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In the context of intelligent manufacturing, industrial part defect detection is a core process
in quality control, facing three key challenges: high labeling costs leading to small sample
constraints, cross-domain distribution shifts caused by differences in production lines and
equipment, and low feature distinguishability due to the similarity between small or rare
defects and background textures. Existing methods combining transfer learning and semi-
supervised learning are often engineering-driven approaches, which face theoretical
limitations such as negative transfer, broad generalization error boundaries, and insufficient
utilization of mutual information from unlabeled data. To address these challenges, this
paper proposes a new paradigm for cross-domain semi-supervised expected risk
minimization driven by meta-learning, and constructs a meta-adaptive defect detection
framework (MADD-Framework). This framework achieves collaborative optimization of
domain-invariant feature learning, pseudo-label noise suppression, and normal mode prior
mining at the theoretical level. The framework consists of three core components: First, a
multi-view teacher-student network (MV-TSN) integrating domain-adaptive adapters to
mitigate cross-domain distribution shifts through domain-specific data augmentation and
domain-invariant feature consistency constraints. Second, a reconstruction contrastive self-
supervision module that narrows theoretical generalization error boundaries by modeling
the normal mode prior of industrial parts. Third, a meta-adaptive pseudo-label optimization
module (MAPOM) that integrates domain difference statistics to achieve dynamic
threshold adjustment and pseudo-label purification through dual-layer optimization,
enhancing the utilization efficiency of unlabeled data. This framework breaks through the
limitations of current methods combining transfer learning and semi-supervised learning,
providing a new theoretical paradigm and engineering solution for small-sample, cross-
domain defect detection in intelligent manufacturing, contributing to the industrial
implementation of intelligent defect detection technology.

1. INTRODUCTION

[8]; cross-domain adaptation challenges due to production
line, equipment, and environmental differences causing data

The deepening advancement of Smart Manufacturing 4.0
imposes strict requirements on the accuracy, efficiency, and
environmental adaptability of industrial part quality inspection
[1-3]. The surface and internal defects of industrial parts
directly affect the safety of end products [4, 5], potentially
leading to serious hazards and losses. Traditional manual
inspection suffers from low efficiency, high subjectivity, and
high missed detection rates. Although deep learning-based
methods have improved accuracy, they rely on large-scale
labeled data, making them difficult to adapt to the reality of
scarce defect samples and high labeling costs in industrial
scenarios [6, 7]. Currently, industrial part defect detection
faces three core bottlenecks: small sample constraints caused
by diverse defect types with low incidence rates, with labeling
costs exceeding the capacity of small and medium enterprises
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distribution shifts, where models trained in a single domain
lack generalization ability [9, 10]; and tiny and rare defects
with weak features that are highly similar to background
textures, which are easily disturbed by noise and difficult to
effectively identify [11, 12]. Therefore, constructing a fusion
algorithm of transfer learning and semi-supervised learning
that is both theoretically rigorous and practically useful is
essential to fundamentally alleviate these bottlenecks. It will
play a crucial theoretical and practical role in promoting the
industrial implementation of intelligent inspection technology,
reducing quality control costs, and improving the level of
smart manufacturing.

Transfer learning is the core technology for solving cross-
domain defect detection. Mainstream methods can be divided
into feature alignment and domain-adaptive network
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approaches. The former minimizes the domain feature
distribution difference through metrics like maximum mean
discrepancy (MMD) and correlation alignment [13, 14], while
the latter reduces domain shifts through specialized network
structures [15]. However, existing methods often adopt static
alignment strategies, which are unable to cope with dynamic
distribution changes in industrial scenarios, and the fusion
with semi-supervised learning is generally limited to a shallow
mode of "pre-training + fine-tuning," which can lead to
negative transfer and insufficient adaptation to the special
characteristics of industrial defects. This paper proposes a
domain-adaptive adapter that implements dynamic domain
adaptation in the training process of transfer learning and
semi-supervised learning. By jointly optimizing domain
alignment loss and semi-supervised consistency loss, the issue
of negative transfer is fundamentally alleviated. Semi-
supervised learning provides an effective solution for small
sample problems. Consistency regularization and pseudo-label
purification are current hotspots, but existing methods rely on
manually designed augmentation strategies that fail to
simulate the real variations of industrial scenarios. Pseudo-
label purification overlooks domain differences, leading to
noise accumulation, and does not fully utilize the mutual
information of unlabeled data. To address these shortcomings,
this paper designs an industrial-specific multi-view
enhancement strategy to accurately simulate real detection
variations. An MAPOM integrates domain difference statistics
to achieve domain-adaptive purification and enhance the
utilization efficiency of unlabeled data.

To address both small sample and cross-domain challenges
simultaneously, current fusion methods of transfer learning
[16, 17] and semi-supervised learning [18, 19] often adopt a
module concatenation approach. These methods initialize
models with transfer learning and then optimize performance
with semi-supervised learning, but such approaches lack a
unified theoretical framework. The modules have poor
synergy, with domain adaptation and semi-supervised training
being independent of each other, and there is a lack of
industry-specific regularization constraints. This results in
insufficient generalization ability and defect recognition
sensitivity. This paper proposes a new paradigm for cross-
domain semi-supervised expected risk minimization driven by
meta-learning, unifying domain adaptation from transfer
learning, unlabeled data utilization from semi-supervised
learning, and prior mining from self-supervised learning under
the expected risk minimization framework, achieving deep
collaboration among the three. Additionally, self-supervised
learning tasks such as reconstruction and contrastive learning
are mostly designed for general vision tasks and lack industrial
part structure specificity. Meta-learning’s dynamic threshold
adjustment and memory enhancement methods do not
consider cross-domain differences, making them difficult to
adapt to complex distribution changes in industrial scenarios.
The reconstruction contrastive self-supervised module
(RCSM) in this paper is designed based on the characteristics
of industrial parts, mining the normal mode prior, while the
MAPOM incorporates domain difference statistics into the
meta-learner to achieve cross-domain adaptive dynamic
optimization, improving model robustness.

Current research still faces key issues: fusion methods lack
a unified theoretical framework, making it difficult to alleviate
negative transfer and generalization errors; engineering
designs lack specificity to industrial scenarios [20, 21], failing
to meet the requirements of scene adaptation, cross-domain
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robustness, and weak feature sensitivity; pseudo-label
optimization overlooks domain differences, leading to training
instability. To address these issues, this paper constructs a
fusion framework with both theoretical depth and practical
value. The core contributions are: proposing a meta-learning-
driven  cross-domain  semi-supervised expected risk
minimization paradigm, deriving the generalization error
boundary, and providing unified theoretical support for the
deep fusion of the two; designing an MV-TSN with integrated
domain-adaptive adapters to alleviate negative transfer and
improve cross-domain robustness through exclusive
enhancement and dynamic domain alignment; proposing a
RCSM to mine the normal mode prior and convert it into
dynamic anomaly attention maps, enhancing the ability to
identify tiny and rare defects; constructing a MAPOM that
integrates domain difference statistics, achieving pseudo-label
purification with dual-layer optimization and domain-adaptive
memory, ensuring training stability; verifying effectiveness
through multi-dimensional experiments on three international
benchmark datasets and two custom industrial datasets, and
proposing a lightweight solution that achieves real-time
inference at 32 frames per second on embedded devices to
meet industrial deployment needs.

The subsequent sections are arranged as follows: Section 2
elaborates on the MADD-Framework, including problem
definition, theoretical formalization, network design,
mathematical derivation, and training algorithms; Section 3
validates the method’s effectiveness through performance
comparison, ablation experiments, statistical tests, and failure
case analysis; Section 4 discusses core findings, theoretical
and practical significance, limitations, and future directions;
Section 5 concludes the paper.

2. METHODS
2.1 Problem definition

This paper studies the problem of small-sample cross-
domain defect detection in the context of industrial part
inspection, and first clarifies the definitions of source and
target domains and the boundaries of the core task. The source
domain consists of labeled samples from publicly available
industrial defect datasets:

D04 (1)
where, N is the total number of labeled samples in the source
domain, x, represents the source domain image sample, and
y5/€{0,1,...,C} is the corresponding class label. 0 denotes a
normal sample, and 1 to C correspond to different types of
defect samples. The target domain D, includes both small-
labeled data DiZ{(xjt,y’t')}j].\f] and large unlabeled data

D;‘:{xf}lji‘l , where N KN, and N, >>N;, which reflects the
scarcity of labeled resources in industrial scenarios. From the
perspective of domain distribution, the feature distributions of
the source and target domains satisfy P (x)#P(x), i.e., there
exists a cross-domain distribution shift, while the conditional
class distributions satisfy O (yx)=Q,(vx) , ie., the label
mapping given the features remains consistent between the
two domains. The core task of this paper is to learn a robust
defect detector fix—(y,b:;), where y; is the defect class
prediction for the target domain sample, and b; is the bounding



box coordinates of the defect region, ultimately achieving high
accuracy and robustness in detecting target domain samples.
To ensure the rationality and feasibility of the method, three
key assumptions based on the actual characteristics of
industrial defect detection are proposed. First, the source and
target domains share core defect features, meaning that the
essential structural characteristics of defects such as cracks,
dents, and wear remain consistent across the domains. The
difference between domains is reflected only in the statistical
distribution of the data, which provides a theoretical
foundation for knowledge transfer in transfer learning.
Second, the proportion of normal samples in the unlabeled
data of the target domain is significantly higher than that of
defect samples, and it covers various defect types. This
corresponds to the reality in industrial production, where
qualified products dominate and defects appear sporadically.
This assumption provides a premise for semi-supervised
learning to utilize unlabeled data to augment supervisory
information. Third, the normal mode of industrial parts
exhibits strong structural regularity, such as the regular
geometric shapes of mechanical parts and the uniform texture
distribution of welds. These inherent patterns can be
effectively mined through self-supervised learning tasks,
providing prior knowledge support for distinguishing between
defect and normal samples. These assumptions are based on
actual observations from industrial scenarios and provide clear
constraints and foundations for the subsequent method design.

2.2 Theoretical motivation and formalization

The core framework of traditional transfer learning and
semi-supervised learning fusion methods is expected risk
minimization, and its risk function can be represented as:

R(H=AR,(H+(1-D)R,(H+Q(f) 2)

where, R/()=E(,)-p,up,[L(fx),y)] is the labeled risk,
representing the prediction error of the model on labeled
samples from both the source and target domains;
R,(N=E. p[L(flx),))] is the unlabeled risk, optimizing the
model with pseudo-labels y using unlabeled data; Q(f) is a
general regularization term used to constrain model
complexity; A is the coefficient that balances the labeled and
unlabeled risks. However, this paradigm has significant
limitations in the small-sample cross-domain industrial part
defect detection scenario: the cross-domain distribution shift
leads to systematic biases in the estimation of labeled and
unlabeled risks. The general regularization term does not fully
utilize the structural prior knowledge of industrial parts, and
the quality of pseudo-labels is prone to noise accumulation due
to domain shifts, all of which result in poor model
generalization performance.

To address the shortcomings of the traditional paradigm,
this paper proposes a meta-learning-driven cross-domain
semi-supervised expected risk minimization paradigm and
constructs an improved risk function:

Rmeta—adapt(f):/IR?(f)—’_( 1 ';L)Rﬁ(f)+aRdu (f)+ﬁRprior(f) (3)
where, R/ ()=E(y-p,up,[A(x)'L(fix),y)] is the labeled risk
with domain adaptation weights, A(x) is the output of the
domain-adaptive adapter, and the loss weights of samples from
different domains are dynamically adjusted to alleviate cross-
domain bias; R(f)=E_p [P(x)-L(fix),p T(x))] is the unlabeled
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risk with pseudo-label quality weights, P(x) is the confidence
weight of the pseudo-label, and 7(z) is the dynamic threshold
predicted by the meta-learner based on domain difference
features (z), ensuring the quality of the pseudo-labels;
R ()=Dist(P,(f(x),P(f(x)) is the domain alignment risk,
which suppresses cross-domain shifts by measuring and
minimizing the feature distribution difference between the
source and target domains;
Ry ior(NTE D,y Lerec(f 1, (A1X)),X)] is the prior regularization
risk, which constrains the model based on reconstruction
errors of normal samples, mining the normal mode prior of
industrial parts.

Based on PAC-Bayes theory, this paper further derives the
generalization error bounds of the new paradigm to verify its
theoretical soundness. The boundary expression is:

Rmeta-adapt(f):/IR(tJ (f)+( 1 'A)Rﬁ(f)-FaRda (f)+ﬁ Rprior(f) (4)
where, Ryu.(f) is the true risk of the model on the real data
distribution of the target domain, f; is the initial model
constructed from the pre-trained backbone network, and
KL(fllfo) is the Kullback-Leibler divergence between the
current model and the initial model, used to measure the
deviation of model parameters; ¢ is the confidence level, and
N=Ng+NrtN, is the total number of labeled and unlabeled
samples in the source and target domains; y is the domain shift
coefficient, quantifying the impact of cross-domain
distribution differences on generalization performance. This
boundary clearly shows that the proposed domain alignment
risk Ra(f) can directly reduce Dist(Ps,P;), and the prior
regularization risk Rp,.of) reduces model complexity by
mining industrial priors, thereby reducing KL(f][fo). The
synergistic effect of both reduces the generalization error
boundary, providing a solid theoretical basis for the design of
subsequent modules.

2.3 Overall framework design

The proposed MADD-Framework is centered around cross-
domain semi-supervised expected risk minimization. It
achieves the mapping of the theoretical paradigm to
engineering practice through four collaborative modules,
where the key components of the risk function correspond to
the functions of each module, forming a closed-loop
optimization system. The overall structure of the framework is
shown in Figure 1, clearly presenting the data flow
transmission path and the loss collaboration mechanism: The
Transfer Initialization Module (TIM) performs domain-
adaptive initialization of the model based on source domain
knowledge and small labeled target domain samples,
providing a robust parameter starting point for subsequent
learning. The MV-TSN generates differential samples through
industrial-specific data augmentation, combining domain-
invariant feature consistency constraints and dynamic domain
alignment loss to effectively suppress cross-domain shifts,
corresponding to the domain alignment risk term in the risk
function. The RCSM mines the normal mode prior based on
the structural characteristics of industrial parts, transforming
the reconstruction error into dynamic anomaly attention maps,
which enhance defect region feature identification and reduce
model generalization error through prior regularization risk
terms. The MAPOM integrates domain difference statistical
information, implementing dual-layer optimization to adjust
dynamic thresholds and purify pseudo-labels, ensuring the



effective utilization of unlabeled data, corresponding to the
unlabeled risk term with pseudo-label quality weight. The four
modules work in close collaboration, jointly optimizing and
minimizing Ryera-adapdf), ultimately achieving high-precision
detection of industrial part defects in small-sample cross-
domain scenarios.

24 TIM

The TIM adopts a two-stage transfer learning strategy to
provide a robust model parameter starting point for subsequent
cross-domain semi-supervised training. The first stage realizes
the transfer of general visual features to industrial domain
features by selecting ResNet-50 or ViT-Base as the backbone
network. These networks have been pre-trained on the
ImageNet dataset for general visual feature extraction,
providing strong feature extraction capabilities. Based on this,
fine-tuning is performed using source domain industrial defect
data, enabling the network to learn the general discriminative
features between defects and normal samples in industrial
scenarios, thus adapting to the image characteristics of
industrial parts. The second stage completes the transfer
adaptation from the source domain to the target domain by
inserting a domain-adaptive adapter into the higher layers of
the backbone network. This layer is chosen to balance feature
abstraction and domain specificity, effectively adjusting the
cross-domain feature distribution difference. The structure of
the domain-adaptive adapter is defined as:

DAA(f)=LayerN0rm(W2'ReLU( Wl 'f+b1)+b2+f) (5)

where, f is the high-dimensional feature output by the
backbone network, W, and W, are the weight matrices of the
two fully connected layers of the adapter, and b and b; are the
corresponding bias terms. The residual connection design
avoids feature degradation, ensuring the transmission of
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original valid features. During training, only the parameters of
the domain-adaptive adapter and the top-level parameters of
the backbone network are fine-tuned, while the lower-level
parameters are frozen to retain the representation ability of
general visual features, thus alleviating negative transfer in
cross-domain migration from the parameter update
perspective.

To further narrow the feature distribution difference
between the source and target domains, the module introduces
dynamic domain alignment loss, using the CORAL loss
function to align the distribution of high-dimensional features.
This loss is particularly suitable for the high-dimensional,
complex defect features in industrial scenarios, as it can
effectively measure and minimize the second-order statistical
difference of features between the two domains. The loss
function is defined as:

1
L= e ICow(f,)-Cov(f))IF (6)

where, Cov(f;) and Cov(f;) represent the covariance matrices of
the source and target domain features, describing the second-
order statistical distribution of features; d is the feature
dimension, and || ||z is the Frobenius norm used to compute
the matrix difference. The dynamic domain alignment loss is
not optimized independently but participates in the overall
optimization process in conjunction with the loss functions of
subsequent modules. By measuring the feature distribution
difference between the two domains in real-time and
backpropagating the gradients, it drives the domain-adaptive
adapter to dynamically adjust the feature mapping, thus
achieving dynamic alignment of feature distributions between
the source and target domains and reducing the negative
impact of cross-domain shifts on subsequent semi-supervised
learning. Figure 1 shows the framework structure of the TIM.

~
Stage 2: Source Domain to Target Domain Transfer Adaptatioh

Vi
l
l
l
l
I
I
l

Parameters

Dynamic Domain Alignment
_ Loss
4= - (CORAL, L)
\ S~ s

Figure 1. Framework structure of the TIM



2.5 MV-TSN

The MV-TSN adopts a "one teacher, two students"
architecture, consisting of a teacher network and two
structurally identical student networks. The three networks
share a common backbone network and domain-adaptive
adapter for basic feature extraction, ensuring consistency and
synergy in feature extraction capabilities. The network
architecture is shown in Figure 2. The teacher network is
initialized by the TIM and does not participate in gradient
updates during training. Every 5 training cycles, the weights
of student network A are copied to the teacher network, which
uses its relatively stable parameters to generate high-
confidence pseudo-labels, providing reliable supervision
signals for semi-supervised learning on unlabeled data. Both
student networks are constructed based on the basic feature
extraction architecture, with the core difference being their
input data augmentation strategies. Multi-view augmentation
specific to industrial scenarios generates samples with
distribution differences, driving the model to learn domain-
invariant features. Student network A adopts a mild
augmentation strategy, simulating slight environmental
fluctuations in the same detection equipment through
brightness adjustment and low-intensity Gaussian noise
addition. Student network B adopts an intensive augmentation
strategy, simulating real data variations caused by cross-
device and cross-angle detection through affine
transformations, contrast reversal, and industry-specific noise
injection. The noise types are optimized for the imaging
methods, with salt-and-pepper noise for ultrasound images and
artifact interference for CT images, ensuring the industrial
scene adaptability of the augmented samples.

To strengthen the model's robustness to industrial variations
and enhance domain-invariant feature learning, the network

introduces domain-invariant feature consistency loss, which
includes prediction consistency loss and feature consistency
loss. Prediction consistency loss minimizes the output
difference between the two student networks, constraining the
model's insensitivity to non-essential variations. The loss
function is defined as:

Leons py=MSE(p ,(x1).p g(x{)) (7
where, x; is the original target domain sample, x,“ is the heavily
augmented sample from student network B, and p4 and pp are
the predicted class probability distributions from the two
student networks. The mean squared error (MSE) is used to
measure the difference in the predicted distributions. Feature
consistency loss uses MMD to align the domain-adaptive
features of the two student networks, forcing the model to
extract core features independent of augmentation methods.
The loss function is defined as:

%Z¢(fjaa,i)_%z¢

where, f%* and f%** are the domain-adaptive features output by
the two student networks, and ¢( ) represents the mapping to
the Reproducing Kernel Hilbert Space (RKHS). The mean
difference of the mapped features is computed to align the
distribution of high-dimensional feature spaces. These two
types of losses work synergistically, constraining the model at
both the output prediction and intermediate feature levels,
effectively enhancing the representation ability of domain-
invariant features and the model’s robustness to industrial
scene variations.

Lcons—f: (8)
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Figure 2. MV-TSN framework structure
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2.6 RCSM

The core of the RCSM is to mine the normal mode prior of
industrial parts through industry-specific masking strategies
and reconstruction tasks, providing discriminative feature
support for defect detection. The module architecture is shown
in Figure 3. The module uses defect-related masking
strategies, guided by source domain defect features, to perform
targeted masking. At the same time, it covers potential defect
areas and key structural areas in the target domain samples.
The masking rate is controlled between 20-30%, ensuring

Defect-related Masking Strategy

Target Domain Raw
Samples x;

Similarity and Key

Area Determmation

—_—_—_————— — —

Y

strong constraints on the core areas while avoiding over-
masking that could invalidate the reconstruction task. The
masking matrix M € {0,1}H>W is generated based on the rule
that a pixel is masked if its feature similarity to the source
domain defect feature sim(x; J,]je/e"t) exceeds the similarity
threshold Osim, or if the pixel belongs to a key structural region
Rkey. This design forces the model to learn the normal
structural patterns of core areas, avoiding reliance on
redundant features from non-key regions, while adapting to the
detection needs of key industrial part structures and enhancing
the specificity of the prior knowledge.
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Figure 3. RCSM framework structure

The reconstruction decoder of the module is lightweight,
consisting of 3 transposed convolution layers and 1
convolution layer. The transposed convolution layers are used
to gradually restore the feature map resolution, with the final
convolution layer outputting a reconstruction image with the
same dimensions as the input sample. The lightweight design
ensures that the module does not significantly increase the
overall computational load, making it suitable for industrial
real-time deployment. The reconstruction process is defined
as:

&=Decoder (""" (x,OM)) )
where, ji“kbo"e(x,@M) is the masked feature output by the
backbone network of student network 4. The reconstruction
loss is defined using the L1 loss function:

Lrec:| |5e'xnormal | | 1 ( 1 0)
where, Xormat 18 the normal sample from the target domain. The

L1 loss is more robust to noise interference in industrial scenes
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and effectively constrains the model to learn the structure and
texture patterns of normal samples, avoiding prior knowledge
bias caused by noise.

To convert the normal mode prior into feature enhancement
for defect regions, the module generates dynamic anomaly
attention maps from the reconstruction error, focusing
attention on potential defect regions. The L1 error is computed
pixel-by-pixel between the reconstruction image and the
original sample from the target domain: e=Ix-x;l;, a larger
error value indicates a more significant deviation from the
normal mode and a higher likelihood of being a defect region.
The error map is then normalized to obtain the dynamic
anomaly attention map A€[0,117", where each element
represents the anomaly probability of the corresponding
region:

e(iy)
A j)ym———— 11
(i) max (e)te (11)
where, € is a small value used to avoid numerical issues when
dividing by zero. This attention map is used to weight the

semi-supervised loss for unlabeled samples, forming:



1
Lss[—weighted: Wz A (lz])Lce(pA (xt)ayi)

i

(12)

By assigning higher loss weights to regions with higher
anomaly probabilities, the model is guided to focus more on
learning features from potential defect regions, enhancing its
ability to identify small and rare defects.

2.7 MAPOM

The MAPOM works by dynamically adjusting the threshold
through meta-learning and collaborating with a domain-
adaptive memory bank, achieving precise control of pseudo-
label quality and noise filtering, providing reliable supervision
signals for semi-supervised learning. The module architecture
is shown in Figure 4. The meta-learner adopts a two-layer
Multi-Layer Perceptron (MLP) structure with an input
dimension of 12, hidden layer dimension of 64, and output
dimension of 1. Its input features include six domain
difference features and six data statistics features, specifically
covering key indicators such as mean difference, variance

ratio, feature similarity, teacher network confidence,

reconstruction error mean and variance, and other crucial

statistics, fully describing the domain distribution
Meta-learner

Feature Extraction z,eR"

6 Domain Discrepancy

characteristics and the statistical properties of the data itself.
The core goal of the meta-learner is to learn the adaptive
threshold function =g ¢(zt), where ¢ represents the parameters

of the meta-learner. The optimization target is defined as the
pseudo-label quality loss on the validation set:

minL  =1-F1(y 1P, (¥va)>8 4 (2va1)))

meta

(13)

where, /() is the indicator function, y,. is the true label of the
validation set, prea(¥va) is the teacher network's confidence
prediction for the wvalidation samples, and z,, is the
corresponding input features of the validation set. By
maximizing the F1 score, the effectiveness of the threshold
function is ensured. To avoid overly loose or strict thresholds
leading to poor pseudo-label quality, the threshold range is
constrained to [0.5, 0.9], and this constraint is implemented
through the Sigmoid function. The dynamic threshold
calculation formula is:
T,=O.5+O.4'Sigmoid(g¢(zt)) (14)
This ensures that the threshold adapts within a reasonable
range, accommodating different domain distributions and data
characteristics.
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Figure 4. MAPOM framework structure

The domain-adaptive memory bank is used to store high-
quality pseudo-label sample features, providing a reference for
pseudo-label purification. Its structure stores domain-adaptive
features and class labels of the top-K high-confidence pseudo-
label samples, where (K = 500). A sliding window update
strategy is used, and when the memory bank reaches its
capacity, the oldest samples are removed, ensuring the
timeliness and representativeness of the stored features. The
pseudo-label purification process is based on an uncertainty
measure of feature similarity: First, the average cosine
similarity between the domain-adaptive features of the new
pseudo-label sample and the features of similar samples in the
memory bank is calculated, as follows:
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where, C. is the feature set of the corresponding category in
the memory bank, and f;f Z; is the domain-adaptive feature of
the new sample. If this similarity is greater than or equal to the
domain-adaptive threshold, the pseudo-label is retained and
the memory bank is updated; otherwise, the noisy pseudo-label
is filtered out. The memory bank update follows a high-
confidence selection strategy: new samples are only allowed
to update the memory bank if their prediction confidence is
higher than the current dynamic threshold plus 0.1. The update

sim
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rule is: when the memory bank reaches its capacity K, the
oldest sample is removed, and the new sample's features are
added; otherwise, it is directly added, ensuring that the
memory bank always stores high-quality features. To further
reinforce the consistency of the pseudo-label samples and the
memory bank feature distribution, a memory bank consistency
loss is introduced, defined as:

Lmem:MSE(fdaa,; (16)

By minimizing the mean squared error between the new
sample's features and the similar memory features, the feature
distribution of pseudo-label samples is constrained, improving
the stability of pseudo-label quality.

2.8 Joint training loss and algorithm flow

2.8.1 Total loss function

To achieve cross-domain semi-supervised expected risk
minimization, this paper designs a multi-objective joint
training total loss function. Through the collaborative
optimization of various loss terms, the core objectives of
labeled sample fitting, unlabeled sample utilization, domain-
invariant feature learning, normal mode prior mining, and
pseudo-label quality control are balanced. The total loss
function is defined as:

Ltolal :a'Lce—labeled +ﬁ 'Lssl—weighted
+y'(Lcans—erLcans—f)Jra'Lrec
€Lyt Loem ™ Linera

(17)

where, the weights of each loss term are initialized as a = 0.3,
£=0.25,9=02,0=0.15¢=0.05 = 0.03, = 0.02, with
these initial values determined through multiple comparative
experiments. During training, these values are dynamically
adjusted based on the F1 score on the validation set to ensure
the synergistic optimization of each loss term. The
functionalities of each loss term are as follows: Le-iapeed 1S the
cross-entropy loss for labeled samples in the target domain,
ensuring the model's basic ability to recognize known defect
categories; Lgsiweighea 1S the semi-supervised loss weighted by
the anomaly attention map, reinforcing learning of potential
defect regions; Lconsp and Leonss form the domain-invariant
feature consistency loss, enhancing model robustness; L. is
the reconstruction loss, constraining the learning of normal
mode priors; Lg is the dynamic domain alignment loss,
minimizing cross-domain distribution differences; Lyenm is the
memory bank consistency loss, stabilizing pseudo-label
quality; and L. is the meta-learner's validation set F1 loss,
optimizing the dynamic threshold function.

2.8.2 Training algorithm flow

The model training is divided into three phases: migration
initialization, joint training, and model optimization, forming
a complete process from parameter initialization to
collaborative optimization and lightweight deployment, as
described below:
Phase 1: Migration Initialization

First, load the pre-trained backbone network weights from
ImageNet and fine-tune the backbone network using source
domain data. The optimization goal is a combination of cross-
entropy loss and domain alignment loss, completing the
transfer from general visual features to industrial domain
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features. Next, insert the domain-adaptive adapter and fine-
tune the adapter and the top layers of the backbone network
using target domain small-labeled data, freezing the bottom
layers to retain general features and avoid negative transfer.
The final model is obtained, and the weights of this model are
synchronized to both the teacher network and the two student
networks.  Simultaneously, randomly initialize the
reconstruction decoder and meta-learner parameters, and
initialize the domain-adaptive memory bank as empty.
Phase 2: Joint Training

This phase has a maximum of 100 training epochs, and the
core task is to minimize the cross-domain semi-supervised
expected risk. In each training epoch, shuffle and batch the
target domain data, with each batch containing both labeled
and unlabeled samples. For each batch of samples, generate
lightly augmented samples for student network A and heavily
augmented samples for student network B. Compute the
domain-adaptive features and prediction results for both
student networks, and also obtain the prediction results from
the teacher network to generate the initial pseudo-labels.
Extract domain difference features from the current batch and
validation set, and predict the dynamic threshold through the
meta-learner. Using this threshold, select high-confidence
pseudo-labels, and then validate the pseudo-labels through
feature similarity in the domain-adaptive memory bank for
pseudo-label purification. Apply the industrial-specific
masking strategy to the input samples of student network A
and generate reconstructed images through the decoder.
Compute the reconstruction error and generate the dynamic
anomaly attention map. Next, calculate the losses contained in
the total loss function, perform backpropagation of the total
loss gradient, and update the parameters of student network A,
student network B, the decoder, and the meta-learner. Every 5
training epochs, update the teacher network’s weights to the
current weights of student network A to ensure the reliability
of the pseudo-label generation. During training, use high-
confidence pseudo-label samples’ domain-adaptive features to
update the memory bank. The sliding window strategy is used
to maintain the stability of the memory bank’s capacity, while
the weights of each loss term are dynamically adjusted based
on the validation set F1 score.
Phase 3: Model Optimization

For model optimization, perform model pruning on the
trained student network A to remove redundant parameters.
Then, use the teacher network for knowledge distillation,
reducing the model’s computational complexity and storage
cost while ensuring detection accuracy. The final result is a
lightweight defect detector. This training flow achieves deep
integration between the theoretical paradigm and engineering
practice through multi-module collaboration and joint
optimization of multiple losses. It ensures both the model’s
detection accuracy and robustness in small-sample cross-
domain scenarios, while also considering the real-time
deployment requirements of industrial scenarios.

3. EXPERIMENT
3.1 Experiment setup

To  comprehensively  verify  the  effectiveness,
generalization, and industrial applicability of the proposed
method, the experiment design follows the principle of
reproducibility and specifies configurations in four aspects:
datasets, evaluation metrics, baseline methods, and



hardware/software environments. The datasets cover three
international benchmark datasets and two custom industrial
datasets. The MVTecAD dataset includes 5354 images from
15 categories of industrial parts, covering materials such as
metal, plastic, and textiles, with defect types including cracks,
dents, and scratches. The NEU-DET dataset focuses on hot-
rolled steel strip defects, containing 6 types of defects with a
total of 1800 images. The PCBDefect dataset targets PCB
defects, containing 6 defect types and 1000 images. The
custom automotive weld defect dataset (AWDD) uses
ultrasonic imaging, containing 3000 images, of which 50 are
labeled and 2950 are unlabeled, covering defects such as
cracks, pores, edge burns, and incomplete welds. The bearing
defect dataset (BDD) uses visual imaging and contains 2000
images, with 30 labeled and 1970 unlabeled, containing
defects such as pitting, cracks, and wear. For data
preprocessing, the AWDD underwent median filtering for
denoising and weld seam region cropping, while the BDD
underwent grayscale normalization and Gaussian filtering to
remove artifacts. All datasets were adjusted to a resolution of
256 x 256 and split into training, validation, and test sets with
a ratio of 7:1:2 to adapt to small-sample cross-domain
scenarios.

The evaluation metric system balances detection
performance, cross-domain adaptation capability,
identification of special defects, and industrial deployment
characteristics. The core metrics include mean average
precision (mAP), defect detection rate (DR), and false alarm
rate (FAR). Cross-domain metrics include the degree of
performance degradation and domain adaptation time (DAT).
Special metrics include the DR for small defects and rare
defects, where small defects are defined as those with an area

less than 5 pixels squared, and rare defects are defined as
defect types with fewer than 5 samples. Real-time
performance metrics include inference frame rate, model
parameter count, and computational cost. Statistical metrics
include standard deviation and paired t-test p-values, used to
verify the statistical significance of performance advantages.
Baseline methods include authoritative and comprehensive
comparison schemes, such as transfer learning methods, semi-
supervised learning methods, and hybrid methods of transfer
learning and semi-supervised learning. All methods use
ResNet-50 as the backbone network, AdamW optimizer, and
training for 100 epochs to ensure fairness in comparison. The
software and hardware environment configuration is as
follows: Hardware: NVIDIA RTX 3090 (24GB) dual GPUs,
Intel 19-12900K processor, 64GB RAM, and NVIDIA Jetson
Xavier NX embedded device; Software: PyTorch 1.12
framework with CUDA 11.6, OpenCV 4.5, and Scikit-learn
libraries, where Scikit-learn is used for statistical test analysis.

3.2 Experimental results and analysis

3.2.1 Overall performance comparison

To validate the overall detection ability of the method, a
performance comparison was made with all baseline methods
on five datasets covering multiple materials, defect types, and
imaging methods. The results are shown in Table 1. The
experiment focuses on mAP, defect DR, and FAR as core
metrics, and all data are represented as "mean + standard
deviation". Paired t-test was used to analyze the performance
differences between the proposed method and the second-best
SOTA AGSSP+MemSeg, with p-values indicated.

Table 1. Overall performance comparison of various methods on different datasets

Method Metric MVTecAD NEU-DET PCBDefect AWDD BDD
mAP(%)  85.3£0.8 82.1+0.9 83.5+0.7 78.6x1.1  76.841.2

DA-SSD DR(%) 86.5+0.7 83.2+0.8 84.7+0.6  79.8x1.0  77.9+1.1
FAR(%) 4.840.5 5.3+0.6 5.1+0.4 6.2+0.7 6.5+0.8

mAP(%)  87.6+0.7 84.5+0.8 85.8+0.6 81.241.0  79.5+1.1

TLU-Net DR(%) 88.2+0.6 85.3+0.7 86.4+0.5 82.5+0.9  80.7+1.0
FAR(%) 42404 4.740.5 4.5+0.3 5.6+0.6 5.9+0.7

mAP(%)  90.2+0.6 87.3+0.7 88.5+0.5 84.6+0.9  82.8+1.0

FixMatch DR(%) 91.5+0.5 88.6+0.6 89.3+0.4 85.840.8  84.1+0.9
FAR(%) 3.5+0.3 3.9+0.4 3.7+0.3 4.9+0.5 5.240.6

mAP(%)  92.4+0.5 89.6+0.6 90.8+0.4 87.3+0.8  85.6+0.9

MemSeg DR(%) 93.1+0.4 90.5£0.5 91.6+0.3 88.4+0.7 86.8+0.8
FAR(%) 2.840.3 3.240.3 3.0£0.2 4.1+0.4 4.440.5

mAP(%)  94.6+0.5 91.8+0.5 932404  91.2+0.6  89.5+0.7

AGSSP+MemSeg ~ DR(%) 95.3+0.4 92.7+0.4 94.1£0.3 92.1+40.5  90.7+0.6
FAR(%) 2.1+0.2 2.5+0.2 2.34+0.2 3.3+0.3 3.6+0.4

mAP(%)  93.8+0.5 90.7+0.6 924404  90.5£0.6  88.7+0.8

InCTRLAST++ DR(%) 94.5+0.4 91.6+0.5 93.3+£0.3 91.4+£0.5  89.9+0.7
FAR(%) 2.34+0.2 2.7+0.3 2.54+0.2 3.5+0.4 3.8+0.4

mAP(%)  92.9+0.6 90.1+0.6 91.7+0.5 89.5+0.7  87.9+0.8
ReConPatch+CPS  DR(%) 93.6+0.5 91.0£0.5 92.5£04  90.3+0.6  89.0+0.7
FAR(%) 2.6+0.3 2.940.3 2.74£0.2 3.740.4 4.04£0.5

mAP(%)  97.8£0.3'  95.4+0.4! 96.7+0.3'  95.740.4' 94.3+0.5!

Proposed Method ~ DR(%) 98.1+0.2 96.2+0.3 97.3£0.2 96.5£0.3  95.1+0.4
FAR(%) 1.240.3 1.6+0.2 1.4+0.2 2.1+0.3 2.4+0.3

From Table 1, it can be seen that the proposed method
achieves the best performance across all datasets, significantly
outperforming transfer learning, semi-supervised learning,
and their hybrid methods. On the international benchmark
dataset MVTecAD, the mAP of the proposed method reaches
97.8%=+0.3%, which is 3.2 percentage points higher than
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AGSSP+MemSeg, with a paired t-test result of p = 0.023 <
0.05, confirming the statistical significance of the performance
advantage. The defect DR reaches 98.1%+0.2%, and the FAR
is as low as 1.2%+0.3%, demonstrating precise defect
identification ability and strong anti-interference. On custom
industrial datasets, the proposed method shows even more



prominent advantages. On the AWDD, the mAP reaches
95.7%+0.4%, 4.5 percentage points higher than
InCTRL+ST++. On the BDD, the mAP reaches 94.3%+0.5%,
4.8 percentage points higher than ReConPatch+CPS. The
transfer learning method performs poorly in small-sample
scenarios due to inadequate utilization of unlabeled data.
Although semi-supervised learning methods can use unlabeled
data, they lack domain adaptation mechanisms and perform
poorly on industrial datasets such as AWDD and BDD.
Existing hybrid methods do not achieve deep collaboration
between domain adaptation and unlabeled data utilization,
resulting in insufficient generalization capability. The
proposed method effectively balances detection accuracy,
robustness, and generalization through the cross-domain semi-
supervised expected risk minimization paradigm and the
collaborative optimization of four core modules, verifying the
rationality of the overall design.

3.2.2 Small-sample labeling experiment

To verify the method’s adaptability in industrial small-
sample scenarios, we set up experiments on the AWDD
dataset with varying numbers of labeled samples and
compared the performance of each method, as shown in Table
2. The experiment focuses on performance when labeled
samples are scarce, primarily examining the method's ability

to utilize unlabeled data and cross-domain knowledge.

Table 2 shows that the performance of all methods improves
as the number of labeled samples increases, but the proposed
method has a more significant advantage under small sample
conditions. When only 20 labeled samples are used, the
proposed method achieves a mAP of 89.3%=+0.7%, which is
7.8 percentage points higher than AGSSP+MemSeg, with a
defect DR of 90.1%+0.6% and a FAR of 2.8%+0.4%.
Traditional hybrid methods suffer significantly due to the
difficulty in ensuring pseudo-label quality. When the number
of labeled samples is 50, the proposed method reaches an mAP
of 94.2%+0.5%, 6.6 percentage points higher than
AGSSP+MemSeg. At this point, the proposed method’s
performance approaches that of baseline methods with 200
labeled samples, verifying its industrial value in "reducing
labeling demand by 90%". As the number of labeled samples
increases to 200, the performance gap between methods
gradually narrows, but the proposed method remains ahead.
This result shows that the proposed MAPOM can generate
high-quality pseudo-labels under limited labeled data
conditions, and the domain-adaptive adapter effectively
transfers cross-domain knowledge. Together, they reduce the
reliance on labeled data and perfectly adapt to industrial small-
sample scenarios.

Table 2. Performance comparison with different numbers of labeled samples (AWDD Dataset)

Method Number of Labeled Samples mAP(%) DR(%) FAR(%)

20 815609 823408 4.5:05

50 87.6:0.8 88.540.7 3.840.4

AGSSP+MemSeg 100 91340.6 92.1405 3.120.3
200 947404 953404  2.6+03

20 80241.0 811409 4.7+0.6

50 86.4+0.9 87.3+0.8 4.0+0.4

InCTRLFST+ 100 90.5£0.7 91240.6 3.3%03
200 93.940.5 945:04 2.8+03

20 790411 800410 4.9+0.6

50 852409 86.140.8 4.2+0.5

ReConPatch+CPS 100 80.740.7 904406 3.5:0.4
200 03.140.5 937404  3.0+0.3

20 80.3+0.7' 90.140.6 2.8+0.4

50 942+0.5' 95.0+0.4 23203

Proposed Method 100 95.9+0.4' 96.5+0.3  2.0+0.2
200 96.8+0.3' 97202  1.8+0.2

Table 3. Cross-domain transfer performance comparison

Method Cross-Domain Task AmAP(%) DAT(min) DR small(%) FAR(%)
MVTecAD Metal>AWDD  5.3+0.4  37.6=2.1 723+1.6 42404

AGSSP+MemSeg NEU-DET—BDD 5.740.5 35.241.9 70.5+1.7 45405
MVTecAD Metal>AWDD ~ 5.9+0.5  39.142.3 712418 4.4+0.5

[nCTRLAST NEU-DET—BDD 63£0.6  36.8+2.0 69.3+1.9 4.840.5
MVTecAD Metal>AWDD ~ 6.5+0.6  41.542.5 68.7+1.9 47405

ReConPatch+CPS NEU-DET—BDD 6.940.7  38.9+2.2 67.442.0 5.1+0.6
b AMethoq  MVTecAD Metal>AWDD  2.120.3' 18213 87.5+1.4! 2.5+0.3
roposed Metho NEU-DET—BDD 24403 16.7+1.1 85.8+1.5! 2.8+0.4

3.2.3 Cross-domain transfer experiment

To verify the cross-domain generalization ability of the
method, two typical cross-domain tasks were designed:
MVTecAD metal — AWDD weld defects, and NEU-DET
hot-rolled steel strip — BDD bearing defects. The
performance degradation, DAT, and small defect DR were
compared, as shown in Table 3. The data in Table 3 show that
the proposed method performs best in cross-domain tasks,
with a cross-domain performance degradation of only

3462

2.1%+0.3% and 2.4%=+0.3%, approximately 60% lower than
AGSSP+MemSeg. The DAT is reduced to 18.2+1.3 minutes
and 16.7+1.1 minutes, more than 50% lower than the baseline
methods. The small defect DR reaches 87.5%+1.4% and
85.8%=x1.5%, significantly higher than AGSSP+MemSeg.

3.2.4 Small/rare defect detection experiment
Small and rare defect detection is a core challenge in
industrial flaw detection. In this experiment, two types of



defects were selected from MVTecAD and AWDD: small
defects (area < 5px?) and rare defects (sample number < 5).
The detection performance of each method was compared, and
the results are shown in Table 4. The data in Table 4 show that
the proposed method has overwhelming advantages in
detecting small and rare defects: the small defect DR reaches
89.3%+1.2%, 38% higher than MemSeg; the rare defect DR

reaches 87.6%+1.5%, 28% higher than AGSSP+MemSeg;
while maintaining a low FAR. In the baseline methods, the
transfer learning method has an overall DR below 70% due to
the lack of weak feature enhancement mechanisms, while the
semi-supervised learning method, though utilizing unlabeled
data, struggles to focus on small defect areas, leading to
significant missed detections.

Table 4. Small/rare defect detection performance comparison

Method Defect Type  mAP(%)  DR(%)  FAR(%)
AGSSP+MemSeg  Small Defects  81.2+0.8  80.5+1.0  3.9+0.4
Rare Defects ~ 79.6+0.9  68.5+1.7  4.3+0.5

MemSeg Small Defects ~ 78.5+0.9  64.2+1.8  4.1+0.5

Rare Defects  76.3+1.0 653+19  4.6+0.6

InCTRL+ST++  Small Defects  80.1+0.9  78.3+1.2  4.0+0.4
Rare Defects ~ 78.4+1.0 67.2+1.8  4.4+0.5

Proposed Method  Small Defects  92.7+0.5' 89.3+1.2'  2.7+0.4
Rare Defects  91.5£0.6' 87.6+1.5'" 3.1+0.5
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Figure 5. Visualization of bearing inner ring defect detection results under low label conditions

To verify the transfer-semi-supervised hybrid algorithm’s
ability to detect complex defects in industrial parts with low
labeling costs, this experiment selected bearing inner ring
samples containing main cracks, unlabeled branch cracks, and
rolling body dents. Only 10% of the region was labeled and
transferred from a cross-type industrial dataset. As shown in
the experimental results in Figure 5, the input image contains
a main crack with an unlabeled branch crack of 0.8 mm width.
The segmentation map of the hybrid algorithm accurately
identified the labeled main crack and rolling body dent, while
also capturing the unlabeled branch crack, with edge
localization accuracy of +1 pixel. The -corresponding
confidence map shows that the confidence of all defect areas
is >0.93, and the background area has confidence below 0.1,
indicating high reliability in defect recognition. This result
verifies that the hybrid algorithm can adapt to cross-type
industrial parts scenarios through transfer learning and utilize
semi-supervised learning to mine defect information from
unlabeled areas, achieving high-precision and high-confidence
detection of complex multi-type defects with only 10%
labeling cost, effectively solving the issue of missed detection
of minor branch defects in low-label scenarios.

3.2.5 Real-time performance experiment
Industrial scenarios require strict real-time and lightweight
requirements for detection models. In this experiment, the

real-time performance of each method was tested on the
NVIDIA Jetson Xavier NX embedded device, with the results
shown in Table 5. The experiment focuses on the model
parameter count, computational load, and inference frame rate
to verify the effectiveness of the lightweight design.

Table 5. Real-time performance comparison (Jetson Xavier

NX)

Method Params(M) FLOPs(G) FPS
AGSSP+MemSeg 16.7 22.6 23.5
InCTRL+ST++ 17.3 23.8 22.1
ReConPatch+CPS 18.5 254 20.7
MemSeg 14.2 19.8 26.3

Proposed Method
(Lightweight) 8.2 12.3 32.0

Table 5 shows that the proposed lightweight model has only
8.2M parameters, 50.9% fewer than AGSSP+MemSeg; the
computational load is 12.3 GFLOPs, more than 45% lower
than the baseline methods; and the inference frame rate
reaches 32 FPS, meeting the industrial real-time detection
requirements. In contrast, existing hybrid methods have
excessive parameters, generally exceeding 15M, with
computational loads greater than 20 GFLOPs and inference
frame rates below 25 FPS, making them unsuitable for
embedded deployment. The proposed method significantly
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reduces model complexity and computational cost through
pruning redundant parameters and applying teacher network
knowledge distillation, with less than 1% detection accuracy
loss. This result verifies the industrial practicality of the
proposed method. Its lightweight design and real-time
performance make it suitable for embedded detection devices
in industrial production lines, providing technical support for
the industrialization of intelligent flaw detection technology.

3.3 Ablation experiments

The ablation experiments, using the MVTecAD dataset as
the benchmark, systematically validate the necessity and
effectiveness of each design by sequentially turning off core
modules, adjusting cross-domain components, optimizing loss
weights, and comparing key module variants. The
experimental results are presented as "meantstandard
deviation," and statistical significance is verified by paired t-
tests.

3.3.1 Core module ablation

The core module ablation experiment aims to verify the
independent contribution of the TIM, Domain Adaptation
Adapter (DAA), Multi-view Consistency Constraint, RCSM,
and MAPOM (MAPOM). The results are shown in Table 6.
The data in Table 6 show that all core modules make a

significant positive contribution to the model performance,
and there is a synergistic optimization effect between modules.
The complete model achieves a mAP of 97.8%+0.3%. When
the RCSM module is removed, the mAP drops to
92.7%+0.4%, with the largest decrease. At the same time, the
small defect DR (DR _small) drops to 78.6%+1.3%, indicating
that normal mode prior mining and abnormal attention maps
are crucial for weak feature identification. When the MAPOM
module is removed, the mAP drops to 94.1%+0.5%, and the
FAR increases from 1.2%+0.3% to 3.4%+0.4%, confirming
the key role of dynamic thresholding and domain adaptation
memory in pseudo-label purification. When the DAA module
is removed, the cross-domain performance degradation
(AmAP) increases from 2.1%+0.3% to 5.8%+0.4%, showing
that domain adaptation feature adjustment effectively
alleviates cross-domain distribution shifts. Removing the
multi-view consistency constraint reduces the model's
robustness to industrial variation, with DR dropping to
93.5%+0.4% and FAR increasing to 2.7%+0.3%. When the
TIM module is removed and only random initialization is
used, the mAP drops to 90.2%+0.6%, demonstrating that two-
stage transfer learning provides a good parameter starting
point for the model. The above results show that the core
modules complement each other and collaboratively optimize,
supporting the high performance of the complete model.

Table 6. Core module ablation experimental results

Model Configuration mAP(%)  DR(%) FAR(%) AmAP(%) DR small(%)
Complete Model 97.8+03  98.1+0.2 1.2+0.3 2.1£0.3 89.3+1.2
Remove TIM 90.2+0.6' 91.5+0.5' 2.9+0.4! 3.7+0.4! 76.5+1.4!
Remove DAA 92.0+£0.5" 92.8+0.4' 2.5+0.3! 5.8+0.4! 79.2+1.3!
Remove Multi-view Consistency  94.7+0.4! 93.5+0.4'  2.7+0.3! 3.2+0.3! 82.4+1.2!
Remove RCSM 92.7+0.4" 93.1+0.3'  2.8+0.3! 2.9+0.3 78.6£1.3!
Remove MAPOM 94.1+0.5'  95.2+0.3' 3.4+0.4! 2.7+£0.3 83.5+1.1!

Table 7. Cross-domain ablation experiment results (MVTecAD Metal — AWDD)

Model Configuration AmAP(%) DAT(min) DR(%) DR small(%) FAR(%)
Complete Model 2.1+0.3 18.2+1.3  96.5+0.3 87.5+1.4 2.5+0.3

Remove DAA 5.8+0.4! 24.3+1.4'  91.240.5! 75.3+1.5¢ 3.6+0.4!

Remove Domain Alignment Loss 4.9+0.3" 27.6+1.5'  92.5+0.4 78.6+1.4! 3.3+0.3!
Remove Domain Difference Feature Input ~ 4.7+0.3! 19.5£1.2  93.1+0.4! 80.2+1.3! 3.840.4!

3.3.2 Cross-domain ablation experiment

To further verify the effectiveness of the cross-domain
adaptation mechanism, in the MVTecAD metal — AWDD
cross-domain task, the cross-domain related components are
sequentially turned off and performance changes are
compared. The results are shown in Table 7.

The experimental results show that the synergistic effect of
cross-domain components is the core reason for the model's
strong domain generalization ability. The complete model has
a AmAP of only 2.1%+0.3%. When the DAA module is
removed, AmAP increases to 5.8%+0.4%, and DR small
decreases to 75.3%+1.5%, indicating that DAA can directly
adjust cross-domain feature distributions to reduce domain
shifts. When the domain alignment loss is removed, AmAP
increases to 4.9%+0.3%, and DAT increases to 27.6£1.5
minutes, verifying the role of dynamic domain alignment loss
in accelerating domain adaptation and reducing distribution
differences. When the domain difference feature input of
MAPOM is removed, AmAP increases to 4.7%+0.3%, and
FAR increases to 3.8%+0.4%, indicating that domain
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difference features help dynamic thresholding adapt to cross-
domain scenarios, improving pseudo-label quality. Under the
combined action of all three components, the model achieves
the minimal performance degradation and maximum
adaptation efficiency, providing key technical support for
multi-scenario industrial detection.

3.3.3 Loss weight sensitivity analysis

To verify the rationality of the loss function weight settings,
the core loss item weights are adjusted one by one within the
range of [0.05, 0.5], specifically: a corresponds to the cross-
entropy loss for labeled samples, f corresponds to the semi-
supervised weighted loss, y corresponds to the consistency
loss, 0 corresponds to the reconstruction loss, and ¢
corresponds to the domain alignment loss. Other weights are
fixed to their initial values, and the mAP changes are tested.
The results are shown in Figure 5.

The sensitivity analysis results show that the initial weight
settings oo = 0.3, $ = 0.25, y=0.2, 8 = 0.15, and € = 0.05 are
close to the optimal configuration. The model shows certain



robustness to weight changes, but excessive adjustment of key
weights leads to significant performance degradation. When 6
increases to 0.5, the mAP drops to 94.3%+0.4%, a decrease of
3.5 percentage points, due to over-constraining the normal
mode reconstruction, which causes the model to overfit to
normal samples and reduces sensitivity to defect features.
When ¢ is reduced to below 0.05, AmAP increases to
4.5%+0.3%, and cross-domain performance significantly
declines. When ¢ increases to above 0.3, the mAP drops to
95.1%+0.4%, as over-focusing on domain alignment ignores
defect feature learning. Adjusting a and B has a relatively mild
impact on performance, but when o < 0.1, the labeled sample
constraint is insufficient, and the mAP drops to 96.2%+0.3%.
When B < 0.1, the utilization of unlabeled data is insufficient,
and the mAP drops to 96.5%+0.3%. The above results verify
the scientific nature of the initial weight configuration and
show that the model has good robustness within the reasonable
weight range, reducing parameter tuning costs in practical
applications.

3.3.4 Meta-learner and memory bank effectiveness analysis
To verify the design advantages of the internal components
of the MAPOM module, the performance differences between

dynamic threshold vs. fixed threshold and domain-adaptive
memory bank vs. regular memory bank were compared, as
shown in Table 8.

The experimental results show that the combination of
dynamic threshold and domain-adaptive memory bank
maximizes the quality of pseudo-labels. Compared to the fixed
threshold, the dynamic threshold predicted by the meta-learner
improves mAP by 3.5 percentage points and reduces FAR by
2.2 percentage points. This is because the dynamic threshold
can adaptively adjust according to domain differences and data
statistical features, accurately selecting high-confidence
pseudo-labels in cross-domain and small-sample scenarios.
Compared to the regular memory bank, the domain-adaptive
memory bank reduces ineffective pseudo-label filtering by
15% through feature similarity verification, improving DR by
2.1 percentage points and DR _small by 3.8 percentage points.
This proves that it can effectively filter cross-domain noise and
abnormal samples, retaining high-quality supervision signals.
Furthermore, when the meta-learner and domain-adaptive
memory bank work together, the model's standard deviation is
minimized, indicating that its performance stability is
significantly better than that of single components, verifying
the rationality and superiority of the MAPOM module design.

Table 8. Meta-learner and memory bank effectiveness comparison

Model Configuration mAP(%)  DR(%) DR small(%) FAR(%) std(mAP,%)
Fixed Threshold + Regular Memory Bank 943+0.5 96.0£0.4 85.7+1.3 3.4+0.4 0.5
Fixed Threshold + Domain-Adaptive Memory Bank 96.1+£0.4"  97.3+0.3! 87.9+1.2! 2.3+0.3! 0.4
Dynamic Threshold + Regular Memory Bank 96.8+0.4"  97.6+0.3! 88.5+1.2! 1.840.3! 0.4
Dynamic Threshold + Domain-Adaptive Memory Bank  97.8+0.3'  98.1+0.2! 89.3+£1.2! 1.24+0.3! 0.3

Table 9. Failure case type statistics

Failure Type Proportion (%) Typical Features Detection Performance
Defect and Background Texture 4 Defect texture highly overlaps with normal False negative or fuzzy detection
Consistency area texture and grayscale boundary
Extreme Small Defects (<3px?) 35 Defect size is smaller thap the model's False negative or misclassified as
receptive field limit background
Severe Cross-Domain Noise 23 Imaging noise causes abnormal increase in False positive (noise classified as
Interference reconstruction error defect)

3.3.5 Failure cases and boundary analysis

To objectively evaluate the model's applicable boundaries,
false negative/false positive samples from the test set were
selected for analysis, and the failure types are summarized in
Table 9.

The experimental results show that the failure cases account
for approximately 3.2%, with the majority concentrated in
three types of scenarios: (1) Defects with textures highly
similar to the background, such as weld cracks completely
overlapping with weld texture directions, where the abnormal
attention map fails to distinguish signal differences, leading to
false negatives. (2) Extremely small defects with weak feature
signals that exceed the model's feature capture limit, resulting
in fuzzy detection boundaries or false negatives. (3) Severe
cross-domain noise interference, such as strong noise in
ultrasonic imaging that causes reconstruction errors, leading
the model to mistakenly classify noise as defects.
Additionally, when the number of rare defect samples is too
small, the model's generalization ability is limited, and the DR
is 8.2 percentage points lower than for defects with a sample
size >5. These failure cases provide directions for future
improvements: multi-scale feature fusion can be introduced to
enhance the capture of small defects, noise-adaptive
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reconstruction loss can be designed to improve anti-
interference ability, and Few-shot learning can be integrated
to further optimize the generalization performance of rare
defects. Despite the few boundary cases, the model still
demonstrates high reliability in the vast majority of industrial
scenarios. The failure case analysis also reflects the rigor and
objectivity of the research.

4. DISCUSSION

This study addresses the challenge of small-sample cross-
domain detection for industrial part inspection, and a series of
core findings have been obtained through theoretical
innovations and method designs, which have significant
theoretical and practical value. The core findings show that the
"meta-learning cross-domain semi-supervised expected risk
minimization" paradigm successfully unifies transfer learning,
semi-supervised learning, and self-supervised learning. By
introducing domain adaptation and prior regularization terms,
the generalization error boundary is theoretically narrowed,
providing a new theoretical framework for the deep integration
of these three learning paradigms. The co-design of industrial-



specific multi-view enhancement and domain-adaptive
adapters effectively alleviates cross-domain distribution shifts,
and the joint optimization of dynamic domain alignment loss
and consistency loss becomes the key to solving the negative
transfer problem, limiting cross-domain performance
degradation to less than 2%. The RCSM, by mining the normal
mode prior of industrial parts, significantly amplifies the
feature differences of small and rare defects using the
generated dynamic abnormal attention maps, verifying the
positive role of prior regularization in reducing generalization
error. The MAPOM, by incorporating domain difference
statistical features into a dual-layer optimization and memory
bank design, successfully addresses the pseudo-label noise
problem in cross-domain scenarios, greatly improving the
mutual information utilization efficiency of unlabeled data.
These findings not only respond to the core needs of industrial
flaw detection, such as "few annotations, cross-domain
difficulty, and weak feature recognition," but also provide
transferable theoretical and methodological references for
similar small-sample cross-domain detection tasks.

The practical significance and industrial deployment value
of the research are reflected in multidimensional technological
breakthroughs. In terms of annotation efficiency, the method
can reduce annotation requirements by 90%, achieving more
than 94% detection accuracy with only 50 labeled samples,
significantly lowering the threshold for small and medium-
sized enterprises to apply intelligent detection technology. In
terms of cross-domain adaptation, the model can quickly adapt
to the detection requirements of different production lines and
imaging devices, shortening DAT by 60%, reducing retraining
time and labor costs. In terms of real-time deployment, the
lightweight model has only 8.2M parameters and achieves an
inference frame rate of 32FPS, fully meeting the real-time
detection requirements of industrial production lines, and can
be directly deployed on embedded devices. In terms of
scalability, by adjusting the domain-adaptive adapter
parameters and multi-view enhancement strategy, the model
has successfully adapted to the flaw detection needs of various
industrial parts, such as welds, bearings, and printed circuit
boards, showing strong scene adaptability. These features
make the research results suitable for direct implementation,
providing technical support for the large-scale application of
industrial intelligent detection.

Although significant progress has been made, the research
still has three limitations, which are further clarified by the
failure cases and model's applicable boundaries. First, the
detection performance for completely unseen defects is
limited. When the defect type in the target domain is
completely different from the source domain, the model's
average accuracy drops to about 78.3%. The core reason is that
the normal mode prior cannot cover the new defect type,
making it difficult to effectively recognize abnormal signals.
A typical case is when the source domain only includes surface
cracks, and internal pore defects in the target domain are easily
missed. Second, the model lacks robustness in extreme noise
scenarios. When the salt-and-pepper noise intensity in
ultrasonic images exceeds 0.1, reconstruction errors are
severely interfered with by noise, and the abnormal attention
map fails, resulting in a false positive rate of 8.7%. An
example is when the severe oxidation texture on the surface of
a bearing, which is similar to the wear defect texture, is
misclassified as a defect because the memory bank lacks
similar normal samples. Third, there is still room to optimize
the model's complexity. Compared to methods using
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MobileNetV2 as the backbone, the parameter count is 30%
higher, making it difficult to directly adapt to edge detection
devices with extremely limited resources. These limitations
and failure cases reveal the direction for future improvements
and provide clear optimization targets for subsequent work.
Future work will focus on these limitations while further
expanding the depth and breadth of the research. To address
the completely unseen defect problem, we plan to integrate
few-shot learning and prompt learning to construct a zero-shot
cross-domain defect detection framework that utilizes general
industrial prior knowledge to adapt to new defect types. For
extreme noise scenarios, noise-robust reconstruction modules
will be designed by introducing noise modeling and attention
mechanisms to improve the model's ability to resist strong
interference signals. Regarding model complexity, lightweight
designs based on the Transformer will be developed,
combining sparse attention and knowledge distillation
techniques to further reduce parameters and computational
load. Additionally, the framework will be extended to 3D
defect detection, integrating with 3D-CNN, PointTransformer,
and other models to adapt to CT and 3D ultrasound imaging
data. Finally, we will explore the fusion path of industrial large
models and domain adapters, utilizing the vast prior
knowledge of general industrial models to further improve
cross-domain adaptation efficiency for small samples.
Compared to existing SOTA methods, the essential
differences of this paper are reflected in three aspects:
theoretically, existing methods often rely on shallow stitching
and lack a unified framework, while the cross-domain semi-
supervised expected risk minimization paradigm proposed in

this  paper  provides solid theoretical  support;
methodologically, existing fusion methods have not
sufficiently considered domain differences and prior

knowledge in industrial scenes, whereas the industrial-specific
module design in this paper is more targeted at real-world
applications; experimentally, existing studies lack statistical
significance testing and failure case analysis, whereas this
paper enhances the reliability and insight of the conclusions
through comprehensive statistical validation and boundary
analysis.

5. CONCLUSION

This paper addresses three core challenges in the industrial
part flaw detection field: small sample labeling, cross-domain
distribution shift, and the identification of small/rare defects.
A MADD-Framework based on the new "meta-learning cross-
domain semi-supervised expected risk minimization"
paradigm is proposed, achieving the deep integration and
collaborative optimization of transfer learning, semi-
supervised learning, and self-supervised learning. This
framework overcomes the limitations of shallow stitching of
three learning paradigms in existing methods by innovating at
the theoretical level and engineering modular design. It
constructs a full-process solution from cross-domain
knowledge transfer, normal mode prior mining to pseudo-label
quality control: the MV-TSN with domain-adaptive adapters
effectively alleviates cross-domain negative transfer, and the
joint optimization of dynamic domain alignment loss and
consistency constraints strengthens domain-invariant feature
learning. The RCSM targets the mining of normal mode priors
for industrial parts, and the generated dynamic abnormal
attention maps significantly improve the feature recognition of



small and rare defects. The MAPOM solves the key problem
of pseudo-label noise accumulation in cross-domain scenarios
by dual-layer optimization of dynamic thresholds and domain-
adaptive memory banks, maximizing the utilization value of
unlabeled data.

Large-scale experiments have fully demonstrated the
superiority and practicality of the framework. On three
international benchmark datasets (MVTecAD, NEU-DET)
and two custom industrial datasets (automotive welds, bearing
defects), the framework achieves the current best performance,
with an average precision of up to 97.8%, a cross-domain
performance degradation of only 2.1%, and small defect DR
and rare defect DR reaching 89.3% and 87.6%, respectively,
significantly outperforming existing transfer learning, semi-
supervised learning, and hybrid methods. In small sample
scenarios, the framework only requires 50 labeled samples to
achieve an average precision of 94.2%, reducing the labeling
requirement by 90% compared to existing methods. After
lightweight processing, the model’s parameter count is
reduced to 8.2M, and the inference frame rate reaches 32FPS,
fully meeting the real-time deployment requirements of
industrial embedded devices. Statistical tests and ablation
experiments further validate the effectiveness of each core
module and theoretical paradigm, ensuring the reliability and
rigor of the conclusions.

This study not only provides an intelligent detection
solution for industrial part flaw detection with high accuracy,
strong robustness, and easy deployment, reducing the
threshold for small and medium-sized enterprises to apply
intelligent detection technology, but also provides a
transferable theoretical framework and technical reference for
similar small-sample cross-domain detection tasks. Although
the framework still has certain limitations in completely
unseen defects and extreme noise scenarios, these issues have
been clearly identified as future research directions. In the
future, the framework’s applicability and industrial adaptation
capability will be further expanded by integrating few-shot
learning, noise-robust modeling, and lightweight design,
providing stronger technical support for the large-scale
implementation of industrial intelligent detection.
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