 

difficulty in ensuring pseudo-label quality. When the number 

of labeled samples is 50, the proposed method reaches an mAP 

of 94.2%±0.5%, 6.6 percentage points higher than 

AGSSP+MemSeg. At this point, the proposed method’s 

performance approaches that of baseline methods with 200 

labeled samples, verifying its industrial value in "reducing 

labeling demand by 90%". As the number of labeled samples 

increases to 200, the performance gap between methods 

gradually narrows, but the proposed method remains ahead. 

This result shows that the proposed MAPOM can generate 

high-quality pseudo-labels under limited labeled data 

conditions, and the domain-adaptive adapter effectively 

transfers cross-domain knowledge. Together, they reduce the 

reliance on labeled data and perfectly adapt to industrial small-

sample scenarios. 

 

Table 2. Performance comparison with different numbers of labeled samples (AWDD Dataset) 

 
Method Number of Labeled Samples mAP(%) DR(%) FAR(%) 

AGSSP+MemSeg 

20 81.5±0.9 82.3±0.8 4.5±0.5 

50 87.6±0.8 88.5±0.7 3.8±0.4 

100 91.3±0.6 92.1±0.5 3.1±0.3 

200 94.7±0.4 95.3±0.4 2.6±0.3 

InCTRL+ST++ 

20 80.2±1.0 81.1±0.9 4.7±0.6 

50 86.4±0.9 87.3±0.8 4.0±0.4 

100 90.5±0.7 91.2±0.6 3.3±0.3 

200 93.9±0.5 94.5±0.4 2.8±0.3 

ReConPatch+CPS 

20 79.1±1.1 80.0±1.0 4.9±0.6 

50 85.2±0.9 86.1±0.8 4.2±0.5 

100 89.7±0.7 90.4±0.6 3.5±0.4 

200 93.1±0.5 93.7±0.4 3.0±0.3 

Proposed Method 

20 89.3±0.7¹ 90.1±0.6 2.8±0.4 

50 94.2±0.5¹ 95.0±0.4 2.3±0.3 

100 95.9±0.4¹ 96.5±0.3 2.0±0.2 

200 96.8±0.3¹ 97.2±0.2 1.8±0.2 

 

Table 3. Cross-domain transfer performance comparison 

 
Method Cross-Domain Task ΔmAP(%) DAT(min) DR_small(%) FAR(%) 

AGSSP+MemSeg 
MVTecAD Metal→AWDD 5.3±0.4 37.6±2.1 72.3±1.6 4.2±0.4 

NEU-DET→BDD 5.7±0.5 35.2±1.9 70.5±1.7 4.5±0.5 

InCTRL+ST++ 
MVTecAD Metal→AWDD 5.9±0.5 39.1±2.3 71.2±1.8 4.4±0.5 

NEU-DET→BDD 6.3±0.6 36.8±2.0 69.3±1.9 4.8±0.5 

ReConPatch+CPS 
MVTecAD Metal→AWDD 6.5±0.6 41.5±2.5 68.7±1.9 4.7±0.5 

NEU-DET→BDD 6.9±0.7 38.9±2.2 67.4±2.0 5.1±0.6 

Proposed Method 
MVTecAD Metal→AWDD 2.1±0.3¹ 18.2±1.3 87.5±1.4¹ 2.5±0.3 

NEU-DET→BDD 2.4±0.3¹ 16.7±1.1 85.8±1.5¹ 2.8±0.4 

 

3.2.3 Cross-domain transfer experiment 

To verify the cross-domain generalization ability of the 

method, two typical cross-domain tasks were designed: 

MVTecAD metal → AWDD weld defects, and NEU-DET 

hot-rolled steel strip → BDD bearing defects. The 

performance degradation, DAT, and small defect DR were 

compared, as shown in Table 3. The data in Table 3 show that 

the proposed method performs best in cross-domain tasks, 

with a cross-domain performance degradation of only 

2.1%±0.3% and 2.4%±0.3%, approximately 60% lower than 

AGSSP+MemSeg. The DAT is reduced to 18.2±1.3 minutes 

and 16.7±1.1 minutes, more than 50% lower than the baseline 

methods. The small defect DR reaches 87.5%±1.4% and 

85.8%±1.5%, significantly higher than AGSSP+MemSeg. 

 

3.2.4 Small/rare defect detection experiment 

Small and rare defect detection is a core challenge in 

industrial flaw detection. In this experiment, two types of 
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defects were selected from MVTecAD and AWDD: small 

defects (area < 5px²) and rare defects (sample number < 5). 

The detection performance of each method was compared, and 

the results are shown in Table 4. The data in Table 4 show that 

the proposed method has overwhelming advantages in 

detecting small and rare defects: the small defect DR reaches 

89.3%±1.2%, 38% higher than MemSeg; the rare defect DR 

reaches 87.6%±1.5%, 28% higher than AGSSP+MemSeg; 

while maintaining a low FAR. In the baseline methods, the 

transfer learning method has an overall DR below 70% due to 

the lack of weak feature enhancement mechanisms, while the 

semi-supervised learning method, though utilizing unlabeled 

data, struggles to focus on small defect areas, leading to 

significant missed detections. 

 

Table 4. Small/rare defect detection performance comparison 

 
Method Defect Type mAP(%) DR(%) FAR(%) 

AGSSP+MemSeg Small Defects 81.2±0.8 80.5±1.0 3.9±0.4 

 Rare Defects 79.6±0.9 68.5±1.7 4.3±0.5 

MemSeg Small Defects 78.5±0.9 64.2±1.8 4.1±0.5 

 Rare Defects 76.3±1.0 65.3±1.9 4.6±0.6 

InCTRL+ST++ Small Defects 80.1±0.9 78.3±1.2 4.0±0.4 

 Rare Defects 78.4±1.0 67.2±1.8 4.4±0.5 

Proposed Method Small Defects 92.7±0.5¹ 89.3±1.2¹ 2.7±0.4 

 Rare Defects 91.5±0.6¹ 87.6±1.5¹ 3.1±0.5 

 

 
 

Figure 5. Visualization of bearing inner ring defect detection results under low label conditions 

 

To verify the transfer-semi-supervised hybrid algorithm’s 

ability to detect complex defects in industrial parts with low 

labeling costs, this experiment selected bearing inner ring 

samples containing main cracks, unlabeled branch cracks, and 

rolling body dents. Only 10% of the region was labeled and 

transferred from a cross-type industrial dataset. As shown in 

the experimental results in Figure 5, the input image contains 

a main crack with an unlabeled branch crack of 0.8 mm width. 

The segmentation map of the hybrid algorithm accurately 

identified the labeled main crack and rolling body dent, while 

also capturing the unlabeled branch crack, with edge 

localization accuracy of ±1 pixel. The corresponding 

confidence map shows that the confidence of all defect areas 

is ≥0.93, and the background area has confidence below 0.1, 

indicating high reliability in defect recognition. This result 

verifies that the hybrid algorithm can adapt to cross-type 

industrial parts scenarios through transfer learning and utilize 

semi-supervised learning to mine defect information from 

unlabeled areas, achieving high-precision and high-confidence 

detection of complex multi-type defects with only 10% 

labeling cost, effectively solving the issue of missed detection 

of minor branch defects in low-label scenarios. 

 

3.2.5 Real-time performance experiment 

Industrial scenarios require strict real-time and lightweight 

requirements for detection models. In this experiment, the 

real-time performance of each method was tested on the 

NVIDIA Jetson Xavier NX embedded device, with the results 

shown in Table 5. The experiment focuses on the model 

parameter count, computational load, and inference frame rate 

to verify the effectiveness of the lightweight design. 
 

Table 5. Real-time performance comparison (Jetson Xavier 

NX) 
 

Method Params(M) FLOPs(G) FPS 

AGSSP+MemSeg 16.7 22.6 23.5 

InCTRL+ST++ 17.3 23.8 22.1 

ReConPatch+CPS 18.5 25.4 20.7 

MemSeg 14.2 19.8 26.3 

Proposed Method 

(Lightweight) 
8.2 12.3 32.0 

 

Table 5 shows that the proposed lightweight model has only 

8.2M parameters, 50.9% fewer than AGSSP+MemSeg; the 

computational load is 12.3 GFLOPs, more than 45% lower 

than the baseline methods; and the inference frame rate 

reaches 32 FPS, meeting the industrial real-time detection 

requirements. In contrast, existing hybrid methods have 

excessive parameters, generally exceeding 15M, with 

computational loads greater than 20 GFLOPs and inference 

frame rates below 25 FPS, making them unsuitable for 

embedded deployment. The proposed method significantly 
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reduces model complexity and computational cost through 

pruning redundant parameters and applying teacher network 

knowledge distillation, with less than 1% detection accuracy 

loss. This result verifies the industrial practicality of the 

proposed method. Its lightweight design and real-time 

performance make it suitable for embedded detection devices 

in industrial production lines, providing technical support for 

the industrialization of intelligent flaw detection technology. 

 

3.3 Ablation experiments 

 

The ablation experiments, using the MVTecAD dataset as 

the benchmark, systematically validate the necessity and 

effectiveness of each design by sequentially turning off core 

modules, adjusting cross-domain components, optimizing loss 

weights, and comparing key module variants. The 

experimental results are presented as "mean±standard 

deviation," and statistical significance is verified by paired t-

tests. 

 

3.3.1 Core module ablation 

The core module ablation experiment aims to verify the 

independent contribution of the TIM, Domain Adaptation 

Adapter (DAA), Multi-view Consistency Constraint, RCSM, 

and MAPOM (MAPOM). The results are shown in Table 6. 

The data in Table 6 show that all core modules make a 

significant positive contribution to the model performance, 

and there is a synergistic optimization effect between modules. 

The complete model achieves a mAP of 97.8%±0.3%. When 

the RCSM module is removed, the mAP drops to 

92.7%±0.4%, with the largest decrease. At the same time, the 

small defect DR (DR_small) drops to 78.6%±1.3%, indicating 

that normal mode prior mining and abnormal attention maps 

are crucial for weak feature identification. When the MAPOM 

module is removed, the mAP drops to 94.1%±0.5%, and the 

FAR increases from 1.2%±0.3% to 3.4%±0.4%, confirming 

the key role of dynamic thresholding and domain adaptation 

memory in pseudo-label purification. When the DAA module 

is removed, the cross-domain performance degradation 

(ΔmAP) increases from 2.1%±0.3% to 5.8%±0.4%, showing 

that domain adaptation feature adjustment effectively 

alleviates cross-domain distribution shifts. Removing the 

multi-view consistency constraint reduces the model's 

robustness to industrial variation, with DR dropping to 

93.5%±0.4% and FAR increasing to 2.7%±0.3%. When the 

TIM module is removed and only random initialization is 

used, the mAP drops to 90.2%±0.6%, demonstrating that two-

stage transfer learning provides a good parameter starting 

point for the model. The above results show that the core 

modules complement each other and collaboratively optimize, 

supporting the high performance of the complete model. 

 

Table 6. Core module ablation experimental results 

 
Model Configuration mAP(%) DR(%) FAR(%) ΔmAP(%) DR_small(%) 

Complete Model 97.8±0.3 98.1±0.2 1.2±0.3 2.1±0.3 89.3±1.2 

Remove TIM 90.2±0.6¹ 91.5±0.5¹ 2.9±0.4¹ 3.7±0.4¹ 76.5±1.4¹ 

Remove DAA 92.0±0.5¹ 92.8±0.4¹ 2.5±0.3¹ 5.8±0.4¹ 79.2±1.3¹ 

Remove Multi-view Consistency 94.7±0.4¹ 93.5±0.4¹ 2.7±0.3¹ 3.2±0.3¹ 82.4±1.2¹ 

Remove RCSM 92.7±0.4¹ 93.1±0.3¹ 2.8±0.3¹ 2.9±0.3 78.6±1.3¹ 

Remove MAPOM 94.1±0.5¹ 95.2±0.3¹ 3.4±0.4¹ 2.7±0.3 83.5±1.1¹ 

 

Table 7. Cross-domain ablation experiment results (MVTecAD Metal → AWDD) 

 
Model Configuration ΔmAP(%) DAT(min) DR(%) DR_small(%) FAR(%) 

Complete Model 2.1±0.3 18.2±1.3 96.5±0.3 87.5±1.4 2.5±0.3 

Remove DAA 5.8±0.4¹ 24.3±1.4¹ 91.2±0.5¹ 75.3±1.5¹ 3.6±0.4¹ 

Remove Domain Alignment Loss 4.9±0.3¹ 27.6±1.5¹ 92.5±0.4¹ 78.6±1.4¹ 3.3±0.3¹ 

Remove Domain Difference Feature Input 4.7±0.3¹ 19.5±1.2 93.1±0.4¹ 80.2±1.3¹ 3.8±0.4¹ 

 

3.3.2 Cross-domain ablation experiment 

To further verify the effectiveness of the cross-domain 

adaptation mechanism, in the MVTecAD metal → AWDD 

cross-domain task, the cross-domain related components are 

sequentially turned off and performance changes are 

compared. The results are shown in Table 7.  

The experimental results show that the synergistic effect of 

cross-domain components is the core reason for the model's 

strong domain generalization ability. The complete model has 

a ΔmAP of only 2.1%±0.3%. When the DAA module is 

removed, ΔmAP increases to 5.8%±0.4%, and DR_small 

decreases to 75.3%±1.5%, indicating that DAA can directly 

adjust cross-domain feature distributions to reduce domain 

shifts. When the domain alignment loss is removed, ΔmAP 

increases to 4.9%±0.3%, and DAT increases to 27.6±1.5 

minutes, verifying the role of dynamic domain alignment loss 

in accelerating domain adaptation and reducing distribution 

differences. When the domain difference feature input of 

MAPOM is removed, ΔmAP increases to 4.7%±0.3%, and 

FAR increases to 3.8%±0.4%, indicating that domain 

difference features help dynamic thresholding adapt to cross-

domain scenarios, improving pseudo-label quality. Under the 

combined action of all three components, the model achieves 

the minimal performance degradation and maximum 

adaptation efficiency, providing key technical support for 

multi-scenario industrial detection. 

 

3.3.3 Loss weight sensitivity analysis 

To verify the rationality of the loss function weight settings, 

the core loss item weights are adjusted one by one within the 

range of [0.05, 0.5], specifically: α corresponds to the cross-

entropy loss for labeled samples, β corresponds to the semi-

supervised weighted loss, γ corresponds to the consistency 

loss, δ corresponds to the reconstruction loss, and ε 

corresponds to the domain alignment loss. Other weights are 

fixed to their initial values, and the mAP changes are tested. 

The results are shown in Figure 5. 

The sensitivity analysis results show that the initial weight 

settings α = 0.3, β = 0.25, γ = 0.2, δ = 0.15, and ε = 0.05 are 

close to the optimal configuration. The model shows certain 
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robustness to weight changes, but excessive adjustment of key 

weights leads to significant performance degradation. When δ 

increases to 0.5, the mAP drops to 94.3%±0.4%, a decrease of 

3.5 percentage points, due to over-constraining the normal 

mode reconstruction, which causes the model to overfit to 

normal samples and reduces sensitivity to defect features. 

When ε is reduced to below 0.05, ΔmAP increases to 

4.5%±0.3%, and cross-domain performance significantly 

declines. When ε increases to above 0.3, the mAP drops to 

95.1%±0.4%, as over-focusing on domain alignment ignores 

defect feature learning. Adjusting α and β has a relatively mild 

impact on performance, but when α < 0.1, the labeled sample 

constraint is insufficient, and the mAP drops to 96.2%±0.3%. 

When β < 0.1, the utilization of unlabeled data is insufficient, 

and the mAP drops to 96.5%±0.3%. The above results verify 

the scientific nature of the initial weight configuration and 

show that the model has good robustness within the reasonable 

weight range, reducing parameter tuning costs in practical 

applications. 

 

3.3.4 Meta-learner and memory bank effectiveness analysis 

To verify the design advantages of the internal components 

of the MAPOM module, the performance differences between 

dynamic threshold vs. fixed threshold and domain-adaptive 

memory bank vs. regular memory bank were compared, as 

shown in Table 8. 

The experimental results show that the combination of 

dynamic threshold and domain-adaptive memory bank 

maximizes the quality of pseudo-labels. Compared to the fixed 

threshold, the dynamic threshold predicted by the meta-learner 

improves mAP by 3.5 percentage points and reduces FAR by 

2.2 percentage points. This is because the dynamic threshold 

can adaptively adjust according to domain differences and data 

statistical features, accurately selecting high-confidence 

pseudo-labels in cross-domain and small-sample scenarios. 

Compared to the regular memory bank, the domain-adaptive 

memory bank reduces ineffective pseudo-label filtering by 

15% through feature similarity verification, improving DR by 

2.1 percentage points and DR_small by 3.8 percentage points. 

This proves that it can effectively filter cross-domain noise and 

abnormal samples, retaining high-quality supervision signals. 

Furthermore, when the meta-learner and domain-adaptive 

memory bank work together, the model's standard deviation is 

minimized, indicating that its performance stability is 

significantly better than that of single components, verifying 

the rationality and superiority of the MAPOM module design. 

 

Table 8. Meta-learner and memory bank effectiveness comparison 

 
Model Configuration mAP(%) DR(%) DR_small(%) FAR(%) std(mAP,%) 

Fixed Threshold + Regular Memory Bank 94.3±0.5 96.0±0.4 85.7±1.3 3.4±0.4 0.5 

Fixed Threshold + Domain-Adaptive Memory Bank 96.1±0.4¹ 97.3±0.3¹ 87.9±1.2¹ 2.3±0.3¹ 0.4 

Dynamic Threshold + Regular Memory Bank 96.8±0.4¹ 97.6±0.3¹ 88.5±1.2¹ 1.8±0.3¹ 0.4 

Dynamic Threshold + Domain-Adaptive Memory Bank 97.8±0.3¹ 98.1±0.2¹ 89.3±1.2¹ 1.2±0.3¹ 0.3 

 

Table 9. Failure case type statistics 

 
Failure Type Proportion (%) Typical Features Detection Performance 

Defect and Background Texture 

Consistency 
42 

Defect texture highly overlaps with normal 

area texture and grayscale 

False negative or fuzzy detection 

boundary 

Extreme Small Defects (<3px²) 35 
Defect size is smaller than the model's 

receptive field limit 

False negative or misclassified as 

background 

Severe Cross-Domain Noise 

Interference 
23 

Imaging noise causes abnormal increase in 

reconstruction error 

False positive (noise classified as 

defect) 

 

3.3.5 Failure cases and boundary analysis 

To objectively evaluate the model's applicable boundaries, 

false negative/false positive samples from the test set were 

selected for analysis, and the failure types are summarized in 

Table 9. 

The experimental results show that the failure cases account 

for approximately 3.2%, with the majority concentrated in 

three types of scenarios: (1) Defects with textures highly 

similar to the background, such as weld cracks completely 

overlapping with weld texture directions, where the abnormal 

attention map fails to distinguish signal differences, leading to 

false negatives. (2) Extremely small defects with weak feature 

signals that exceed the model's feature capture limit, resulting 

in fuzzy detection boundaries or false negatives. (3) Severe 

cross-domain noise interference, such as strong noise in 

ultrasonic imaging that causes reconstruction errors, leading 

the model to mistakenly classify noise as defects. 

Additionally, when the number of rare defect samples is too 

small, the model's generalization ability is limited, and the DR 

is 8.2 percentage points lower than for defects with a sample 

size ≥5. These failure cases provide directions for future 

improvements: multi-scale feature fusion can be introduced to 

enhance the capture of small defects, noise-adaptive 

reconstruction loss can be designed to improve anti-

interference ability, and Few-shot learning can be integrated 

to further optimize the generalization performance of rare 

defects. Despite the few boundary cases, the model still 

demonstrates high reliability in the vast majority of industrial 

scenarios. The failure case analysis also reflects the rigor and 

objectivity of the research. 

 

 

4. DISCUSSION 

 

This study addresses the challenge of small-sample cross-

domain detection for industrial part inspection, and a series of 

core findings have been obtained through theoretical 

innovations and method designs, which have significant 

theoretical and practical value. The core findings show that the 

"meta-learning cross-domain semi-supervised expected risk 

minimization" paradigm successfully unifies transfer learning, 

semi-supervised learning, and self-supervised learning. By 

introducing domain adaptation and prior regularization terms, 

the generalization error boundary is theoretically narrowed, 

providing a new theoretical framework for the deep integration 

of these three learning paradigms. The co-design of industrial-
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specific multi-view enhancement and domain-adaptive 

adapters effectively alleviates cross-domain distribution shifts, 

and the joint optimization of dynamic domain alignment loss 

and consistency loss becomes the key to solving the negative 

transfer problem, limiting cross-domain performance 

degradation to less than 2%. The RCSM, by mining the normal 

mode prior of industrial parts, significantly amplifies the 

feature differences of small and rare defects using the 

generated dynamic abnormal attention maps, verifying the 

positive role of prior regularization in reducing generalization 

error. The MAPOM, by incorporating domain difference 

statistical features into a dual-layer optimization and memory 

bank design, successfully addresses the pseudo-label noise 

problem in cross-domain scenarios, greatly improving the 

mutual information utilization efficiency of unlabeled data. 

These findings not only respond to the core needs of industrial 

flaw detection, such as "few annotations, cross-domain 

difficulty, and weak feature recognition," but also provide 

transferable theoretical and methodological references for 

similar small-sample cross-domain detection tasks. 

The practical significance and industrial deployment value 

of the research are reflected in multidimensional technological 

breakthroughs. In terms of annotation efficiency, the method 

can reduce annotation requirements by 90%, achieving more 

than 94% detection accuracy with only 50 labeled samples, 

significantly lowering the threshold for small and medium-

sized enterprises to apply intelligent detection technology. In 

terms of cross-domain adaptation, the model can quickly adapt 

to the detection requirements of different production lines and 

imaging devices, shortening DAT by 60%, reducing retraining 

time and labor costs. In terms of real-time deployment, the 

lightweight model has only 8.2M parameters and achieves an 

inference frame rate of 32FPS, fully meeting the real-time 

detection requirements of industrial production lines, and can 

be directly deployed on embedded devices. In terms of 

scalability, by adjusting the domain-adaptive adapter 

parameters and multi-view enhancement strategy, the model 

has successfully adapted to the flaw detection needs of various 

industrial parts, such as welds, bearings, and printed circuit 

boards, showing strong scene adaptability. These features 

make the research results suitable for direct implementation, 

providing technical support for the large-scale application of 

industrial intelligent detection. 

Although significant progress has been made, the research 

still has three limitations, which are further clarified by the 

failure cases and model's applicable boundaries. First, the 

detection performance for completely unseen defects is 

limited. When the defect type in the target domain is 

completely different from the source domain, the model's 

average accuracy drops to about 78.3%. The core reason is that 

the normal mode prior cannot cover the new defect type, 

making it difficult to effectively recognize abnormal signals. 

A typical case is when the source domain only includes surface 

cracks, and internal pore defects in the target domain are easily 

missed. Second, the model lacks robustness in extreme noise 

scenarios. When the salt-and-pepper noise intensity in 

ultrasonic images exceeds 0.1, reconstruction errors are 

severely interfered with by noise, and the abnormal attention 

map fails, resulting in a false positive rate of 8.7%. An 

example is when the severe oxidation texture on the surface of 

a bearing, which is similar to the wear defect texture, is 

misclassified as a defect because the memory bank lacks 

similar normal samples. Third, there is still room to optimize 

the model's complexity. Compared to methods using 

MobileNetV2 as the backbone, the parameter count is 30% 

higher, making it difficult to directly adapt to edge detection 

devices with extremely limited resources. These limitations 

and failure cases reveal the direction for future improvements 

and provide clear optimization targets for subsequent work. 

Future work will focus on these limitations while further 

expanding the depth and breadth of the research. To address 

the completely unseen defect problem, we plan to integrate 

few-shot learning and prompt learning to construct a zero-shot 

cross-domain defect detection framework that utilizes general 

industrial prior knowledge to adapt to new defect types. For 

extreme noise scenarios, noise-robust reconstruction modules 

will be designed by introducing noise modeling and attention 

mechanisms to improve the model's ability to resist strong 

interference signals. Regarding model complexity, lightweight 

designs based on the Transformer will be developed, 

combining sparse attention and knowledge distillation 

techniques to further reduce parameters and computational 

load. Additionally, the framework will be extended to 3D 

defect detection, integrating with 3D-CNN, PointTransformer, 

and other models to adapt to CT and 3D ultrasound imaging 

data. Finally, we will explore the fusion path of industrial large 

models and domain adapters, utilizing the vast prior 

knowledge of general industrial models to further improve 

cross-domain adaptation efficiency for small samples. 

Compared to existing SOTA methods, the essential 

differences of this paper are reflected in three aspects: 

theoretically, existing methods often rely on shallow stitching 

and lack a unified framework, while the cross-domain semi-

supervised expected risk minimization paradigm proposed in 

this paper provides solid theoretical support; 

methodologically, existing fusion methods have not 

sufficiently considered domain differences and prior 

knowledge in industrial scenes, whereas the industrial-specific 

module design in this paper is more targeted at real-world 

applications; experimentally, existing studies lack statistical 

significance testing and failure case analysis, whereas this 

paper enhances the reliability and insight of the conclusions 

through comprehensive statistical validation and boundary 

analysis. 

 

 

5. CONCLUSION 

 

This paper addresses three core challenges in the industrial 

part flaw detection field: small sample labeling, cross-domain 

distribution shift, and the identification of small/rare defects. 

A MADD-Framework based on the new "meta-learning cross-

domain semi-supervised expected risk minimization" 

paradigm is proposed, achieving the deep integration and 

collaborative optimization of transfer learning, semi-

supervised learning, and self-supervised learning. This 

framework overcomes the limitations of shallow stitching of 

three learning paradigms in existing methods by innovating at 

the theoretical level and engineering modular design. It 

constructs a full-process solution from cross-domain 

knowledge transfer, normal mode prior mining to pseudo-label 

quality control: the MV-TSN with domain-adaptive adapters 

effectively alleviates cross-domain negative transfer, and the 

joint optimization of dynamic domain alignment loss and 

consistency constraints strengthens domain-invariant feature 

learning. The RCSM targets the mining of normal mode priors 

for industrial parts, and the generated dynamic abnormal 

attention maps significantly improve the feature recognition of 
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small and rare defects. The MAPOM solves the key problem 

of pseudo-label noise accumulation in cross-domain scenarios 

by dual-layer optimization of dynamic thresholds and domain-

adaptive memory banks, maximizing the utilization value of 

unlabeled data. 

Large-scale experiments have fully demonstrated the 

superiority and practicality of the framework. On three 

international benchmark datasets (MVTecAD, NEU-DET) 

and two custom industrial datasets (automotive welds, bearing 

defects), the framework achieves the current best performance, 

with an average precision of up to 97.8%, a cross-domain 

performance degradation of only 2.1%, and small defect DR 

and rare defect DR reaching 89.3% and 87.6%, respectively, 

significantly outperforming existing transfer learning, semi-

supervised learning, and hybrid methods. In small sample 

scenarios, the framework only requires 50 labeled samples to 

achieve an average precision of 94.2%, reducing the labeling 

requirement by 90% compared to existing methods. After 

lightweight processing, the model’s parameter count is 

reduced to 8.2M, and the inference frame rate reaches 32FPS, 

fully meeting the real-time deployment requirements of 

industrial embedded devices. Statistical tests and ablation 

experiments further validate the effectiveness of each core 

module and theoretical paradigm, ensuring the reliability and 

rigor of the conclusions. 

This study not only provides an intelligent detection 

solution for industrial part flaw detection with high accuracy, 

strong robustness, and easy deployment, reducing the 

threshold for small and medium-sized enterprises to apply 

intelligent detection technology, but also provides a 

transferable theoretical framework and technical reference for 

similar small-sample cross-domain detection tasks. Although 

the framework still has certain limitations in completely 

unseen defects and extreme noise scenarios, these issues have 

been clearly identified as future research directions. In the 

future, the framework’s applicability and industrial adaptation 

capability will be further expanded by integrating few-shot 

learning, noise-robust modeling, and lightweight design, 

providing stronger technical support for the large-scale 

implementation of industrial intelligent detection. 
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