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Traditional image restoration methods often assume prior knowledge of the blur kernel, 

which is rarely available in real-world scenarios. This makes the recovery process a blind 

image restoration problem. In this work, we introduce an iterative space-adaptive 

regularization framework for blind image restoration, combining two optimization 

techniques: a robustly improved Particle Swarm Optimization (PSO) approach with a 

gradient-based steepest descent technique. The enhanced PSO reliably and efficiently 

estimates the parameters of a parametric point spread function (PSF) by minimizing an 

appropriate objective function. Meanwhile, the steepest descent method reconstructs the 

original image from the corrupted observation. The proposed approach minimizes a cost 

function comprising a restoration error term and an adaptive regularization term, where the 

latter incorporates Total Variation (TV) concepts to effectively preserve image edges. In 

addition, a fine balance between the fidelity and smoothing terms, along with an adaptive 

selection of weight parameters based on image and noise characteristics. Experimental 

results on synthetically degraded images highlight the superior performance of the proposed 

PSO in PSF estimation, attaining excellent quality restorations with improved accuracy and 

robustness compared to conventional methods. 
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1. INTRODUCTION

Digital image restoration is an engineering discipline that 

explores approaches for reconstructing an unknown true scene 

from corrupted observations. Most traditional methods assume 

that the convolution operator, which models the blur, is known 

in advance. However, in practical imaging situations, this is 

rarely the case [1]. Therefore, this problem is commonly 

formulated as a blind image deconvolution (BID) task, with 

the unknown blur modeled as a PSF. Thus, BID involves 

reconstructing both the original image and the blur kernel from 

the distorted image, based on partial information about the 

imaging framework [2]. BID is considered a practical and 

important method for restoring images. The blind 

deconvolution problem is encountered in a variety of technical 

fields [3], including remote sensing, medical imaging, 

astronomical imaging, microscopy, photography, optics, 

super-resolution applications, motion tracking technology, 

and more. However, much of the analysis assumes that the 

observed image is generated by a linear spatially invariant 

(LSI) system corrupted by noise [3]. 

In the literature, there are two primary approaches to blind 

image deconvolution [2, 3]: 

(1) Separate PSF Identification: The PSF is estimated

independently of the true image, allowing it to be used later 

with conventional restoration methods. Here, PSF estimation 

and image restoration are treated as distinct steps. Often, a 

parametric blur model is employed in this approach. 

(2) Joint Estimation: The identification process is integrated

with the restoration algorithm, enabling simultaneous 

estimation of both the PSF and the original image. However, 

many practical techniques in this area adopt an alternating 

optimization strategy, iteratively refining the image and PSF 

estimates, rather than computing a true joint solution. 

Blind deconvolution represents an ill-posed problem. It is 

often effectively managed through regularization strategies. 

As a fundamental component of both blind and nonblind 

deconvolution, regularization plays a crucial role in obtaining 

stable solutions [3]. However, the phenomenon of ringing 

effects is often produced around sharp intensity transitions 

when using global regularization in ill-posed image 

reconstruction problems [4]. This issue motivates the selection 

of spatially adaptive methods to mitigate such restoration 

artifacts. These adaptive approaches typically employ iterative 

algorithms [1], which have become prevalent in practice due 

to their ability to efficiently implement adaptive regularization 

schemes [5]. For comprehensive discussions on these methods, 

we refer readers to the studies by Campisi and Egiazarian [3] 

and Satish et al. [6]. Furthermore, the research of Chaudhuri et 

al. [7] provides an informative investigation into 
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regularization-based blind deconvolution methods, including 

their convergence properties. 

Numerous studies in the literature explore iterative methods 

for blind image restoration (e.g., [8-11]). In a foundational 

contribution, You and Kaveh [8] proposed a classical method 

based on symmetric double regularization (SDR) for space-

adaptive BID. Based on the assumption that both the original 

image and the blur are piecewise smooth, the approach 

minimizes a cost function including a reconstruction error 

term and two regularization components—one for the image 

and the other for the blur. The method also addresses a scaling 

issue inherent in the cost function through alternating 

optimization. Solutions using steepest descent and conjugate 

gradient strategies yield effective results for uniform blur 

under Gaussian noise at various levels. Further extending the 

SDR framework, Chen and Yap [9] introduced a parametric 

double regularization (PDR) method to address the blind 

deconvolution problem under various constraints and 

conditions related to the support size and nature of the PSF. In 

this work, a new cost function and a soft parametric learning 

term were proposed within a double regularization procedure, 

and an alternating minimization technique was employed to 

estimate both the blurring function and the true image 

iteratively using the conjugate gradient method. 

A detailed discussion of regularization-based restoration 

methods can be found in the papers by Campisi and Egiazarian 

[3], Chen and Ma [12], and Bertero et al. [13]. Following this, 

and still within the regularization framework, numerous 

regularization approaches based on the TV concept have been 

developed to solve the BID problem, for example, [11, 14-17]. 

The methods in the papers by Chan and Wong [14] and Money 

and Kang [16] performed well on specific types of blurred 

images, such as out-of-focus blurs with simple backgrounds, 

but were less effective for images containing complex 

structures. Later, Li et al. [18] extended the approach from the 

study by Chan and Wong [14] to handle images degraded by 

more complicated blur patterns. In the present work, the 

double regularization process is replaced by a split objective 

formulation, which is minimized using an extended split 

Bregman iteration. 

While regularization-based iterative methods have shown 

promising results in blind image restoration, they often rely on 

handcrafted assumptions and require careful parameter tuning. 

Moreover, accurately modeling image priors within 

conventional optimization frameworks remains a persistent 

challenge. To overcome these limitations, recent advances in 

machine learning have demonstrated superior performance in 

image restoration tasks. These techniques can broadly be 

classified into two categories: approaches that directly 

estimate the sharp image from the degraded input [19, 20] and 

those that focus on estimating the blur operator [21, 22]. 

Within the second category, the Deep-Blur method [21] 

introduces a convolutional neural network (CNN) architecture 

coupled with a dedicated training strategy to successively 

estimate both the blur operator and the sharp image from a 

single blurry input. The framework comprises two 

components: the Identification Network (IN), which extracts 

low-dimensional blur parameters, and the Deblurring Network 

(DN), which utilizes these parameters alongside the degraded 

image to reconstruct a clear version. Notably, the DN adopts 

an unrolled architecture to enhance reconstruction efficiency. 

This design is particularly well-suited for correcting optical 

systems affected by slowly varying PSF. Complementary to 

this, another study [22] has investigated the use of inverse blur 

kernels. In that work, the authors proposed a CNN-based 

approach that learns the deconvolution process by leveraging 

the distinctive properties of the inverse kernel, thereby 

enabling robust handling of spatially varying defocus blur. In 

a different context, Aljadaany et al. [19] present a deep 

learning–based solution to the BID problem. Rather than 

estimating the blur kernel explicitly, the proposed network 

aims to learn two proximal operators simultaneously: one 

corresponding to the data fidelity term and the other to the 

image prior. These operators are modeled using two distinct 

CNNs and integrated within the Douglas–Rachford 

optimization framework, offering a principled and flexible 

alternative to traditional kernel estimation. 

On the other hand, traditional approaches to blind image 

restoration often rely on alternating minimization algorithms, 

which iteratively estimate the blur kernel and the true image 

(as in the methods mentioned above). However, classical 

optimization methods often risk getting stuck in local minima 

of the cost function, limiting their effectiveness. To address 

this issue, modern metaheuristic algorithms [23]—such as 

Particle Swarm Optimization (PSO), genetic algorithms (GA), 

and many others—have been increasingly employed for blur 

PSF estimation in blind deblurring, as evidenced by the studies 

conducted by Dash and Majhi [24], Moghaddam [25], 

Trubakov and Medvedkov [26], and Lai [27]. A related 

approach by Sun et al. [28] utilized the histogram entropy of 

both blurred and restored images as an objective function 

within a PSO framework. The estimated Gaussian blur PSF 

was subsequently applied in the Richardson–Lucy algorithm 

to restore the original image from its distorted (blurred-only) 

version. Sun et al. [29] proposed a technique that uses PSO to 

estimate the unknown PSF of out-of-focus blur. Their 

approach employs the wavelet transform to formulate the 

objective function, followed by Wiener filtering in the Fourier 

domain for image restoration. The study focuses solely on 

blurred images. To enhance optimization robustness, Li and Li 

[30] introduced an improved PSO strategy that integrated a 

GA selection mechanism into the standard PSO framework to 

avoid premature convergence. This hybrid approach was 

applied to reconstruct images degraded by both Gaussian blur 

and noise, optimizing the process through a fidelity-based 

fitness function. 

Since metaheuristic algorithms are efficient at solving 

optimization problems in terms of computational complexity, 

we adopt in this work a modified version of the standard PSO 

algorithm to estimate the PSF of the blur instead of the 

conjugate gradient method used in the works of You and 

Kaveh [8] and Chen and Yap [9], and the generalized radial 

basis function network (GRBFN) technique used in the paper 

by Icho et al. [10]. In this paper, we address the BID problem 

using a space-adaptive regularization approach. Our objective 

is to jointly estimate the true image and the associated blurring 

function. This can be expressed as a constrained optimization 

problem, inspired by the methods proposed by You and Kaveh 

[8], Chen and Yap [9], Icho et al. [10], and Sun et al. [28]. We 

adopt an alternating minimization strategy: the cost function is 

optimized with respect to the image using the steepest descent 

method, and with respect to the blur using a modified PSO 

algorithm. The cost function itself serves as the objective for 

the PSO. 

To enhance the restoration performance, particular attention 

is given to the selection of parameters within the adaptive 

regularization framework. Specifically, we integrate the local 

total variation (LTV) concept into the adaptive function, which 
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enriches the regularization process by capturing the local 

intrinsic characteristics of the image. A key contribution of our 

work lies in the modified PSO, which is used to improve the 

convergence path toward the optimal solution. This is 

especially beneficial in multidimensional cases, such as ours 

(uniform blur degradation), where the blur is modeled 

parametrically as a set of coefficients within a finite support. 

The improved PSO yields smoother and more accurate 

solution trajectories, enhancing overall deconvolution 

precision. 

In this study, Section 2 outlines the PSO algorithm and its 

modified variant. Section 3 explores the components of the 

space-adaptive regularization process. The iterative 

optimization process, alternating between identification and 

restoration steps, as well as the proposed method's framework, 

are examined in Section 4. Simulation results of the proposed 

method are analyzed in Section 5. The positive and negative 

aspects of the suggested method are presented in the 

conclusion, along with future perspectives. 

 

 
2. PARTICLE SWARM OPTIMIZATION TECHNIQUE 

 

2.1 Standard PSO and background 

 
PSO is a metaheuristic optimization algorithm introduced 

by Kennedy and Eberhart in 1995 [31], inspired by the 

collective (social) behavior of biological swarms such as fish 

schools and bird flocks. As one of the most prominent swarm 

intelligence paradigms, PSO employs a simple yet effective 

mechanism to guide particles toward globally optimal 

solutions. It resembles genetic algorithms in particular aspects, 

but it is considerably simpler due to the absence of crossover 

and mutation operators [23]. Due to its ease of implementation 

and efficiency, PSO has rapidly evolved and been effectively 

adapted for different real-world optimization problems [32, 

33], including image processing [34], controller design [35], 

system identification [36], robot path planning [37], and more. 

A swarm in PSO consists of a number of individuals. Each 

individual is referred to as a “particle”, which represents a 

potential solution to a particular problem. Every particle is 

considered as a point in a D-dimensional space, and it moves 

through the problem space to a new position in accordance 

with an updated velocity, which takes into account its previous 

velocity, the best position known to the particle, and the best 

known global position. The velocity of the particles 

determines their direction and travel distance. Each particle's 

performance is evaluated according to a predetermined fitness 

function (objective function), which depends on the specific 

problem being considered.  

In PSO, An individual particle i includes three vectors: its 

location in the D-dimensional search space 𝑋𝑖 =
(𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝐷), the best position that it has independently 

found 𝑃𝑖 = (𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝐷) , and its velocity 𝑉𝑖 =
(𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝐷). The initial particle positions were generated 

randomly with a uniform distribution throughout the search 

space. This last is particularly important for multimodal 

problems. The initial velocity of a particle can be taken as zero. 

The particles subsequently move throughout the search space 

according to a simple set of update equations. At each iteration, 

the algorithm updates the entire swarm by adjusting the 

velocity and the position of each particle in every dimension 

based on the following rules: 

 

𝑣𝑖𝑑(𝑡 + 1) = 𝑤 𝑣𝑖𝑑(𝑡)
+ 𝑐1𝑟1(𝑡)[𝑝𝑖𝑑(𝑡)
− 𝑥𝑖𝑑(𝑡)]+𝑐2𝑟2(𝑡)[𝐺𝑏𝑑(𝑡)
− 𝑥𝑖𝑑(𝑡)] 

(1) 

 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1) (2) 

 

where, Gb is the best solution of all particles, and w denotes 

the inertia weight of velocity [38], and it can be defined as a 

positive constant or even a positive linear or nonlinear function 

of time. The parameters 𝑐1 and 𝑐2 are two positive constants 

which denote the acceleration coefficients, 𝑟1  and 𝑟2  are 

random numbers uniformly distributed in the range [0,1] 

introducing stochasticity, and t is the number of generations. 

The second part of Eq. (1) is the “cognition” part, which 

denotes the private thinking of the particle itself. The third one 

is the “social” part, which indicates the collaboration among 

the particles [23, 38, 39]. 

For minimization, the best position of each particle is 

updated at every iteration as follows: 

 

𝑝𝑖(𝑡 + 1) = {
𝑝𝑖(𝑡), 𝑖𝑓 𝑓(𝑥𝑖(𝑡 + 1)) ≥ 𝑓(𝑝𝑖(𝑡))

𝑥𝑖(𝑡 + 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3) 

 

where, 𝑓(. ) denotes the objective function to be optimized. 

The global best position, 𝐺𝑏, is determined by selecting the 

best among all particles and is given by:  

 

𝐺𝑏(𝑡 + 1) = 𝑎𝑟𝑔 min
𝑝𝑖

𝑓(𝑝𝑖(𝑡 + 1)) (4) 

 

Due to its straightforward implementation, the original PSO 

algorithm has advanced rapidly in recent years, demonstrating 

strong capabilities to solve real-world optimization problems. 

However, like most population-based evolutionary 

computation (EC) algorithms, PSO particles can easily 

become trapped in local optima —leading to premature 

convergence—particularly when addressing large-scale or 

multimodal optimization problems [32, 38]. To overcome 

these limitations and improve performance, developing 

enhanced PSO variants remains a practical necessity. For more 

details on these advancements, see the research by Fang et al. 

[32]. 

 

2.2 Improved PSO algorithm 

 

The primary objective of various PSO variants is to enhance 

global search capability while preventing premature 

convergence to local optima. To achieve this, different 

strategies have been developed, each targeting specific aspects 

of the algorithm's performance. Among these approaches, 

some variants focus on modifying acceleration coefficients, as 

demonstrated in the papers of Jordehi [40] and Liu et al. [41]. 

Furthermore, the sine–cosine acceleration coefficients (SCAC) 

updating strategy described in the work of Chen et al. [42] 

provides an alternative approach for coefficient adjustment. 

Similarly, another common approach focuses on adjusting the 

inertia weight, as seen in the work of Bansal et al. [43]. In these 

variants, specialized functions (linear or nonlinear) are 

employed to gradually decrease the inertia weight over time, 

thereby improving convergence speed and refining solutions. 

Beyond parameter tuning, recent developments in PSO 

research have turned toward designing novel velocity updating 

strategies, an area that has become increasingly prominent [29], 
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as seen in studies by Zhan et al. [33], Wei et al. [44], and Xu 

et al. [45]. A notable example is the Adaptive Particle Swarm 

Optimization (APSO) method presented by Zhan et al. [33]. 

This approach introduces an evolutionary factor (EF) to 

evaluate the swarm's state, categorizing it into exploration, 

exploitation, convergence, or jumping-out phases. Building on 

this, APSO dynamically adjusts velocity update functions 

based on evolutionary state estimation (ESE), while 

incorporating an elitist learning strategy to enhance overall 

performance. More recently, Xu et al. [45] introduced the 

Adaptive Weighted Delay Velocity (PSO-AWDV) variant, 

which represents a significant advancement in PSO 

development. Specifically, this algorithm modifies the 

traditional velocity update rule by incorporating delayed 

velocity components and dynamically adjusting inertia 

weights based on the swarm’s evolutionary state. These 

enhancements help address typical PSO challenges such as 

local stagnation and slow convergence. Extensive evaluations 

on benchmark functions demonstrate that PSO-AWDV 

achieves superior convergence speed, enhanced stability, and 

reduced computational complexity compared to other existing 

PSO variants. 

In this study, we aim to enhance the performance of the PSO 

algorithm by modifying the velocity component while 

maintaining a balance between global exploration and local 

exploitation. According to Eq. (1), the magnitude of the 

velocity significantly influences PSO performance, 

particularly with regard to trajectory smoothness and 

convergence behavior. This influence becomes especially 

prominent in the final optimization stages. To address this, we 

apply a transformation to the velocity using a function that 

fulfills the following desirable properties: it should be 

monotonically increasing, bounded, and odd. To satisfy these 

properties, we utilize the hyperbolic tangent function, which 

naturally produces output values within the interval [−1, 1]. To 

manage the variability of the velocity, we scale the function by 

a positive constant a, which depends on the search space. 

Additionally, the velocity (as the function’s input variable) is 

scaled by another positive constant b. The modified velocity is 

thus defined as: 

 

𝑓(𝑥) = 𝑎
𝑒𝑏𝑥 − 𝑒−𝑏𝑥

𝑒𝑏𝑥 + 𝑒−𝑏𝑥
 (5) 

 

The variable 𝑥  denotes the original velocity and 𝑓(𝑥)  its 

transformed. 

The symmetric nature of the hyperbolic tangent function 

ensures that the direction (sign) of the velocity remains intact, 

preserving the particle's movement orientation. This means 

positive velocities stay positive, and negative velocities stay 

negative, maintaining the original search behavior while 

controlling magnitude. To further analyze the behavior of this 

transformation, especially for small velocity values where 

nonlinear effects are minimal, we approximate the hyperbolic 

tangent using a first-order Taylor expansion around zero. This 

yield: 

 

𝑓(𝑥) ≈ 𝑎𝑏𝑥 (6) 
 

This linear approximation (linear form in terms of 𝑥) shows 

that for low velocity magnitudes, the effect of the 

transformation is minimal. However, as velocity increases, the 

function smoothly limits its value, reducing the risk of 

oscillatory particle trajectories, especially during later 

iterations. Consequently, this velocity transformation 

enhances trajectory smoothness, leading to more accurate 

optimal solutions. 

With this transformation, the updated Eq. (1) and Eq. (2) 

become: 

 

𝑣̃𝑖𝑑(𝑡 + 1) = 𝑎
𝑒𝑏𝑣𝑖𝑑(𝑡+1) − 𝑒−𝑏𝑣𝑖𝑑(𝑡+1)

𝑒𝑏𝑣𝑖𝑑(𝑡+1) + 𝑒−𝑏𝑣𝑖𝑑(𝑡+1)
 

=  𝑎
1 − 𝑒−2𝑏𝑣𝑖𝑑(𝑡+1)

1 + 𝑒−2𝑏𝑣𝑖𝑑(𝑡+1)
 

(7) 

 

𝑥̃𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣̃𝑖𝑑(𝑡 + 1) (8) 

 

In our implementation, the parameters a and b are 

empirically set to 1 and 0.5, respectively. 

Importantly, since this modification does not alter the core 

PSO strategy, it remains compatible with various PSO variants, 

making it a flexible enhancement without disrupting existing 

algorithmic structures. This approach ensures smoother 

optimization trajectories while maintaining the algorithm’s 

exploratory and exploitative capabilities. 

The modified PSO algorithm is performed according to the 

following procedure: 

 

Algorithm 1: Modified PSO Procedure 

1) Initialization: Generate a swarm of particles with 

randomly assigned positions and velocities 

within the solution space. 

2) Fitness Evaluation: For each particle, compute 

the value of the optimization fitness function. 

3) Best Positions Adjust: Update the particle’s 

personal best p_i and the swarm’s global best Gb, 

according to Eq. (3) and Eq. (4), respectively.  

4) Velocity and Position Update:  

• Compute the raw velocity using the standard 

PSO update rule Eq. (1). 

• Apply the velocity transformation using Eq. (7). 

• Update the particle’s position using the 

transformed velocity Eq. (8). 

5) Termination Check: Repeat steps 2 through 4 

until a stopping criterion is met (typically when 

an acceptable fitness value is reached or the 

maximum number of iterations is exceeded). 

 

 
3. FORMULATION OF BLIND IMAGE 

RESTORATION AS A REGULARIZATION PROBLEM 

 

3.1 Space-adaptive regularization 

 

In image restoration tasks, it is commonly assumed that the 

blur can be modeled as a spatially invariant convolution with 

a blur kernel ℎ(𝑥), and that both the image and noise maintain 

consistent statistical properties across the image domain. 

Under these assumptions, if 𝑓(𝑥)  represents the original 

noise-free and blur-free image, then the observed degraded 

image 𝑦(𝑥) can be expressed as [5, 8]: 

 
𝑦(𝑥) = ℎ(𝑥) ∗ 𝑓(𝑥)  +  𝑤(𝑥),   𝑥 = (𝑥1, 𝑥2) ∈ Ω (9) 

 

where, Ω ⊂ ℛ2 denotes the image domain, and (∗) stands for 
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two-dimensional convolution, defined as:  
 

ℎ(𝑥) ∗ 𝑓(𝑥) = ∑ ℎ(𝑠)𝑓(𝑥 − 𝑠)

𝑠⊂𝐷

 (10) 

 

In this formulation, 𝐷 ⊂ ℛ2 is the support of the PSF ℎ(𝑥), 

and 𝑤(𝑥) represents additive noise, typically modeled as zero-

mean Gaussian white noise. 

The goal of image restoration is to estimate 𝑓(𝑥) , an 

approximation of the original image 𝑓(𝑥) , given only the 

degraded image 𝑦(𝑥), the blurring function ℎ(𝑥), and some 

statistical knowledge of the image and noise. However, in 

many practical scenarios, the PSF is unknown a priori, turning 

the restoration into a BID problem. In such cases, the task 

involves estimating both 𝑓(𝑥)  and ℎ̂(𝑥)  from 𝑦(𝑥) , using 

prior information about 𝑓(𝑥) , ℎ(𝑥)  and 𝑤(𝑥) . While the 

degradation is modeled as LSI, the deconvolution method may 

involve nonlinear behavior, spatial dependence, or 

simultaneously both [3]. Furthermore, blind restoration is 

inherently ill-posed, as solutions lack guaranteed uniqueness 

and stability. To address this, regularization techniques are 

employed, converting the ill-posed problem into a well-posed 

one with an acceptable approximate solution [5]. 

Assuming now that both 𝑓(𝑥) and ℎ(𝑥) are unknown, we 

adopt a space-adaptive regularization method to jointly 

estimate the original image and the PSF. This is achieved by 

minimizing the cost function [8]: 

 

𝐽(ℎ,̂ 𝑓) = ∑ 𝑤1(𝑥)[𝑦(𝑥) − ℎ̂(𝑥) ∗𝑥∈Ω

𝑓(𝑥)]
2
+𝜆 ∑ 𝑤2(𝑥)[𝐶(𝑥) ∗ 𝑓(𝑥)]

2
𝑥∈Ω  

(11) 

 

Subject to the constraint: 

 

0 ≤ 𝑓(𝑥) ≤ 1,   𝑥 ∈ Ω (12) 

 

This cost function contains two terms. The first enforces 

fidelity between the restored image 𝑓(𝑥) and the observation 

𝑦(𝑥), weighted by 𝑤1(𝑥). The second promotes smoothness 

in the solution through a regularization operator 𝐶(𝑥), which 

typically corresponds to a high-pass filter such as the 

Laplacian. The regularization parameter 𝜆 balances fidelity to 

the observed data and the smoothness of the reconstructed 

image. Selecting an appropriate 𝜆 is a crucial issue. Various 

techniques for estimating the regularization parameter are 

discussed in several works; see, for example, the papers [46, 

47]. Specifically, higher values of 𝜆  enforce greater 

smoothness, but may introduce ringing artifacts, while smaller 

values preserve fidelity but may amplify noise [1]. Space 

adaptivity is achieved by dynamically adjusting the weights: 

𝑤1(𝑥) is assigned higher values in regions with low noise 

or near sharp transitions to emphasize fidelity. 

𝑤2(𝑥) is increased in smoother regions or areas with higher 

noise to emphasize regularization. 

Details of the regularization components are elaborated in 

the next subsection. Meanwhile, the constraint in Eq. (12) 

ensures the restored image remains bounded and nonnegative, 

reflecting the physical limits of image intensity. 

Ultimately, the blind restoration problem, originally posed 

by Eq. (9), is reformulated as the minimization of the cost 

function in Eq. (11). Despite its non-convex nature and 

susceptibility to local minima, alternating minimization offers 

a viable strategy. By fixing one of the variables and optimizing 

with respect to the other, the problem becomes convex and 

solvable, providing an effective solution path for blind 

deconvolution [3, 8]. 

 

3.2 Enhanced design of space-adaptive regularization 

components 

 

To refine the restoration process, we now delve into the 

design of the space-adaptive components introduced in Eq. 

(11). These include the regularization parameter𝜆, the spatially 

varying weights 𝑤1(𝑥)  and 𝑤2(𝑥) , and the regularization 

operator 𝐶(𝑥). 

Traditionally, 𝜆  is treated as a global constant, applied 

uniformly across the entire image. However, in adaptive 

regularization, it is beneficial to allow 𝜆  to vary spatially, 

adapting different image regions according to local features. 

This dynamic approach improves restoration by fine-tuning 

regularization strength according to regional characteristics. 

For instance, regions with fine textures or edges benefit from 

weaker regularization to preserve detail, while smoother areas 

require stronger regularization to suppress noise. 

To achieve this, local image statistics have been employed 

to guide the spatial adaptation of 𝜆, mimicking the behavior of 

the human visual system and yielding promising results [48]. 

Building on this idea, we propose linking the concept of local 

total variation (LTV) to the adaptive function 𝑤2(𝑥), thereby 

enriching the regularization process with more nuanced 

information about local image features. Notably, LTV is 

particularly effective at distinguishing between smooth, 

textured, and edge regions, making it a valuable component in 

adaptive weighting. Further background regarding these 

advancements can be found in studies by Liu et al. [11] and 

Bredies et al. [49]. 

In our formulation, spatial adaptivity is governed jointly by 

the local standard deviation (LSD) and the LTV. Specifically, 

the regularization parameter 𝜆 (constant) is modulated by the 

adaptive weight 𝑤2(𝑥), defined as: 

 

𝑤2(𝑥) =
1

𝛾 +  𝑢(𝑥)
,   𝑥 ∈ Ω (13) 

 

where, 

 

𝑢(𝑥) = 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑑(𝑥). 𝑙𝑜𝑐𝑎𝑙_𝑇𝑉(𝑥) (14) 
 

Here, 𝑢(𝑥)  captures the local adaptivity within a 3×3 

neighborhood around pixel x in the estimated image 𝑓(𝑥) , 

computed as the product of LSD and LTV. This formulation 

ensures that 𝑤2(𝑥) assumes higher values in smooth regions 

where noise is more perceptible and lower values in textured 

or edge regions where detail preservation is critical. 

Furthermore, the parameter 𝛾 plays a pivotal role in shaping 

the dynamic range of 𝑤2(𝑥). Ideally, so as not to disrupt the 

role of 𝑤2(𝑥) in different scenarios 𝛾 should satisfy 𝛾 ≪ 𝑢(𝑥) 

in edge-rich regions and 𝛾 ≫ 𝑢(𝑥) in flat regions. As a result, 

𝑤2(𝑥) lies within the range: 
 

𝑤2(𝑥) ∈ [
1

max
𝑥∈Ω

 {𝑢(𝑥)}
,

1

𝛾
] (15) 

 

To further enhance adaptivity, we propose relating 𝛾  to 

global image statistics, such as the overall variance. 

Specifically, a high global variance suggests the need for a 

wider dynamic range in 𝑤2(𝑥) , achieved by selecting a 
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smaller 𝛾 . Conversely, a low global variance implies a 

narrower dynamic range, warranting a larger 𝛾 . Thus, the 

design of the function 𝑢(𝑥)  is central to achieving precise 

spatial control over regularization and the key challenge lies 

in optimizing 𝛾 to align with image features. 

Regarding the fidelity weight, 𝑤1(𝑥) is set as a constant 

value 𝛼 across the entire image: 

 

𝑤1(𝑥) = 𝛼,   𝑥 ∈ Ω (16) 

 

The parameter 𝛼  works in the opposite way to λ, but 

together they help balance data fidelity and image smoothness. 

Both 𝛼 and 𝜆 are selected based on the signal-to-noise ratio 

(SNR) and are held constant for each restoration scenario. In 

our experiments, these parameters -along with 𝛾- are tuned 

empirically to ensure robust adaptivity across various noise 

levels and image types. 

Finally, the smoothness requirement on the solution is 

enforced by the regularization operator 𝐶, which is chosen as 

a high-pass filter. Specifically, we use the two-dimensional 

Laplacian operator [5]: 

 

𝑐 = [
0 1 0
1 −4 1
0 1 0

] (17) 

 

The term associated with this operator corresponds to a 

high-pass filtered version of the image 𝑓(𝑥), and thus seeks to 

minimize the amount of high-frequency energy in the restored 

image [1]. 

 

 
4. OPTIMIZATION SCHEME 

 
Building on the regularization model presented in Section 3, 

we now introduce a blind image restoration framework 

designed to jointly estimate the original image and the 

unknown blur kernel (PSF) from a degraded observation. The 

proposed approach integrates gradient-based iterative image 

estimation (Subsection 4.1) with PSO-based blur 

identification (Subsection 4.2) through an alternating 

minimization strategy (Subsection 4.3). 

 

4.1 Restoration via steepest descent 

 

When the PSF is known, the restoration problem reduces to 

minimizing a cost function with respect to the image. Several 

optimization techniques exist for this task, including gradient-

based methods, expectation-maximization (EM), prediction 

error-based techniques, and least squares approaches [2, 8]. 

In our method, we adopt the steepest descent algorithm to 

minimize the cost function in Eq. (11) with respect to the 

image estimate 𝑓𝑘(𝑥), defined over an M×N grid. The update 

rule is given by: 
 

𝑓𝑘+1(𝑥) = 𝑓𝑘(𝑥) −
𝜇

𝑀𝑁
𝑝𝑘(𝑥) (18) 

 

where, the gradient 𝑝𝑘(𝑥) is calculated by: 
 

 𝑝𝑘(𝑥) =
𝜕𝐽[ℎ, 𝑓𝑘(𝑥)]

𝜕𝑓𝑘(𝑥)
 (19) 

 𝑝𝑘(𝑥) = −2{𝑤1(𝑥)[𝑦(𝑥) − ℎ(𝑥) ∗ 𝑓𝑘(𝑥)]

∗ ℎ(−𝑥)}

+ 2 𝜆{𝑤2(𝑥)[𝐶(𝑥) ∗ 𝑓𝑘(𝑥)]}

∗ 𝐶(−𝑥) 

 

Here 𝑓𝑘(𝑥) is the restoration after k iterations, initialized as 

𝑓0(𝑥)  = 𝑦(𝑥) . The step size 𝜇 , a small positive number, 

balances convergence speed and stability. Since the cost 

function is convex, the algorithm converges to the global 

minimum. This method also allows for easy incorporation of 

constraints on the image and PSF. Iterative methods avoid 

explicit inverse operations, allow real-time monitoring, and 

enable noise control through constraints. Spatial adaptivity 

and parameter updates can also be incorporated during 

iteration [1, 5]. 

 

4.2 Blur identification via PSO 

 

While the previous subsection assumes the PSF ℎ(𝑥)  is 

known, in real-world scenarios it must be estimated from noisy, 

blurred data. Various methods exist for this purpose [8, 10], 

including metaheuristic techniques [27, 29]. We adopt a PSO-

based approach to estimate the PSF by minimizing the fidelity 

term of the cost function in Eq. (11). A common model of PSF 

is a uniform 2D blur, which approximates out-of-focus 

degradation and is widely used in simulations [1]. The blur is 

defined as: 

 

ℎ(𝑖, 𝑗) = {

1

(𝐿)2
, 𝑖𝑓 − 𝑙 ≤ 𝑖, 𝑗 ≤ 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20) 

 
where, L=2l+1 is an odd integer representing the blur kernel 

size. 

To estimate the PSF, we define it as a square matrix of size 

L × L, requiring the estimation of 𝐿2 coefficients. The PSO-

based approach seeks the coefficient values that minimize the 

cost function in Eq. (11), subject to the constraints: 

 

ℎ̂(𝑥) ≥ 0, 𝑥 ∈ 𝐷 (21) 

 

and  

 

∑ ℎ̂(𝑥) = 1

𝑥∈𝐷

 (22) 

 

These constraints ensure the PSF is non-negative and 

preserves the image’s mean intensity. Incorporating prior 

knowledge about the blur helps reduce ambiguity in the 

solution space [2]. 

Each particle, in PSO, represents a candidate PSF estimate, 

modeled as a point in an n -dimensional space. The swarm is 

defined as: 

 

𝑋 = (𝑥1, 𝑥2 , … , 𝑥𝑚)𝑇 =  [

𝑥11𝑥12

𝑥21𝑥22

…
…

𝑥1𝑛

𝑥2𝑛

⋮ ⋱ ⋮
𝑥𝑚1𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (23) 

 

where, m is the swarm size and n = 𝐿2 is the number of PSF 

coefficients (dimension of the search space). 

 

3078



 

Algorithm 2: PSF Identification 
1) Input: observed image 𝑦(𝑥), initial image estimate 

𝑓(𝑥). 

2) Initialize swarm with random values in [0, 1]. 

3) Evaluate the fidelity term of Eq. (11) for each 

particle. 

4) Update personal best p, global best Gb, and 

velocity using Eq. (3), Eq. (4), and Eq. (1). 

5) Modify velocity according to Eq. (7). 

6) Move particles to new positions using Eq. (8). 

7) Repeat steps 3–6 until convergence or maximum 

iterations are achieved. 

 
To initialize the swarm, one particle is set to a uniform value 

(e.g., [0.1, 0.1, …, 0.1] in the case of 𝐿 = 3 ) to reflect the 

average blur, while others are randomly sampled from the 

interval [0, 1]. The PSO algorithm then searches for the 

optimal solution in the vicinity of this reference point. Upon 

convergence, the final global best Gb provides the estimated 

PSF. 
 

4.3 Alternate minimization for blind restoration 
 

Having addressed image restoration and blur identification 

separately, we now integrate both into a unified blind 

restoration framework. This is achieved through an alternating 

minimization strategy, where each component is iteratively 

refined based on the other. 

The blind restoration process consists of two main steps: 

BI-step (Blur Identification): Given an image estimate 

𝑓(𝑥) , use PSO (Algorithm 2) to estimate the blur ℎ̂(𝑥)  by 

minimizing the fidelity term of Eq. (11). 

R-step (Image Restoration): Using the estimated blur 

ℎ̂(𝑥), apply the steepest descent method (Eq. (18)) to update 

the estimated image. 

By alternating between these steps, blind image restoration 

is achieved. 

 

Algorithm 3: Main Restoration Algorithm 

1) Initialization: Set the observed image 𝑦(𝑥) as 

the initial estimate 𝑓(𝑥) of the true image.  

2) Initial PSF Estimation: Given 𝑓(𝑥) and 𝑦(𝑥), 

minimize the fidelity term in Eq. (11) using the 

PSO procedure (Algorithm 2) to obtain the 

initial estimated blur PSF coefficients. 

3) Intermediate Image Restoration: Using the 

estimated PSF ℎ̂(𝑥)  and the observed image 

𝑦(𝑥), apply the update procedure (Eq. (18)) for 

a fixed number of iterations to compute an 

intermediate restored image. 

4) PSF Re-estimation: Regard the intermediate 

restored image as the new estimate of the true 

image, and re-estimate the blur PSF using the 

PSO procedure (Algorithm 2). 

5) Termination Check: Repeat steps 3 and 4 until 

either no significant improvement is observed 

in the image restoration step (Step 3), or the 

maximum number of main loop iterations is 

reached. 
 

In steps 2 and 4, the swarm is initialized with uniformly 

distributed values in [0, 1], including the best solution from the 

previous stage. To ensure smoothness, we can incorporate the 

constraint std(Gb) <  𝜀 in step (2) (for example ε = 0.07) and 

std(Gb)  denotes the standard deviation of the global best 

solution coefficients. Under this alternating framework, each 

step optimizes a quadratic cost function, resulting in a simple 

and efficient algorithm. Moreover, by employing distinct 

optimization techniques for image and blur estimation, the 

scale ambiguity problem discussed in the work of You and 

Kaveh [8] is effectively mitigated. 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section presents the blind restoration of images 

degraded by uniform blur under various conditions, including 

different blur sizes and noise levels. The objective is to 

demonstrate the effectiveness of the proposed method through 

simulation examples and to analyze the quality of both the PSF 

and image estimations across multiple degradation scenarios. 

The Improved Signal-to-Noise Ratio (ISNR) is used to 

evaluate restoration performance. ISNR is defined as [48]: 

 

𝐼𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
‖𝑦−𝑓‖2

‖𝑓̂−𝑓‖
2  (24) 

 

where, 𝑦, 𝑓, and 𝑓 represent the degraded, true, and recovered 

images respectively. 

This study involves two principal simulation scenarios. The 

first simulation compares the performance of our proposed 

PSO variant with both the standard PSO [39] and the PSO-

AWDV variant [45], a recent advancement in the field. The 

second simulation evaluates the effectiveness of the adaptive 

regularization model applied to image restoration, using a 

consistent framework to enable fair comparisons with classical 

established methods such as SDR [8] and PDR [9]. 

For all experiments, we set the following parameters based 

on empirical tuning: K = 30 for PSO iterations, m = 20 for 

swarm size, Na = 10 for main loop alternations, and Nt = 8 for 

image update iterations. 

 

5.1 Simulation 1 

 

In the first set of experiments, we use the well-known 

“Cameraman” image (256×256 pixels, 8-bit grayscale) as the 

original image (Figure 1(a)).  

The original image is degraded by applying a 3×3 uniform 

blur and adding Gaussian noise at SNR = 30 dB, resulting in 

the image shown in Figure 1(b). To estimate both the PSF and 

the original image, we apply the proposed algorithm to the 

degraded image and repeat the process ten times. The only 

prior knowledge is the PSF size. Each simulation performs a 

total of 80 restoration iterations (Na = 10, Nt = 8). Moreover, 

the parameter settings are given as: 𝑐1 = 2 , 𝑐2 =1 for the 

acceleration coefficients, w=0.9 for the inertia weight, and (a,b) 

=(1,0.5) for the hyperbolic tangent parameters. The PSO-

AWDV variant uses the parameter settings reported in [45]. 

And about the R-step, we put μ = 60 and γ = 0.005, which 

depends on the image at hand. While the others, namely α and 

𝜆 , depend on the used SNR value. All parameters were 

heuristically selected to optimize restoration performance. The 

obtained results are presented in Table 1. 

Where ∑ ℎ𝑖 denotes the sum of estimated PSF coefficients 

per run, 𝜎ℎ denotes the standard deviation of those coefficients, 

and MSE denotes the mean squared error between the 
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estimated and true blur kernels. 

 

  
(a) Original image (b) Degraded image 

  

 
(c) Restored image using the proposed method 

 

Figure 1. Blind restoration results for the “Cameraman” 

image degraded by a 3×3 uniform blur and additive white 

Gaussian noise (AWGN) at 30 dB SNR 

 

As illustrated in Table 1, the proposed PSO variant 

consistently achieves the lowest standard deviation in PSF 

coefficients (𝜎ℎ  ranging from 0.0039 to 0.0095), indicating 

superior smoothness and stability in blur kernel estimation. 

This smoothness directly contributes to the highest average 

ISNR of 6.03 dB, along with the lowest ISNR standard 

deviation of 0.10, confirming the method’s robustness and 

reliability in image restoration. Moreover, in terms of MSE, 

the table shows that our PSO variant achieves the lowest error, 

reducing the MSE by nearly 74% compared to PSO-AWDV 

and by about 30 times compared to Standard PSO. These 

results demonstrate that our proposed PSO variant provides 

the most accurate blur estimation among the three tested 

versions, highlighting the effectiveness of the modifications 

introduced. In comparison, the standard PSO exhibits 

significantly higher variability in PSF estimation, with 𝜎ℎ 

reaching up to 0.0721, which reflects poor smoothness and 

instability. Consequently, it yields the lowest restoration 

performance, with an average ISNR of 3.99 dB and a high 

standard deviation of 1.44, indicating inconsistent results 

across runs. The PSO-AWDV variant shows moderate 

improvement over the standard PSO, with 𝜎ℎ  values up to 

0.0267, and achieves an average ISNR of 5.24 dB with a 

standard deviation of 0.92. While it performs better than the 

standard PSO, it remains less stable and less accurate than the 

proposed method. 

Overall, the proposed PSO demonstrates clear superiority in 

both PSF estimation and restoration quality, combining 

smooth kernel estimation with high accuracy and exceptional 

consistency. 

 

 
(a) Evolution of ISNR 

 

 
(b) Evolution of the maximum LSD function 

max
𝑥∈Ω

𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑑(𝑥) 

 

Figure 2. Restoration dynamics for the “Cameraman” image 

during the iterative process 

 

Table 1. Results of the proposed method for the “Cameraman” image degraded by a 3×3 uniform blur with 30 dB AWGN 
 

Experiment 

Number 

PSO VARIANTS 

Standard PSO PSO-AWDV Our PSO Variant 

ISNR ∑ 𝒉𝒊  𝝈𝒉 ISNR ∑ 𝒉𝒊  𝝈𝒉 ISNR ∑ 𝒉𝒊  𝝈𝒉 

1 5.8117 0.9988 0.0081 5.9331 1.0019 0.0095 6.1261 1.0012 0.0050 

2 5.2095 1.0009 0.0150 3.2780 1.0028 0.0267 5.9330 1.0011 0.0092 

3 3.7923 1.0022 0.0318 5.8926 1.0020 0.0087 6.1366 1.0020 0.0066 

4 2.1825 1.0020 0.0567 5.0248 1.0018 0.0228 6.2215 1.0017 0.0039 

5 4.5550 1.0065 0.0292 6.1582 1.0016 0.0046 6.0487 1.0018 0.0071 

6 5.8734 1.0022 0.0101 5.3202 1.0013 0.0185 5.9907 1.0014 0.0057 

7 2.9327 1.0045 0.0551 4.7357 1.0014 0.0214 5.9844 1.0012 0.0065 

8 4.7334 1.0040 0.0264 5.6745 1.0018 0.0105 5.9214 1.0015 0.0095 

9 2.5687 1.0017 0.0721 4.3074 1.0018 0.0260 5.9745 1.0017 0.0081 

10 2.2550 1.0040 0.0474 6.0600 1.0019 0.0052 5.9257 1.0019 0.0080 

Average 3.9914 --- --- 5.2384 --- --- 6.0263 --- --- 

Std 1.4406 --- --- 0.9212 --- --- 0.1034 --- --- 

MSE 9.40e-04 1.19e-04 3.10e-05 
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Figure 2(a) depicts the evolution of ISNR throughout the 

restoration process. The horizontal axis corresponds to the 

number of iterations performed using the steepest descent 

method in the R-step. The step size μ is carefully selected to 

ensure rapid convergence of the recursive update (Eq. (18)) 

while maximizing ISNR. 

As shown, the results indicate that the iterative process 

stabilizes within approximately 70 iterations. Figure 2(b) 

illustrates the progression of the function 𝑚𝑎𝑥
𝑥∈Ω

𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑑(𝑥), 

which corresponds to the maximum local standard deviation 

computed at each iteration over a 3×3 window centered at 

pixel x in the restored image 𝑓(𝑥). This metric reflects local 

contrast and texture variations. By incorporating LTV into the 

adaptive weight 𝑤2(𝑥), the proposed method demonstrates its 

ability to recover fine structural details and improve the 

preservation of edges and textured regions. 

As seen in the restored image in Figure 1(c), the proposed 

approach achieves effective restoration by recovering fine 

details while minimizing ringing artifacts and noise in relevant 

areas of the image. 
 

5.2 Simulation 2 
 

This set of experiments explores the trade-off between data 

fidelity and solution smoothness within the proposed adaptive 

regularization framework. The analysis focuses on the 

influence of two key parameters-α, which controls fidelity to 

the observed data and λ, which governs the strength of 

regularization-on restoration performance under varying noise 

conditions. Additionally, spatial adaptivity is achieved 

through the weight function 𝑤2(𝑥) , which captures local 

image characteristics by combining LTV and LSD, allowing 

the method to adapt to diverse feature types across the image 

domain. 

To comprehensively evaluate the method’s performance, 

four experimental scenarios are considered: 

Noise-level sensitivity: Assessing robustness across a range 

of SNR. 

Image-type sensitivity: Evaluating restoration quality on 

images with varying textures and frequency content. 

Time complexity: Measuring runtime performance across 

blur kernels and image sizes. 

Comparative analysis: Benchmarking against existing 

methods (SDR and PDR) under severe blur conditions. 
 

5.2.1 Sensitivity to noise levels 

To assess the algorithm’s robustness to noise, the original 

“Cameraman” image Figure 1(a) is degraded using a 3×3 

uniform blur and AWGN at SNR levels of 20, 30, 40, 50, and 

60 dB. Some of corresponding degraded images are shown in 

Figures 3(a), 3(b), and 3(c), while the restored results from the 

final run of each scenario are presented in Figures 4(a), 4(b), 

and 4(c).  
 

Table 2. Restoration results using the proposed method for 

the “Cameraman” imagedegraded by a 3×3 uniform blur 

under varying levels of AWGN 
 

SNR (dB) 𝜶 (𝒘𝟏) 𝝀 Average ISNR (dB) 𝝈𝐈𝐒𝐍𝐑 

20 300 0.2 3.2746 0.0519 

30 3000 0.2 6.0263 0.1034 

40 5000 0.08 8.6135 0.1118 

50 5000 0.08 9.4424 0.1515 

60 5000 0.08 9.5018 0.1221 

 

For each noise level, the algorithm is executed ten times, 

and the average ISNR and its standard deviation are computed. 

The results are provided in Table 2. 

 

 
(a) SNR=20 dB 

 

 
(b) SNR=40 dB 

 

 
(c) SNR=60 dB 

 

Figure 3. “Cameraman” image degraded by a 3×3 uniform 

blur and AWGN at different SNR levels 

 

The data reveal a clear trend: ISNR increases as noise 

decreases, confirming the algorithm’s effectiveness in cleaner 

environments. This behavior reflects the dynamic role of the 

regularization parameters: 

At higher SNRs, larger values of α and smaller values of λ 

emphasize deblurring, allowing the algorithm to recover finer 

details. 

At lower SNRs, smaller α and larger λ shift the focus toward 

smoothing, helping to suppress noise and stabilize the solution. 

These observations show the importance of tuning α and λ 

according to the noise level to achieve optimal restoration 

performance. 

It is also noteworthy that, for SNR ≥ 40 dB, the restored 

images exhibit strong deblurring. However, ringing artifacts 

may appear in smooth regions near sharp transitions such as 

the boundary between the “Cameraman” and the camera 

support in Figure 4(c). These artifacts are likely caused by 

inaccuracies in blur estimation, compression effects, or 

residual noise [18]. 
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(a) SNR=20 dB 

 

 
(b) SNR=40 dB 

 

 
(c) SNR=60 dB 

 

Figure 4. Blind restoration results of the degraded images in 

Figure 3 
 

5.2.2 Sensitivity to image characteristics 

In this study, we assess the adaptability of the proposed 

method to images with varying structural and textural 

properties. Specifically, we apply the algorithm to the well-

known “Lena” and “Baboon” images, each sized 256×256 

pixels in 8-bit grayscale. Both images (Figure 5(a) and Figure 

6(a)) are degraded using a 3×3 uniform blur and 30 dB AWGN, 

as shown in Figure 5(b) and Figure 6(b). 

The corresponding restored results are presented in Figure 

5(c) and Figure 6(c), where the quantitative evaluations are 

summarized in Table 3. 

In this table, the proposed method exhibits strong detail 

preservation despite the presence of prominent high-frequency 

components—such as hair strands in “Baboon” and feather 

textures in “Lena”—the proposed method demonstrates strong 

detail preservation. This is primarily attributed to the 

incorporation of LTV into the adaptive weight function 𝑤2(𝑥), 

which enables spatially responsive regularization. 

The parameter γ, which modulates the behavior of 𝑤2(𝑥), is 

observed to be inversely proportional to the image variance, 

allowing the method to adapt to varying texture complexity. 

 

Table 3. Restoration results using the proposed method on 

various images degraded by a 3×3 uniform blur and 30 dB 

AWGN 
 

Images 𝒘𝒔 𝜸 Average 𝐈𝐒𝐍𝐑(dB) 

Cameraman 0.0598 0.005 6.0263 

Lena 0.0352 0.008 4.2805 

Baboon 0.0272 0.08 4.5261 

 

 
(a) Original image 

 

 
(b) Degraded image 

 

 
(c) Restored image using the proposed method 

 

Figure 5. Blind restoration results for the “Lena” image 

degraded by a 3×3 uniform blur and AWGN at 30 dB SNR 
 

   
(a) Original image (b) Degraded image (c) Restored image using the proposed method 

 

Figure 6. Blind restoration results for the “Baboon” image degraded by a 3×3 uniform blur and AWGN at 30 dB SNR 
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Interestingly, the “Cameraman” image yields the highest 

ISNR, which can be explained by its relatively simple 

structure and lower frequency content. Surprisingly, “Baboon” 

achieves a slightly higher ISNR than “Lena”, despite Lena’s 

smoother appearance. This counterintuitive result may be due 

to the presence of sharp transitions in Lena’s feather region, 

which pose greater challenges for accurate restoration. These 

plots confirm the algorithm’s ability to dynamically adapt its 

regularization strategy to preserve fine details in both textured 

and edge-rich regions. 

To further illustrate the method’s responsiveness to local 

image features, Figures 7(a) and 7(b) visualize the evolution 

of the maximum LSD during the restoration process for Lena 

and Baboon, respectively. These plots confirm the algorithm’s 

ability to dynamically adapt its regularization strategy to 

preserve fine details in both textured and edge-rich regions. 

 

  
(a) For “Lena” image (b) For “Baboon” image 

 

Figure 7. Evolution of the maximum LSD function, max
𝑥∈Ω

𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑑(𝑥), during the iterative process 

 

5.2.3 Runtime analysis 

To evaluate the performance of the method in terms of 

computational complexity, we report runtime statistics for the 

“Lena” image at resolutions of 256×256 and 512×512 pixels. 

Both images were degraded using blur kernels of sizes 3×3, 

5×5 and 7×7. The runtime measurements were obtained on an 

Intel Core i3-2310M CPU (2.1 GHz, 4 GB RAM, Windows 7) 

and are summarized in Table 4.  

 

Table 4. Runtime (in seconds) statistics illustrating the 

scaling behavior of the modified PSO algorithm and the 

gradient-based method with varying image and kernel sizes 

 

Size of 

image 

Size of Kernel 

3×3 5×5 7×7 

Our 

PSO 

Gradient 

method 

Our 

PSO 

Gradient 

method 

Our 

PSO 

Gradient 

method 

256×256 14 25 32 26 57 27 

512×512 51 110 124 117 222 125 

 

These results clearly illustrate the computational cost and 

the scaling behavior of our method. From the table, we observe 

that image size has a considerable impact on the runtime of 

both optimization methods, reflecting the higher 

computational load required to process more pixels. In contrast, 

blur size influences the runtime of the PSO algorithm much 

more strongly than that of the gradient method, which shows 

only a modest increase. As the PSF size grows, the number of 

coefficients to be estimated also increases, thereby raising the 

computational complexity, as is typical for metaheuristic 

methods. 

 

5.2.4 Comparison with existing methods 

To benchmark the proposed method against existing 

approaches, we perform blind deconvolution on the “Lena” 

image degraded by uniform blur kernels of size 5×5 and 7×7, 

under noiseless and 30 dB noise conditions (see Figure 8). 

We compare our method with SDR and PDR, which use 

similar regularization schemes. The results are summarized in 

Table 5, using ISNR as the evaluation metric. SDR and PDR 

results are taken from the paper by Chen and Yap [9].  

 

  
(a) 5×5 blur with SNR = 30 

dB 

(b) 5×5 blur without noise 

  

  
(c) 7×7 blur with SNR = 30 

dB 

(d) 7×7 blur without noise 

 

Figure 8. “Lena” image degraded by uniform blur under 

noiseless and SNR = 30 dB 
 

In the noiseless scenario, the proposed method achieves the 

highest ISNR values, significantly outperforming both SDR 

and PDR. Under noisy conditions, it still surpasses SDR and 

performs slightly better than PDR. These results highlight the 

method’s robustness to blur severity and its ability to maintain 

high restoration quality even in challenging environments.
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Table 5. Blind deconvolution results for the “Lena” image 

degraded by severe uniform blurs of various sizes, using the 

SDR and PDR methods alongside the proposed algorithm 

 
 ISNR (Noise at 30 dB) ISNR (Noiseless) 

Size of 

PSF 

SDR 

[8] 

PDR 

[9] 

Proposed 

method 

SDR 

[8] 

PDR 

[9] 

Proposed 

method 

5×5 1.67 3.64 3.97 2.00 3.98 5.69 

7×7 1.02 3.39 3.53 1.25 3.60 4.45 

 

 
(a) Restoration from 5×5 blur for SNR = 30 dB 

 

 
(b) Restoration from 5×5 blur without noise 

 

 
(c) Restoration from 7×7 blur for SNR = 30 dB 

 

 
(d) Restoration from 7×7 blur without noise 

 

Figure 9. Restored “Lena” images using the proposed 

method, corresponding to the degradation cases in Figure 8 

 

Although the ISNR values obtained with our method may 

appear relatively low in certain cases, the visual quality of the 

restored images, particularly under low-noise conditions, is in 

fact quite satisfactory. As shown in Figure 9, the visual quality 

of the restored images is better than what the numerical 

metrics alone may indicate, showing that our method works 

well in real-world applications. 

Overall, the experimental findings confirm the efficiency of 

the proposed adaptive regularization framework. Specifically, 

the method: 

Balances fidelity and smoothness across a wide range of 

noise levels. 

Adapts dynamically to noise and image structure, 

preserving fine details in textured and edge-rich regions. 

Outperforms existing techniques under severe blur, 

particularly in low-noise conditions. 

These results confirm the effectiveness of the proposed PSO 

variant and its suitability for high-quality blind image 

restoration across diverse scenarios. 

However, like most iterative methods, our approach has a 

significant drawback in terms of execution time, which limits 

its applicability to large images, complex blurs, and real-time 

scenarios. This explains why metaheuristic methods are often 

employed to identify blurs modeled by only a few parameters, 

such as the standard deviation of a Gaussian blur or the angle 

and length of a motion blur.  

Another limitation of this method lies in its generalization 

to more complex types of blurs, such as non-uniform or 

spatially varying blur. Addressing this challenge remains 

difficult in blur identification, as highlighted in several studies 

(see, for example the study by Almeida and Figueiredo [46]). 

Methods that perform well for a specific blur type often fail 

for others, since they require adapting the identification 

strategy. Even recent methods based on deep learning 

encounter this limitation [21], as their performance is often 

restricted to the blur types seen during training. Hybrid 

identification methods based on metaheuristics, however, may 

help mitigate this issue, as they allow the straightforward 

incorporation of additional constraints and blur priors. 
 

 

6. CONCLUSIONS 

 

This work proposed a robust and adaptive framework for 

blind image restoration, combining a space-adaptive 

regularization model with a PSO strategy. The enhanced PSO 

variant demonstrated clear advantages in estimating blur 

kernels with smooth, accurate and stable parameters, as 

evidenced by consistently low standard deviations in PSF 

coefficients across multiple trials. This smoothness directly 

enhances restoration quality, yielding the highest ISNR values 

and the lowest variability among competing methods 

(standard PSO and the recent PSO-AWDV variant). Such 

stability in blur estimation ensures consistent and reliable 

performance, even under varying noise levels. 

Beyond optimization, the adaptive regularization model 

plays a pivotal role in tailoring the restoration process to 

different image and noise conditions. The fidelity weight α and 

regularization parameter λ were effectively tuned in relation to 

SNR values, achieving a balanced trade-off between 

deblurring and noise suppression. Moreover, the spatially 

varying weight 𝑤2(𝑥), governed by LTV and LSD, allowed 

the method to respond dynamically to diverse image features, 

preserving fine details in textured and edge-rich regions across 

a range of degradation scenarios. 
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Comprehensive experimental evaluations, including 

comparisons with classical approaches such as SDR and PDR, 

confirmed the effectiveness and versatility of the proposed 

method. The results highlight its capability to handle fairly 

severe blur and diverse image types. When the weighting 

function parameters are selected appropriately based on to the 

image characteristics, the method demonstrates high 

efficiency, making it suitable for a wide range of practical 

imaging applications. A key limitation of the method is its 

computational complexity when processing large-scale 

images and under severe blur conditions.  

Future research could focus on extending the framework to 

address non-uniform or spatially variant blur and exploring 

hybrid approaches that incorporate deep learning to further 

enhance flexibility and performance. 
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