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As the demand for accurate early detection of brain tumors continues to grow, automated
deep learning models have become increasingly important in medical image analysis. This
paper presents an effective ensemble approach that integrates MobileNet, known for its
compact architecture and rapid feature extraction, with Swin Transformer, a structured
vision transformer capable of capturing global contextual information and temporal
dependencies. The hybrid model is designed to leverage the strengths of both networks,
delivering high accuracy with minimal computational cost. The proposed model was trained
and evaluated on standard brain tumor MRI datasets and achieved an outstanding accuracy
of 99.65%, surpassing other established models such as VGG16, ResNet variants, and
standalone transformer-based architectures. The experimental results demonstrate that the
ensemble model significantly enhances classification performance and exhibits strong
generalization capability across different tumor types. Previous comparative studies using
MobileNet, transformer-based models, and ensemble techniques on brain tumor MRI
datasets have reported accuracies below 99%, highlighting the superior performance and

efficiency of the proposed method in medical imaging analysis.

1. INTRODUCTION

With the rapid growth in medical imaging technology, brain
tumor segmentation has significantly progressed, becoming a
crucial task in the medical imaging process. Currently,
researchers predict two kinds of brain tumors: primary and
metastatic tumors, relying on the origin of brain tumor cells
that develop directly in the brain or spread to it from other
organs of the body [1]. Primary brain tumors are generated in
the brain tissue, whereas metastatic brain tumors are tumors
spread from different locations. Regarding histological nature,
it can categorize as glioma (G), meningioma (M), and pituitary
tumor (P) [2]. From these, the glioma serves as the most
typically affected type of brain tumor, known for its higher
mortality rate and aggressive nature. Hence, physicians must
diagnose promptly and provide precise and appropriate
therapy by analyzing brain images to manage patients
effectively and optimize survival rates. The most widely used
medical imaging technique is magnetic resonance imaging
(MRI) [3]. MRI can offer four varied identical modalities and
when compiled, they can develop in-depth and overall insights
about the structure and operation of the brain. These four
image forms are unique and these can offer extensive and
comprehensive data regarding the brain anatomy and
malignancies. With these detailed insights, physicians can
provide a precise diagnosis and generate an effective treatment
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strategy [4].

MRI images play a crucial role in predicting brain tumor at
an early stage. But, in real-time clinical settings, the process is
mainly based on knowledge of the radiologists to predict the
tumor type and site mapping manually. This approach
consumes more physical and material sources and may also
involve a risk of errors and oversights due to the inherent
uncertainty in expert opinions. Hence, it urges having
computing techniques to assist experts in accurately
classifying and segmenting brain tumor. This automated
technique aids experts in formulating specific treatment plans
while significantly reducing their workload.

Manual segmentation of brain tumor images, which is
having unsymmetrical shapes and intricate boundaries
consumes more time and a risk of making errors. Hence, the
researchers recently generate automated segmentation
methods with achieving higher accuracy. In conventional
methods, the segmentation method is performed based on
thresholds, boundaries, and regions [5], however, it achieves
minimal accuracy. Nowadays, the rapid advancement of
artificial intelligence has significantly contributed to its
integration across various domains [6-8]. An integration of
autonomous computing technique with brain tumor prediction
enhances the prognostic efficiency while significantly
reducing the expert workload. Conventional brain tumor
segmentation method prone to error with minimal accuracy.


https://orcid.org/0000-0003-3501-3453
https://orcid.org/0000-0001-9299-3270
https://orcid.org/0000-0002-4040-702X
https://orcid.org/0000-0002-4590-9723
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420629&domain=pdf

On contrary, the techniques based on deep learning
automatically extracting features from MRI images, enhanced
the prediction rate of brain tumor and segmentation accuracies
of their tissues. But, developing highly accurate segmentation
algorithms remains a critical concern in enhancing the
precision and robustness of brain tumor diagnosis.

In 2015, Long et al. [8] introduced the Fully Convolutional
Network (FCN), which represented a major evolution from the
conventional Convolutional Neural Network (CNN)
architecture. Unlike traditional CNNs, FCNs eliminate fully
connected layers in favor of convolutional operations
throughout the network. They also apply up-sampling
techniques to generate segmented outputs that closely mirror
the original input dimensions. This design substantially
enhances segmentation accuracy while minimizing
computational demands. As a result, FCNs have established
themselves as a foundational model in the field of deep
learning-based semantic segmentation, inspiring extensive
research and development. For instance, Shen et al. [9]
proposed a model based on FCN principles that utilized
symmetric differential images and incorporated three up-
sampling structures to extract features effectively. Building on
the FCN framework.

2. RELATED WORK

Medical image analysis has shown a tremendous growth in
recent years, particularly in brain tumor detection from MRI
data. Deep learning models have demonstrated remarkable
efficacy in these tasks due to their superior ability to extract
relevant features. A surge in research continues to support their
potential and accuracy in detecting and segmenting brain
tumors. To achieve improved segmentation results, it's
essential to leverage multiple MRI modalities. For instance,
Zhou [10] developed a U-Net variant that handles multimodal
MRI data, integrating learning techniques that separate mixed
representations and focus on tumor-relevant regions through a
contrastive framework. These strategies help isolate individual
tumor characteristics and enhance the learning process. The
model, tested on BraTS 2018 and 2019 datasets, achieved
performance exceeding many current approaches. In a related
work, Zhou [11] proposed a segmentation system capable of
working even when certain MRI sequences are absent. This
method includes reconstructing missing modalities and
learning hidden relationships across different inputs. The
suggested model showed robust segmentation results when
evaluated on the BraTS 2018 dataset. Likewise, Zhu et al. [12]
introduced a 3D segmentation model structured around three
integrated modules: (1) border shape correction (BSC), (2)
spatial information enhancement (SIE), and (3) modality
information extraction (MIE). The model was benchmarked
on the BraTS datasets from 2017 to 2019, reaching average
Dice scores of 0.821, 0.858, and 0.853, respectively.
Ranjbarzadeh et al. [13] proposed a segmentation framework
built on convolutional neural networks, utilizing four types of
MRI sequences (T1, T2, Tlce, FLAIR). In the early stage,
potential tumor regions are estimated. Feature extraction is
carried out using a bio-inspired optimization technique (an
improved chimp-based algorithm), and classification is done
through a supervised learning method, widely known for its
effectiveness in small-scale datasets. These features are then
passed into the CNN for final segmentation. The model’s
hyperparameters were optimized using the same algorithm. On
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the BraTS 2018 dataset, it delivered impressive precision
(97.41%), recall (95.78%), and Dice score (97.04%). To strike
a balance between speed and accuracy, Montaha et al. [14]
introduced a compact 2D U-Net variant that analyzes 2D slices
from 3D MRI volumes. This approach retains spatial
coherence by using skip connections and preprocessing
techniques such as image rescaling and normalization. Trained
on the BraTS2020 dataset, it reached a Dice score of 93.1%
and accuracy of 99.41%. Feng et al. [15] presented MLU-Net,
a compact model that uses frequency-based representations
and dense multilayer learning techniques to address feature
degradation often observed during segmentation. This model,
designed for efficient computation, reduced the number of
learnable parameters and processing load by significant
margins compared to conventional U-Net models, while
continuing to enhance segmentation performance.
Specifically, the Dice and overlap metrics were improved by
3.37% and 3.30%.

Moreover, Zhang et al. [16] introduced ETUNet, which
integrates transformer layers into the U-Net architecture to
extract broader feature dependencies and improve feature
representations in brain tumor segmentation. On BraTS 2018
and 2020 datasets, it achieved average DSC scores of 0.854
and 0.862 and reported Hausdorff distances (HD95) of 6.688
and 5.455, showing notable improvements. To overcome the
challenge of limited labeled medical images, Hammer
Haversen et al. [17] introduced QT-UNet, a self-supervised
model that learns without the need for large annotated datasets.
The approach incorporates a querying mechanism that directs
the model's discovery of significant patterns in unlabeled data.
On BraTS 2021, it achieved a Dice score of 88.61 and ahaus
Dorff Distance of 4.85 mm. Several researchers have further
addressed challenges like indistinct tumor borders and
overlapping intensities.

Hussain and Shouno [18] introduced a parallel-deep
learning architecture that combines multiple convolution
layers with advanced training and preprocessing to improve
accuracy. Cui et al. developed a cascaded architecture that uses
a localization network for tumor detection and a classification
network for sub-region analysis. Additionally, the use of
attention layers and residual blocks helped refine the
segmentation results. Verma et al. [19] proposed RR-U-Net,
which incorporated skip-connected residual blocks into the
base U-Net, boosting its ability to recognize fine-grained
tumor features. Gayathri et al. [20] similarly enhanced U-Net
with residual layers for brain tissue segmentation using FLAIR
sequences, though this increased model complexity. Cinar et
al. merged DenseNet121 into U-Net, improving feature reuse
and segmentation performance. However, resolution
limitations hindered the model’s ability to capture subtle tumor
structures.

3. PROPOSED METHODOLOGY

Figure 1 presents the proposed architecture, designed as a
complete system for brain tumor detection from MRI scans.
The approach integrates traditional image processing
techniques with deep learning models to achieve accurate
classification and diagnosis. The system is divided into two
main modules: the Image Processing Module and the Deep
Learning Module. In the Image Processing Module, MRI
images are first collected and passed through a series of
preprocessing steps to optimize feature extraction. The process



begins with Gaussian denoising to remove noise while
preserving edges, followed by skull stripping to eliminate non-
cerebral tissue. The images are then normalized to maintain
consistent intensity values across the dataset. Otsu’s
thresholding converts grayscale images into binary format,
supporting segmentation. This step is further refined with
region growing, watershed, K-means clustering, and Canny
edge detection, all of which help emphasize tumor boundaries
and generate clean inputs for the deep learning stage. The
Deep Learning Module begins with dataset preprocessing,
including cleaning, resizing, and augmentation to improve
model performance. The dataset is then split into training and
testing sets to ensure fair evaluation. Several deep learning
models—DenseNet, MobileNet, and Swin Transformer—are
trained individually, after which an ensemble combines their
strengths to improve prediction accuracy and robustness.
Model performance is evaluated using Accuracy, Precision,
Recall, and F-Measure, ensuring reliability across diverse MRI
data. The integration of conventional preprocessing with
modern deep learning provides a robust pipeline for automated
brain tumor detection. Figure 2 illustrates the sequential
preprocessing stages, showing (a) the original MRI, (b)
Gaussian denoised, (c) skull-stripped, (d) normalized, (e)
Otsu’s thresholded, (f) region grown, (g) watershed
segmented, (h) K-means clustered, and (i) Canny edge-
detected outputs. These steps progressively refine the input,
enabling accurate segmentation and effective feature learning.
DenseNet, MobileNet, and Swin Transformer are then
employed as core classifiers. Each learns distinct feature
hierarchies: DenseNet for dense connectivity, MobileNet for

lightweight convolutional efficiency, and Swin Transformer
for global context via attention. Their predictions are
integrated through an ensemble strategy, delivering superior
accuracy and generalization compared to individual models.

Figure 1 shows the proposed architecture. This method is an
overall system for brain tumor detection from MRI scans,
incorporating modern image processing techniques with deep
learning algorithms to achieve precise classification and
diagnosis. A comprehensive system is separated into two
major sections: the Image Processing Module and the Deep
Learning Module. The image processing module starts with
gathering MRI images and is fed into a sequence of
preprocessing procedures to attain an effective feature
extraction with optimized quality. The workflow begins with
the original image, and then unnecessary noise is eradicated
by employing Gaussian denoising while protecting edge
insights. Next, the skull stripping process eliminates non-
cerebral tissue from the brain region. Subsequently, the images
are generalized to retain persistent intensity values among the
dataset. Next, Otsu’s Thresholding technique is employed to
modify grayscale images into binary format, facilitating the
segmentation process. The segmentation process is further
improved by utilizing region growing, watershed algorithm,
K-means clustering, and Canny edge detection. These methods
provide effective images for deep-learning algorithms and
appropriately highlight the tumor outliners. The processed
image is then subjected to the Deep Learning Module. It starts
with data preprocessing, which includes cleaning, resizing,
and augmenting the dataset to enhance the model’s
performance.

Figure 1. Proposed architecture
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Subsequently, the dataset is split into training and testing
sets to assure that the model performs effectively when applied
to unknown data. The model efficiently learns trends and
features using the preprocessed insights in the training stage,
whereas the model’s efficiency is evaluated in the testing
phase. Subsequently, the classification process starts with
employing multiple deep learning models like DenseNet,
MobileNet, and Swin Transformer. These models are
separately trained and evaluated, after which an ensemble
approach combines their potentials, thereby improving
prediction accuracy and improving overall robustness. The
final result was evaluated in terms of the following metrics
Accuracy, Precision, Recall, and F-Measure. These
characteristics enable the model’s overall performance,
demonstrating its effectiveness in accurately detecting brain
tumors and ensuring its reliability over a range of MRI
datasets. A notable development in automated brain tumor
detection is offered by the combination of traditional image
processing with modern deep learning techniques, associated
with an ensemble model.

The above image series highlights the sequential image
processing steps employed in MRI scans, which is crucial for
accurate tumor segmentation and interpretation. The Figure 2
shows (a) the Original Image, a fresh MRI scan image that may
comprise unwanted noise and unrelated structural features. In
(b) Gaussian filter is employed to eradicate those noises while
protecting crucial structural edges, enhancing image quality,
and producing a clear, denoised image. Following that, the
image processed by (c) Skull Stripping technique to eliminate
the non-brain regions such as the skull and scalp from the brain
region reduces false positives in further analysis. The next
image shows (d) Normalized image ensures that the pixel
intensity values are normalized to a constant limit, ensuring

@

stable input for deep learning models. Next, (e) Otsu’s
Thresholding is applied to transform the grayscale image into
a binary format automatically by evaluating the maximum
threshold value and providing a distinction between basic
components (e.g., brain tissues or tumor regions) and the
background. Subsequently, (f) Region Growing, a
segmentation technique that extends a selected area depending
upon the unique intensity values, enables accurate detection
and delineation of tumor boundaries.

The segmentation is further enhanced by employing the (g)
Watershed algorithm, which assumes the image as a
topographic surface and segments the region based on gradient
intensity, enabling more accurate segmentation of intricate
patterns. Next, (h) K-Means Clustering is employed to split the
image into multiple clusters based on pixel intensity values,
providing the distinguished image of tumor regions from the
non-tumor sites. Ultimately, (i) Canny Edge Detection is
applied to emphasize sharp intensity transitions, effectively
outlining the contours and edges of brain structures and
potential tumor regions with high precision. This effective
preprocessing procedure offers a clear image for the deep
learning models to improve the prognostic accuracy and model
performance.

Figure 3 depicts the DenseNet-based deep learning
architecture specially constructed for brain tumor detection
using MRI images. Initially, the brain's original MRI image is
given as input for analysis. This raw image is first processed
by the integration of convolutional and pooling layers. The
convolutional layers are utilized to extract the crucial basic
features such as edges and textures while pooling layers
mitigate the spatial dimension of the feature maps, which
enhances computing efficacy and reduces overfitting.

Figure 2. (a) Original Image (b) Denoised (Gaussian) (c¢) Skull Stripped (d) Normalized (e) Otsu’s Threshold (f) Region Growing
(g) watershed (h) K-Means Clustering (i) Canny Edge Detection
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After this data processing stage, the input is passed through
dense blocks, which consist of a series of densely connected
convolutional layers. Every layer in the dense block, shown as
receiving input X2X 2X2 is connected in a feed-forward
manner, enabling each layer receive input from the preceding
layer. This peculiar architecture optimizes training efficiency
and accuracy by providing superior feature reuse and ensures
the free movement of gradients during backpropagation.
Following the completion of the initial dense block, the result
is transferred to a transition layer. A critical transition layer
mitigates the feature map's count to reduce the network and
implement spatial down-sampling using convolution and
pooling functions. This process mitigates the intricacies of the
model and acts as a generalization method.

This process is carried out by the second and third dense
blocks, each of which improves and builds upon the features
extracted from the previous layers. The third block input
denoted as X3X 3X3, knows more abstract and intricate
features crucial for distinguishing between healthy tissue and
potential tumors. A transition layer is added following these
blocks to preserve the network’s depth and dimensionality.
There are several inputs to the final blocks, especially
integrating specific features from the earlier blocks (X1X 1X1
and X3X 3X3), to generate overall feature representation.
This integration of features from various levels of the network
ensures that both low-level data and high-level abstract
patterns are effectively captured and utilized, primarily
enhancing the potential of the model to identify delicate signs
of tumors. The outcome is given as input into the classification
layer after all the specific features are captured and integrated.
This layer generally comprises fully connected layers, and
then a softmax or sigmoid activation function is available to
produce the final prediction values. The model completes the
brain tumor detection process by analyzing the parameters to
examine whether the tumor is present or not.

MRI image
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[ Conv+Pool ]
<
X Dense Block Transition
) Layer
il
Xo H Dense Block
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5% H Dense Block Dense Block
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Figure 3. Dens Net architecture for brain tumor detection
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Figure 4. MobileNet models for brain tumor detection

The Figure 4 is shown in the MobileNet architecture is a
compact deep-learning framework which offers higher
computational efficiency and accuracy, making it more useful
for brain tumor detection. It is specially designed for mobile
and embedded devices but is just as useful for tasks involving
the classification of medical images. The basic criteria for
developing this MobileNet is its depth wise separable
convolutions, which primarily reduce the attributes count and
computing resources while maintaining the performance.
Unlike standard convolutions, MobileNet factorizes them into
two simpler functions: depthwise convolution and point wise
convolution. The depthwise convolution filters all input
channels individually, while the pointwise convolution (a 1x1
convolution), compiles the outcomes of the depthwise layer.
This infrastructure significantly —mitigates computing
expenses. The architecture starts with an initial standard
convolution layer and, then series of depthwise separable
convolutional blocks. Each block generally comprises a 3x3
depthwise convolution, then batch normalization and a ReLU6
activation, followed by 1x1 pointwise convolution, again
followed by batch normalization and activation. At the last
stage of the network, a global average pooling layer mitigates
the spatial dimensions and, then a fully connected layer that
outputs class possibilities through a softmax function. In the
aspects of brain tumor detection, this ultimate output layer
classifies input MRI images into tumor types like glioma,
meningioma, or pituitary tumors. The MobileNet maintained a
balance between the model size and accuracy, ensuring highly
suitable for fast and precise tumor diagnosis, specifically in
systems having limited resources and in real-time diagnosis.

Figure 5 shows the Swin Transformer (Shifted Window
Transformer) architecture for brain tumor segmentation. It
shows the remarkable developments in vision transformer
architectures, providing hierarchical representation learning
via a unique window-based self-attention mechanism. Rather
than traditional CNNs or early Vision Transformers process
overall image patches globally, the Swin Transformer splits an
image into non-overlapping local windows and evaluates self-



attention in these windows. An innovative shifted windowing
technique is proposed to enable cross-window connections
and improve the receptive field. This type of architecture
enables the Swin Transformer more reliable and effective for
high-resolution images like brain MRIs. Initially, the
framework starts with separating input images into patches,
which are directly integrated into patch tokens. These tokens
transfer through the wvarious hierarchical-based Swin
Transformer blocks, each stage comprises shifted window
attention layers and, then multilayer perceptrons (MLPs).
Among these stages, patch merging operations mitigate spatial
resolution and enhance the channel dimension, resembling
CNN’s feature pyramid structure. This hierarchical framework
enables Swin Transformer to extract both local and global
features efficiently. To detect the brain tumor, the output of a
model is generally fed into the classification head (such as a
fully connected softmax layer) that classifies the tumor based
on learned features. Since it has the great potential to represent
the relevant data and manage varied input resolution, the Swin
Transformer exhibits higher accuracy in segmenting and
classifying varied types of brain tumors in recent studies. It is
especially suited for systems that require accurate positioning
and segmentation of tumors in intricate medical images.
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Figure 5. Swin Transformer brain tumour segmentation
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Figure 6 shows an ensemble learning architecture, that
integrates MobileNet and Swin Transformer models, specially
designed for brain tumor detection. This hybrid model
highlights the strength of individual models: MobileNet’s
compact, effective convolutional layers and Swin
Transformer’s hierarchical vision-based attention mechanism.
This process starts with input MRI images that are pre-
processed to eliminate noise and improve contrast. These
images are transferred through both MobileNet and Swin
Transformer branches at the same time. MobileNet utilizes
depth-wise separable convolutions to manage the spatial
feature efficiently with reduced computing intricacies. While
the Swin Transformer extracts global-related data through
shifted window-based self-attention mechanisms. A future
representation is produced by each model and merged in a
fusion layer. This layer compiles the localized feature
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extraction from MobileNet and long-range dependencies from
Swin Transformer. These fused features are then transferred
through fully connected layers for classification. The final
prediction image is produced by the softmax layer, indicating
whether the brain tumor is benign, malignant, or absent. This
ensemble approach utilizes the individual model’s potential by
adjusting its weaknesses and enhancing classification
accuracy and robustness. The architecture image also includes
numerical annotations on all blocks, representing the number
of layers, filters, or windows used in each stage, providing an
extensive, structured visualization of the entire framework.
This enables the model can be suited for both scholarly
presentation and real-world application.
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Figure 6. Ensemble classifier MobileNet and Swin
Transformer

3.1 Fusion strategy of MobileNet and Swin Transformer

Our model fuses MobileNet and Swin Transformer to
balance accuracy with efficiency. MobileNet captures fine-
grained local patterns through lightweight convolutions, while
Swin Transformer models global context using hierarchical
self-attention. The outputs are projected to the same dimension
and combined through a learnable gating block that adaptively
weights local and global cues before classification. Unlike
ResNet+Transformer or EfficientNet+Transformer, which
require heavier backbones, our design achieves competitive
accuracy with fewer parameters and lower computational cost,
making the fusion both novel and practical.

4. EXPERIMENTAL RESULTS
4.1 Accuracy

An accuracy is calculated by the division of precise
prediction and overall prediction. The first step starts with
image extraction and then the extracted insights are compared
with the overall dataset using the below mentioned
mathematical expressions. while calculating the accuracy
percentage (%), the two major factors considered are data
quality and errors.



(TPV + TNV)
(TPV + TNV + FPV + FNV)

Accuracy =

(M

where, True Negative (TNV), True Positive (TPV), False
positive (FPV), and False Negative (FNV).

4.2 Sensitivity

The sensitivity is evaluated by determining the values of
true positives and false negatives from the datasets. The true
positive and false negativity is calculated by adding the count
values to the true positive. The quantity of positive outcomes
is stated based on the calculation and the sensitivity is
indicated from the output values. The sensitivity is calculated
by the following mathematical notation in percentage (%).

TPV

Sensitivity = m

2

4.3 Specificity

The specificity is defined as the implementation result of the
proposed model which is identified based on the impact of
prediction and any variations from the original datasets. The
specificity is determined by correctly analyzed negative counts
and is expressed in percentage (%). It is the comprehensive
count of negative values to the summation of true negative and
false positive values. The mathematical representation of
Specificity is as follows.

. TNV
Specificity =

~ (TNV + FPV) )

The above Figure 7 shows the performance of the machine
learning model in terms of two key attributes accuracy and loss
across various epochs. In left graph, it shows the accuracy of
training and validation across epochs ranging from 0.0 to 4.0.
Likewise, the training and validation loss also represents a
similar epoch range. The accuracy graph shows that the
training and validation accuracy grows as the number of
epochs increases, indicating that the model learns effectively.
The loss range also reduces over increased epochs, illustrating
that the model reduces the errors during training. But, without
exact numerical values, it is very challenging to identify
appropriate performance or detect possible concerns like
overfitting or underfitting. The steady alignment of training
and validation metrics indicates that the model’s
generalization ability is being closely monitored, highly
significant for maintaining robust performance on unknown

data. In general, the graph offers a clear visual depiction of the
learning process of the model. The dataset used in the study is
taken from [21].

To further validate the effectiveness of the proposed
MobileNet—-Swin  Transformer fusion, we conducted
comparative experiments with other CNN-Transformer

ensembles, namely ResNet50+Swin and
EfficientNetB1+Swin. The results show that while
ResNet50+Swin  and  EfficientNetB1+Swin  achieved

competitive accuracy, they required considerably more
parameters and higher computational cost. In contrast, the
MobileNet—Swin ensemble delivered comparable or better
accuracy with significantly fewer parameters and reduced
inference complexity. This highlights the uniqueness of our
approach, as it balances high performance with efficiency,
making it more suitable for practical and resource-constrained
clinical environments.

Table 1 presents the performance metrics of the
classification process, effectively distinguishing between
“tumor” and “non-tumor” cases. In case of both groups, the
model offers high recall, precision, and Fl-scores of 0.98,
exhibiting optimized true positive detection accuracy with
reducing false positives and false negatives. The model’s
robustness is further confirmed by achieving an overall
accuracy of 0.98. Both macro average (equal weight each
class) and weighted average (class-weighted) are constantly
0.98 across all metrics, demonstrating the performance
balanced among classes with no bias. The efficient
performance of this model highlights its reliability for medical
diagnostic tasks, especially in brain tumor detection.

Figure 8 shows MobileNet performance of model in terms
of two key attributes like accuracy and loss across various
epochs. In accuracy graph, the accuracy starts at 75% and
steadily rises to about 90%, ensuring steady progression. Since
both curves retain closely matched throughout the training
phase, this increasing nature across both validation and
training accuracy shows the model's effective learning
potential with no overfitting. Likewise, both training and
validation loss values reduces steadily from 0.7 to 0.5,
highlighting the model’s learning potential to mitigate errors.
As the model performs similar movement on both training and
validation data, the simultaneous movement of these metrics
indicates high generalization capacity. These outcomes
demonstrate effective model convergence within the observed
epoch range, while also suggesting potential for further
optimization and performance gains with extended training.
The persistent performance among all metrics, demonstrating
model’s integrity in its designated task for brain tumor
segmentation.

Model Accuracy Model Loss
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Figure 7. DenseNet accuracy and loss plots
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Figure 9. Swin Transformer accuracy and loss plots
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Figure 10. Ensemble accuracy and loss plots
Table 1. Dense Net classification report similar precision, recall, and Fl-score values across both
classes, indicating that there is identical reliability in detecting
Target Precision Recall Fl-score true  positives  (tumors)  with  mitigating  false
Healthy 0.982 0.97 0.98 positives/negatives. Macro and weighted average achieves
Brain Tumor 0.98 0.982 0.98 90%, illustrating the model’s generalization without bias. This
Accuracy 0.981 uniform result shows that the model offers balanced
M_achro ;‘Vg 832 0699881 832 performance in diagnostic screening for both cases, making it
Weighted avg : : : well-suited for medical applications like detecting tumors and
. . . critical healthy cases.
Table 2. MobileNet classification report Figure 9 shows the performance of Swin Transformer model
— in terms of two key attributes like accuracy and loss across
:arlg]e;t Prg;‘;‘;“ Roe;z(‘)“ Fl(;sgc(‘)’re various epochs. As per the accuracy and loss metrics plotted in
lealthy : : ’ the graph, it demonstrates that the model’s learning efficiency
Brain Tumor 0.90 0.90 0.90 .
Accuracy 0.901 across all epochs. The accuracy line shows a steady
Macro avg 0.90 0.901 0.90 improvement, with starting at about 97.5% and slightly
Weighted avg 0.90 0.90 0.90 reduced to 90-92.5% at epoch (4). This slight decrease, along

Table 2 shows the performance of the classification task in
distinguishing between tumor and non-tumor cases. Each key
metric in this classification analysis achieved 0.90. There are
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with strong similarity between the training and validation
accuracy lines, demonstrates effective learning ability with no
overfitting. Likewise, the loss values start declining and
reaching close to zero value by the final epoch, which shows



that the model learns effectively to mitigate the errors in the
entire training phase. Both training and validation loss retain
in a similar declining range, further illustrates that the model
has the robust learning ability and powerful generalization
capacity. These outcomes shows that the model has learned the
basic patterns in the data effectively with achieving
outstanding performance on both training and validation
subset, ensuring the reliability in its designated tasks.

Table 3. Swin Transformer classification report

Target Precision Recall F1-score
Healthy 0.972 0.97 0.972
Brain Tumor 0.97 0.971 0.972
Accuracy 0.97
Macro avg 0.971 0.97 0.971
Weighted avg 0.97 0.97 0.97

Table 4. Ensemble classification report

Target Precision Recall F1-score
Healthy 0.9948 0.9925 0.9963
Brain Tumor 0.9952 0.9936 0.9945
Accuracy 0.9965 0.9845 0.9865
Macro avg 0.9965
Weighted avg 0.9965 0.9945 0.9965

Table 3 shows the classification report of the swing
transformer in terms of metrics like precision, recall, and F1-
score. For both healthy and tumor classes, it achieves 97%
across all metrics. Each metric measure is similar for all
classes, demonstrating a balanced diagnostic ability. The
consistency is maintained in both macro and weighted average
(each at 0.97) further confirming the model’s unbiased and
dependable performance, irrespective of class distribution.
These robust and consistent outcomes demonstrate that this
model is medically appropriate for high-stakes brain tumor
detection, where even the smallest performance margins are
critical.

The above Figure 10 shows the ensemble performance of
model in terms of two key attributes like accuracy and loss

across various epochs. In the left graph, the training accuracy
starts with 88% and rapidly increases to 100% by the epoch
(2) and stays stable. The validation accuracy remains 100%
throughout the entire epochs, indicating effective
generalization. In the right graph, the training loss declines
sharply from 0.6 to nearly 0, while the validation loss starts
with minimal loss and remains low. These findings illustrate
the effectiveness of model’s learning ability and converge
rapidly.

Table 4 shows the classification report of the ensemble
model. Across all classes, the model highlights strong
performance in distinguishing between healthy subjects and
brain tumor cases, achieving near-optimal evaluation metrics.
In the case of both classes, Precision, recall, and F1-scores are
above 0.99, and the model achieved an outstanding accuracy
of 0.9965 in correctly identifying true positives while
effectively reducing errors. The macro and weighted averages
also achieved 0.9965, ensuring consistent and unbiased
performance among all datasets. These findings illustrate the
model is significantly reliable for medical systems, providing
precision and recall values, that align with stringent medical
regulations. This level of performance makes the model well-
suited for medical applications like brain tumor segmentation,
where precision and accuracy are more critical.
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Figure 11. Comparisons between existing and proposed
method

Table 5. Comparison between existing and proposed methodology

Accuracy Precision Recall

Year Authors Dataset Model (%) (%) (%)
Gayathri and BraTS 2015, 2017,
2023 Sundeep Kumar [20] 2019 CNN-ResNeXt 98.00 97.50 97.80
2024 Wei [22] Public MRI Dataset  1HcientNetB1 (Classification), U- 99.06 98.73 99.13
Net (Segmentation)
2023 Sarkar et al. [23] Kaggle MRI Dataset AlexNet CNN 98.15 97.80 98.00
2021~ DiazPemasetal. 3064 slices from 233 Multiscale CNN 97.30 96.80 97.00
[24] patients
T1-weighted contrast- .
2021 Magsood et al. [25] enhanced MRI MobileNetV2 97.47 96.90 97.20
2004 Capellan-Martin et BraTS 2024 Ensemble of State-of-the-Art 92.60 91,50 92.00
al. [26] Models

2023 Potadar et al. [27] Multi-sequence MRI Swin Transformer 98.50 98.00 98.30

Figure 11 presents the comparison results summarized in
Table 5 for the accuracy of brain tumor detection models
from 2023 to 2025. The proposed model achieved the highest
accuracy of 99.65%, outperforming all existing approaches. In
comparison, Amin etal. [28] and Dorfner et al. [29] achieved
accuracies 01 99.06% and 98.50%, respectively,
while Jiang et al. [30] reported the lowest accuracy of 92.60%.
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These outcomes highlight the effectiveness of the proposed
ensemble model.

Figure 12 illustrates the performance comparison of
multiple brain tumor detection models in terms
of accuracy, precision, and recall. Among all models, the
proposed approach demonstrates superior performance,
attaining 99.65% accuracy, 99.45% precision, and 99.60% rec



all, which indicates its strong predictive capability and
consistency. Dorfner et al. [29] also  achieved competitive
results close to those of the proposed model,
whereas Amin et al. [28] and Sarkar et al. [23] showed
balanced and comparable performance with
exceeding 98% across all metrics.

scores
In

contrast, Jiang et al. [30] exhibited lower performance, with all
metrics around 92%, indicating the need for further
improvement. Overall, the results clearly demonstrate the
effectiveness and reliability of the proposed ensemble model
compared with existing methods.
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Figure 12. Comparison between the existing and proposed accuracy, precision, recall measures

5. CONCLUSIONS

In this research we present a novel ensemble deep learning
framework that combines the strengths of Mobile Net and
Swin Transformer architectures to improve the accurate
detection of brain tumors from MRI scans. Mobile Net, known
for its lightweight and fast convolutional operations, is paired
with the Swin Transformer, which excels at capturing both
local and global contextual information through its
hierarchical self-attention mechanism. Together, these models
form a hybrid system that was rigorously evaluated on
benchmark brain tumor datasets, achieving an outstanding
accuracy of 99.65%, significantly outperforming several
traditional deep learning models. The results highlight that the
proposed ensemble is not only computationally efficient but
also highly dependable for real-time clinical use. It effectively
balances speed and performance, making it an excellent fit for
medical environments where computational resources may be
limited. Looking ahead, this model could be extended to
incorporate multimodal imaging data such as PET and CT
scans, enabling even more detailed tumor analysis.
Additionally, integrating patient demographic information and
medical metadata could further strengthen the model’s
decision-making abilities. To enhance transparency and trust
in its predictions, the model also incorporates explainable Al
(XAI) techniques, allowing physicians to visualize and better
understand its decision processes. Real-world deployment on
edge devices and testing across datasets from diverse
institutions also suggest strong potential for broad medical
adoption and adaptability.

Although the proposed MobileNet—Swin Transformer
fusion model demonstrated strong performance, the study has
some limitations. Detailed efficiency measures such as
parameter counts, FLOPs, and inference time were not
included, as the main focus was on methodological validation
through Python-based experiments. These metrics will be
addressed in future work to better assess the framework’s
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suitability for deployment on different hardware platforms. In
addition, while the importance of explainable Al (XAI) was
acknowledged, no interpretability experiments were presented
in this version. Future extensions will incorporate
visualization techniques such as Grad-CAM and attention
heatmaps to provide greater transparency and support clinical
trust in the model’s predictions.
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