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Traditional image restoration methods often assume prior knowledge of the blur kernel,
which is rarely available in real-world scenarios. This makes the recovery process a blind
image restoration problem. In this work, we introduce an iterative space-adaptive
regularization framework for blind image restoration, combining two optimization
techniques: a robustly improved Particle Swarm Optimization (PSO) approach with a
gradient-based steepest descent technique. The enhanced PSO reliably and efficiently
estimates the parameters of a parametric point spread function (PSF) by minimizing an
appropriate objective function. Meanwhile, the steepest descent method reconstructs the
original image from the corrupted observation. The proposed approach minimizes a cost
function comprising a restoration error term and an adaptive regularization term, where the
latter incorporates Total Variation (TV) concepts to effectively preserve image edges. In
addition, a fine balance between the fidelity and smoothing terms, along with an adaptive
selection of weight parameters based on image and noise characteristics. Experimental
results on synthetically degraded images highlight the superior performance of the proposed
PSO in PSF estimation, attaining excellent quality restorations with improved accuracy and

robustness compared to conventional methods.

1. INTRODUCTION

Digital image restoration is an engineering discipline that
explores approaches for reconstructing an unknown true scene
from corrupted observations. Most traditional methods assume
that the convolution operator, which models the blur, is known
in advance. However, in practical imaging situations, this is
rarely the case [1]. Therefore, this problem is commonly
formulated as a blind image deconvolution (BID) task, with
the unknown blur modeled as a PSF. Thus, BID involves
reconstructing both the original image and the blur kernel from
the distorted image, based on partial information about the
imaging framework [2]. BID is considered a practical and
important method for restoring images. The blind
deconvolution problem is encountered in a variety of technical
fields [3], including remote sensing, medical imaging,
astronomical imaging, microscopy, photography, optics,
super-resolution applications, motion tracking technology,
and more. However, much of the analysis assumes that the
observed image is generated by a linear spatially invariant
(LSI) system corrupted by noise [3].

In the literature, there are two primary approaches to blind
image deconvolution [2, 3]:

(1) Separate PSF Identification: The PSF is estimated
independently of the true image, allowing it to be used later
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with conventional restoration methods. Here, PSF estimation
and image restoration are treated as distinct steps. Often, a
parametric blur model is employed in this approach.

(2) Joint Estimation: The identification process is integrated
with the restoration algorithm, enabling simultaneous
estimation of both the PSF and the original image. However,
many practical techniques in this area adopt an alternating
optimization strategy, iteratively refining the image and PSF
estimates, rather than computing a true joint solution.

Blind deconvolution represents an ill-posed problem. It is
often effectively managed through regularization strategies.
As a fundamental component of both blind and nonblind
deconvolution, regularization plays a crucial role in obtaining
stable solutions [3]. However, the phenomenon of ringing
effects is often produced around sharp intensity transitions
when using global regularization in ill-posed image
reconstruction problems [4]. This issue motivates the selection
of spatially adaptive methods to mitigate such restoration
artifacts. These adaptive approaches typically employ iterative
algorithms [1], which have become prevalent in practice due
to their ability to efficiently implement adaptive regularization
schemes [5]. For comprehensive discussions on these methods,
we refer readers to the studies by Campisi and Egiazarian [3]
and Satish et al. [6]. Furthermore, the research of Chaudhuri et
al. [7] provides an informative investigation into
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regularization-based blind deconvolution methods, including
their convergence properties.

Numerous studies in the literature explore iterative methods
for blind image restoration (e.g., [8-11]). In a foundational
contribution, You and Kaveh [8] proposed a classical method
based on symmetric double regularization (SDR) for space-
adaptive BID. Based on the assumption that both the original
image and the blur are piecewise smooth, the approach
minimizes a cost function including a reconstruction error
term and two regularization components—one for the image
and the other for the blur. The method also addresses a scaling
issue inherent in the cost function through alternating
optimization. Solutions using steepest descent and conjugate
gradient strategies yield effective results for uniform blur
under Gaussian noise at various levels. Further extending the
SDR framework, Chen and Yap [9] introduced a parametric
double regularization (PDR) method to address the blind
deconvolution problem under various constraints and
conditions related to the support size and nature of the PSF. In
this work, a new cost function and a soft parametric learning
term were proposed within a double regularization procedure,
and an alternating minimization technique was employed to
estimate both the blurring function and the true image
iteratively using the conjugate gradient method.

A detailed discussion of regularization-based restoration
methods can be found in the papers by Campisi and Egiazarian
[3], Chen and Ma [12], and Bertero et al. [13]. Following this,
and still within the regularization framework, numerous
regularization approaches based on the TV concept have been
developed to solve the BID problem, for example, [11, 14-17].
The methods in the papers by Chan and Wong [14] and Money
and Kang [16] performed well on specific types of blurred
images, such as out-of-focus blurs with simple backgrounds,
but were less effective for images containing complex
structures. Later, Li et al. [18] extended the approach from the
study by Chan and Wong [14] to handle images degraded by
more complicated blur patterns. In the present work, the
double regularization process is replaced by a split objective
formulation, which is minimized using an extended split
Bregman iteration.

While regularization-based iterative methods have shown
promising results in blind image restoration, they often rely on
handcrafted assumptions and require careful parameter tuning.
Moreover, accurately modeling image priors within
conventional optimization frameworks remains a persistent
challenge. To overcome these limitations, recent advances in
machine learning have demonstrated superior performance in
image restoration tasks. These techniques can broadly be
classified into two categories: approaches that directly
estimate the sharp image from the degraded input [19, 20] and
those that focus on estimating the blur operator [21, 22].
Within the second category, the Deep-Blur method [21]
introduces a convolutional neural network (CNN) architecture
coupled with a dedicated training strategy to successively
estimate both the blur operator and the sharp image from a
single blurry input. The framework comprises two
components: the Identification Network (IN), which extracts
low-dimensional blur parameters, and the Deblurring Network
(DN), which utilizes these parameters alongside the degraded
image to reconstruct a clear version. Notably, the DN adopts
an unrolled architecture to enhance reconstruction efficiency.
This design is particularly well-suited for correcting optical
systems affected by slowly varying PSF. Complementary to
this, another study [22] has investigated the use of inverse blur
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kernels. In that work, the authors proposed a CNN-based
approach that learns the deconvolution process by leveraging
the distinctive properties of the inverse kernel, thereby
enabling robust handling of spatially varying defocus blur. In
a different context, Aljadaany et al. [19] present a deep
learning—based solution to the BID problem. Rather than
estimating the blur kernel explicitly, the proposed network
aims to learn two proximal operators simultaneously: one
corresponding to the data fidelity term and the other to the
image prior. These operators are modeled using two distinct
CNNs and integrated within the Douglas—Rachford
optimization framework, offering a principled and flexible
alternative to traditional kernel estimation.

On the other hand, traditional approaches to blind image
restoration often rely on alternating minimization algorithms,
which iteratively estimate the blur kernel and the true image
(as in the methods mentioned above). However, classical
optimization methods often risk getting stuck in local minima
of the cost function, limiting their effectiveness. To address
this issue, modern metaheuristic algorithms [23]—such as
Particle Swarm Optimization (PSO), genetic algorithms (GA),
and many others—have been increasingly employed for blur
PSF estimation in blind deblurring, as evidenced by the studies
conducted by Dash and Majhi [24], Moghaddam [25],
Trubakov and Medvedkov [26], and Lai [27]. A related
approach by Sun et al. [28] utilized the histogram entropy of
both blurred and restored images as an objective function
within a PSO framework. The estimated Gaussian blur PSF
was subsequently applied in the Richardson—Lucy algorithm
to restore the original image from its distorted (blurred-only)
version. Sun et al. [29] proposed a technique that uses PSO to
estimate the unknown PSF of out-of-focus blur. Their
approach employs the wavelet transform to formulate the
objective function, followed by Wiener filtering in the Fourier
domain for image restoration. The study focuses solely on
blurred images. To enhance optimization robustness, Liand Li
[30] introduced an improved PSO strategy that integrated a
GA selection mechanism into the standard PSO framework to
avoid premature convergence. This hybrid approach was
applied to reconstruct images degraded by both Gaussian blur
and noise, optimizing the process through a fidelity-based
fitness function.

Since metaheuristic algorithms are efficient at solving
optimization problems in terms of computational complexity,
we adopt in this work a modified version of the standard PSO
algorithm to estimate the PSF of the blur instead of the
conjugate gradient method used in the works of You and
Kaveh [8] and Chen and Yap [9], and the generalized radial
basis function network (GRBFN) technique used in the paper
by Icho et al. [10]. In this paper, we address the BID problem
using a space-adaptive regularization approach. Our objective
is to jointly estimate the true image and the associated blurring
function. This can be expressed as a constrained optimization
problem, inspired by the methods proposed by You and Kaveh
[8], Chen and Yap [9], Icho et al. [10], and Sun et al. [28]. We
adopt an alternating minimization strategy: the cost function is
optimized with respect to the image using the steepest descent
method, and with respect to the blur using a modified PSO
algorithm. The cost function itself serves as the objective for
the PSO.

To enhance the restoration performance, particular attention
is given to the selection of parameters within the adaptive
regularization framework. Specifically, we integrate the local
total variation (LTV) concept into the adaptive function, which



enriches the regularization process by capturing the local
intrinsic characteristics of the image. A key contribution of our
work lies in the modified PSO, which is used to improve the
convergence path toward the optimal solution. This is
especially beneficial in multidimensional cases, such as ours
(uniform blur degradation), where the blur is modeled
parametrically as a set of coefficients within a finite support.
The improved PSO yields smoother and more accurate
solution trajectories, enhancing overall deconvolution
precision.

In this study, Section 2 outlines the PSO algorithm and its
modified variant. Section 3 explores the components of the
space-adaptive  regularization process. The iterative
optimization process, alternating between identification and
restoration steps, as well as the proposed method's framework,
are examined in Section 4. Simulation results of the proposed
method are analyzed in Section 5. The positive and negative
aspects of the suggested method are presented in the
conclusion, along with future perspectives.

2. PARTICLE SWARM OPTIMIZATION TECHNIQUE
2.1 Standard PSO and background

PSO is a metaheuristic optimization algorithm introduced
by Kennedy and Eberhart in 1995 [31], inspired by the
collective (social) behavior of biological swarms such as fish
schools and bird flocks. As one of the most prominent swarm
intelligence paradigms, PSO employs a simple yet effective
mechanism to guide particles toward globally optimal
solutions. It resembles genetic algorithms in particular aspects,
but it is considerably simpler due to the absence of crossover
and mutation operators [23]. Due to its ease of implementation
and efficiency, PSO has rapidly evolved and been effectively
adapted for different real-world optimization problems [32,
33], including image processing [34], controller design [35],
system identification [36], robot path planning [37], and more.

A swarm in PSO consists of a number of individuals. Each
individual is referred to as a “particle”, which represents a
potential solution to a particular problem. Every particle is
considered as a point in a D-dimensional space, and it moves
through the problem space to a new position in accordance
with an updated velocity, which takes into account its previous
velocity, the best position known to the particle, and the best
known global position. The velocity of the particles
determines their direction and travel distance. Each particle's
performance is evaluated according to a predetermined fitness
function (objective function), which depends on the specific
problem being considered.

In PSO, An individual particle i includes three vectors: its
location in the D-dimensional search space X; =
(%1, Xi2, -, Xip), the best position that it has independently
found P; = (pi1,Piz,--»Pip) » and its velocity V; =
Vi1, Vi, -, Vip). The initial particle positions were generated
randomly with a uniform distribution throughout the search
space. This last is particularly important for multimodal
problems. The initial velocity of a particle can be taken as zero.
The particles subsequently move throughout the search space
according to a simple set of update equations. At each iteration,
the algorithm updates the entire swarm by adjusting the
velocity and the position of each particle in every dimension
based on the following rules:
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Vig(t +1) = w v, (t)
+ ¢y (O [pia ()

— x;q(O)]+c,15(£) [Ghy (£) (D
— Xiq (t)]
Xig(t +1) = x;4(t) +vig(t + 1) )

where, Gb is the best solution of all particles, and w denotes
the inertia weight of velocity [38], and it can be defined as a
positive constant or even a positive linear or nonlinear function
of time. The parameters c¢; and c, are two positive constants
which denote the acceleration coefficients, r; and r, are
random numbers uniformly distributed in the range [0,1]
introducing stochasticity, and t is the number of generations.
The second part of Eq. (1) is the “cognition” part, which
denotes the private thinking of the particle itself. The third one
is the “social” part, which indicates the collaboration among
the particles [23, 38, 39].

For minimization, the best position of each particle is
updated at every iteration as follows:

pi(t),
x;(t+ 1),

if flxi(t+1) = fFpi (D)

otherwise

Pt +1) = { 3)

where, f(.) denotes the objective function to be optimized.
The global best position, Gb, is determined by selecting the
best among all particles and is given by:

Gb(t+1) =arg rrzgi,n fpi(t+ 1)) (4)

Due to its straightforward implementation, the original PSO
algorithm has advanced rapidly in recent years, demonstrating
strong capabilities to solve real-world optimization problems.
However, like most population-based evolutionary
computation (EC) algorithms, PSO particles can easily
become trapped in local optima —Ileading to premature
convergence—uparticularly when addressing large-scale or
multimodal optimization problems [32, 38]. To overcome
these limitations and improve performance, developing
enhanced PSO variants remains a practical necessity. For more
details on these advancements, see the research by Fang et al.
[32].

2.2 Improved PSO algorithm

The primary objective of various PSO variants is to enhance
global search capability while preventing premature
convergence to local optima. To achieve this, different
strategies have been developed, each targeting specific aspects
of the algorithm's performance. Among these approaches,
some variants focus on modifying acceleration coefficients, as
demonstrated in the papers of Jordehi [40] and Liu et al. [41].
Furthermore, the sine—cosine acceleration coefficients (SCAC)
updating strategy described in the work of Chen et al. [42]
provides an alternative approach for coefficient adjustment.
Similarly, another common approach focuses on adjusting the
inertia weight, as seen in the work of Bansal et al. [43]. In these
variants, specialized functions (linear or nonlinear) are
employed to gradually decrease the inertia weight over time,
thereby improving convergence speed and refining solutions.

Beyond parameter tuning, recent developments in PSO
research have turned toward designing novel velocity updating
strategies, an area that has become increasingly prominent [29],



as seen in studies by Zhan et al. [33], Wei et al. [44], and Xu
et al. [45]. A notable example is the Adaptive Particle Swarm
Optimization (APSO) method presented by Zhan et al. [33].
This approach introduces an evolutionary factor (EF) to
evaluate the swarm'’s state, categorizing it into exploration,
exploitation, convergence, or jumping-out phases. Building on
this, APSO dynamically adjusts velocity update functions
based on evolutionary state estimation (ESE), while
incorporating an elitist learning strategy to enhance overall
performance. More recently, Xu et al. [45] introduced the
Adaptive Weighted Delay Velocity (PSO-AWDV) variant,
which represents a significant advancement in PSO
development. Specifically, this algorithm modifies the
traditional velocity update rule by incorporating delayed
velocity components and dynamically adjusting inertia
weights based on the swarm’s evolutionary state. These
enhancements help address typical PSO challenges such as
local stagnation and slow convergence. Extensive evaluations
on benchmark functions demonstrate that PSO-AWDV
achieves superior convergence speed, enhanced stability, and
reduced computational complexity compared to other existing
PSO variants.

In this study, we aim to enhance the performance of the PSO
algorithm by modifying the velocity component while
maintaining a balance between global exploration and local
exploitation. According to Eg. (1), the magnitude of the
velocity significantly influences PSO  performance,
particularly with regard to trajectory smoothness and
convergence behavior. This influence becomes especially
prominent in the final optimization stages. To address this, we
apply a transformation to the velocity using a function that
fulfills the following desirable properties: it should be
monotonically increasing, bounded, and odd. To satisfy these
properties, we utilize the hyperbolic tangent function, which
naturally produces output values within the interval [-1, 1]. To
manage the variability of the velocity, we scale the function by
a positive constant a, which depends on the search space.
Additionally, the velocity (as the function’s input variable) is
scaled by another positive constant b. The modified velocity is
thus defined as:

ebx _ e—bx

ebx + e—bx

fx)=a Q)

The variable x denotes the original velocity and f(x) its
transformed.

The symmetric nature of the hyperbolic tangent function
ensures that the direction (sign) of the velocity remains intact,
preserving the particle's movement orientation. This means
positive velocities stay positive, and negative velocities stay
negative, maintaining the original search behavior while
controlling magnitude. To further analyze the behavior of this
transformation, especially for small velocity values where
nonlinear effects are minimal, we approximate the hyperbolic
tangent using a first-order Taylor expansion around zero. This
yield:

f(x) = abx (6)

This linear approximation (linear form in terms of x) shows
that for low velocity magnitudes, the effect of the
transformation is minimal. However, as velocity increases, the
function smoothly limits its value, reducing the risk of
oscillatory particle trajectories, especially during later
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iterations. Consequently, this velocity transformation
enhances trajectory smoothness, leading to more accurate
optimal solutions.

With this transformation, the updated Eq. (1) and Eq. (2)
become:

bviq(t+1) _ e—bvid(t+1)

e
Tig(t +1) = A oo+ D) 1 g-bvigt+1)

1— e—ZbUid(t+1) (7)

Xig(t +1) = x4 (t) + Pig(t + 1) ®)

In our implementation, the parameters a and b are
empirically set to 1 and 0.5, respectively.

Importantly, since this modification does not alter the core
PSO strategy, it remains compatible with various PSO variants,
making it a flexible enhancement without disrupting existing
algorithmic structures. This approach ensures smoother
optimization trajectories while maintaining the algorithm’s
exploratory and exploitative capabilities.

The modified PSO algorithm is performed according to the
following procedure:

Algorithm 1: Modified PSO Procedure
1) Initialization: Generate a swarm of particles with
randomly assigned positions and velocities
within the solution space.
Fitness Evaluation: For each particle, compute
the value of the optimization fitness function.
Best Positions Adjust: Update the particle’s
personal best p_i and the swarm’s global best Gb,
according to Eqg. (3) and Eq. (4), respectively.
Velocity and Position Update:
Compute the raw velocity using the standard
PSO update rule Eq. (1).
Apply the velocity transformation using Eq. (7).
Update the particle’s position using the
transformed velocity Eq. (8).
Termination Check: Repeat steps 2 through 4
until a stopping criterion is met (typically when
an acceptable fitness value is reached or the
maximum number of iterations is exceeded).

2)

3)

4)

5)

3. FORMULATION OF BLIND IMAGE
RESTORATION AS A REGULARIZATION PROBLEM

3.1 Space-adaptive regularization

In image restoration tasks, it is commonly assumed that the
blur can be modeled as a spatially invariant convolution with
a blur kernel 2(x), and that both the image and noise maintain
consistent statistical properties across the image domain.
Under these assumptions, if f(x) represents the original
noise-free and blur-free image, then the observed degraded
image y(x) can be expressed as [5, 8]:

y() =h() * f(x) + w(x), x = (x;,%) €Q ©)

where, Q c % denotes the image domain, and () stands for



two-dimensional convolution, defined as:

SIISEDWIOVEED

scD

(10)

In this formulation, D < 2?2 is the support of the PSF £ (x),
and w(x) represents additive noise, typically modeled as zero-
mean Gaussian white noise.

The goal of image restoration is to estimate f(x), an
approximation of the original image f(x), given only the
degraded image y(x), the blurring function 4(x), and some
statistical knowledge of the image and noise. However, in
many practical scenarios, the PSF is unknown a priori, turning
the restoration into a BID problem. In such cases, the task
involves estimating both f(x) and A(x) from y(x), using
prior information about f(x), A(x) and w(x). While the
degradation is modeled as LS|, the deconvolution method may
involve nonlinear behavior, spatial dependence, or
simultaneously both [3]. Furthermore, blind restoration is
inherently ill-posed, as solutions lack guaranteed unigqueness
and stability. To address this, regularization techniques are
employed, converting the ill-posed problem into a well-posed
one with an acceptable approximate solution [5].

Assuming now that both f(x) and 4(x) are unknown, we
adopt a space-adaptive regularization method to jointly
estimate the original image and the PSF. This is achieved by
minimizing the cost function [8]:

J(h.f) = Zreaw1 () [y(x) = A(x) »

. . 11
)42 S w, [0 + FO] (o

Subject to the constraint:
0<f(x)<1, x€Q (12)

This cost function contains two terms. The first enforces
fidelity between the restored image f(x) and the observation
y(x), weighted by w; (x). The second promotes smoothness
in the solution through a regularization operator C (x), which
typically corresponds to a high-pass filter such as the
Laplacian. The regularization parameter A balances fidelity to
the observed data and the smoothness of the reconstructed
image. Selecting an appropriate A is a crucial issue. Various
techniques for estimating the regularization parameter are
discussed in several works; see, for example, the papers [46,
47]. Specifically, higher values of A enforce greater
smoothness, but may introduce ringing artifacts, while smaller
values preserve fidelity but may amplify noise [1]. Space
adaptivity is achieved by dynamically adjusting the weights:

wy (x) is assigned higher values in regions with low noise
or near sharp transitions to emphasize fidelity.

w, (x) is increased in smoother regions or areas with higher
noise to emphasize regularization.

Details of the regularization components are elaborated in
the next subsection. Meanwhile, the constraint in Eq. (12)
ensures the restored image remains bounded and nonnegative,
reflecting the physical limits of image intensity.

Ultimately, the blind restoration problem, originally posed
by Eq. (9), is reformulated as the minimization of the cost
function in Eq. (11). Despite its non-convex nature and
susceptibility to local minima, alternating minimization offers
a viable strategy. By fixing one of the variables and optimizing
with respect to the other, the problem becomes convex and
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solvable, providing an effective solution path for blind
deconvolution [3, 8].

3.2 Enhanced design of space-adaptive regularization
components

To refine the restoration process, we now delve into the
design of the space-adaptive components introduced in Eq.
(11). These include the regularization parameterA, the spatially
varying weights w, (x) and w,(x), and the regularization
operator C (x).

Traditionally, A is treated as a global constant, applied
uniformly across the entire image. However, in adaptive
regularization, it is beneficial to allow A to vary spatially,
adapting different image regions according to local features.
This dynamic approach improves restoration by fine-tuning
regularization strength according to regional characteristics.
For instance, regions with fine textures or edges benefit from
weaker regularization to preserve detail, while smoother areas
require stronger regularization to suppress noise.

To achieve this, local image statistics have been employed
to guide the spatial adaptation of A, mimicking the behavior of
the human visual system and yielding promising results [48].
Building on this idea, we propose linking the concept of local
total variation (LTV) to the adaptive function w,(x), thereby
enriching the regularization process with more nuanced
information about local image features. Notably, LTV is
particularly effective at distinguishing between smooth,
textured, and edge regions, making it a valuable component in
adaptive weighting. Further background regarding these
advancements can be found in studies by Liu et al. [11] and
Bredies et al. [49].

In our formulation, spatial adaptivity is governed jointly by
the local standard deviation (LSD) and the LTV. Specifically,
the regularization parameter A (constant) is modulated by the
adaptive weight w, (x), defined as:

1
WZ(X):)/_l_—u(x), x €Q (13)
where,
u(x) = local_std(x).local_TV (x) (14)

Here, u(x) captures the local adaptivity within a 3x3
neighborhood around pixel x in the estimated image f(x),
computed as the product of LSD and LTV. This formulation
ensures that w, (x) assumes higher values in smooth regions
where noise is more perceptible and lower values in textured
or edge regions where detail preservation is critical.

Furthermore, the parameter y plays a pivotal role in shaping
the dynamic range of w, (x). Ideally, so as not to disrupt the
role of w, () in different scenarios y should satisfy y <« u(x)
in edge-rich regions and y >» u(x) in flat regions. As a result,
w, (x) lies within the range:

1
14

To further enhance adaptivity, we propose relating y to
global image statistics, such as the overall variance.
Specifically, a high global variance suggests the need for a
wider dynamic range in w,(x), achieved by selecting a

1

max {u(x)}’

w,(x) € [ (15)



smaller y . Conversely, a low global variance implies a
narrower dynamic range, warranting a larger y. Thus, the
design of the function u(x) is central to achieving precise
spatial control over regularization and the key challenge lies
in optimizing y to align with image features.

Regarding the fidelity weight, w; (x) is set as a constant
value a across the entire image:

wix)=a x€Q (16)

The parameter a works in the opposite way to 4, but
together they help balance data fidelity and image smoothness.
Both « and A are selected based on the signal-to-noise ratio
(SNR) and are held constant for each restoration scenario. In
our experiments, these parameters -along with y- are tuned
empirically to ensure robust adaptivity across various noise
levels and image types.

Finally, the smoothness requirement on the solution is
enforced by the regularization operator C, which is chosen as
a high-pass filter. Specifically, we use the two-dimensional
Laplacian operator [5]:

1 0
—4 1]

0
c=11
0 1 0

(17)

The term associated with this operator corresponds to a
high-pass filtered version of the image f(x), and thus seeks to
minimize the amount of high-frequency energy in the restored
image [1].

4. OPTIMIZATION SCHEME

Building on the regularization model presented in Section 3,
we now introduce a blind image restoration framework
designed to jointly estimate the original image and the
unknown blur kernel (PSF) from a degraded observation. The
proposed approach integrates gradient-based iterative image
estimation  (Subsection 4.1) with PSO-based blur
identification (Subsection 4.2) through an alternating
minimization strategy (Subsection 4.3).

4.1 Restoration via steepest descent

When the PSF is known, the restoration problem reduces to
minimizing a cost function with respect to the image. Several
optimization techniques exist for this task, including gradient-
based methods, expectation-maximization (EM), prediction
error-based techniques, and least squares approaches [2, 8].

In our method, we adopt the steepest descent algorithm to
minimize the cost function in Eq. (11) with respect to the
image estimate f*(x), defined over an M>N grid. The update
rule is given by:

60 = A = 7o ) (18)
where, the gradient p* (x) is calculated by:
e _ U0 FE @]
P = =5 (19)
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p*(x) = —2{w; () [y(x) = h(x) * f* ()]
* h(=x)}
+2 2w, (0)[C(0) * ¥ ()]}
* C(=x)

Here f*(x) is the restoration after k iterations, initialized as
fO(x) =y(x). The step size u, a small positive number,
balances convergence speed and stability. Since the cost
function is convex, the algorithm converges to the global
minimum. This method also allows for easy incorporation of
constraints on the image and PSF. Iterative methods avoid
explicit inverse operations, allow real-time monitoring, and
enable noise control through constraints. Spatial adaptivity
and parameter updates can also be incorporated during
iteration [1, 5].

4.2 Blur identification via PSO

While the previous subsection assumes the PSF h(x) is
known, in real-world scenarios it must be estimated from noisy,
blurred data. Various methods exist for this purpose [8, 10],
including metaheuristic techniques [27, 29]. We adopt a PSO-
based approach to estimate the PSF by minimizing the fidelity
term of the cost function in Eq. (11). A common model of PSF
is a uniform 2D blur, which approximates out-of-focus
degradation and is widely used in simulations [1]. The blur is
defined as:

1
.. —_—, if —l<ij<l
wip=1wz Y J
0;

(20)
otherwise

where, L=21+1 is an odd integer representing the blur kernel
size.
To estimate the PSF, we define it as a square matrix of size
L x L, requiring the estimation of L? coefficients. The PSO-
based approach seeks the coefficient values that minimize the
cost function in Eq. (11), subject to the constraints:
h(x) =0,

x€D 21

and

Zﬁ(@: 1

X€ED

(22)

These constraints ensure the PSF is non-negative and
preserves the image’s mean intensity. Incorporating prior
knowledge about the blur helps reduce ambiguity in the
solution space [2].

Each particle, in PSO, represents a candidate PSF estimate,
modeled as a point in an n -dimensional space. The swarm is
defined as:

X11X12 X1n
Xy X X
_ T _ 21%22 2n
X =%, Xm) = : : (23)
Xm1Xm2 Xmn

where, m is the swarm size and n = L? is the number of PSF
coefficients (dimension of the search space).



Algorithm 2: PSF Identification

1) Input: observed image y(x), initial image estimate
f ().

2) Initialize swarm with random values in [0, 1].

3) Evaluate the fidelity term of Eq. (11) for each
particle.

4) Update personal best p, global best Gb, and
velocity using Eg. (3), Eg. (4), and Eqg. (1).

5) Modify velocity according to Eq. (7).

6) Move particles to new positions using Eqg. (8).

7) Repeat steps 3-6 until convergence or maximum
iterations are achieved.

To initialize the swarm, one particle is set to a uniform value
(e.g., [0.1, 0.1, ..., 0.1] in the case of L = 3) to reflect the
average blur, while others are randomly sampled from the
interval [0, 1]. The PSO algorithm then searches for the
optimal solution in the vicinity of this reference point. Upon
convergence, the final global best Gb provides the estimated
PSF.

4.3 Alternate minimization for blind restoration

Having addressed image restoration and blur identification
separately, we now integrate both into a unified blind
restoration framework. This is achieved through an alternating
minimization strategy, where each component is iteratively
refined based on the other.

The blind restoration process consists of two main steps:

Bl-step (Blur Identification): Given an image estimate
f(x), use PSO (Algorithm 2) to estimate the blur A(x) by
minimizing the fidelity term of Eq. (11).

R-step (Image Restoration): Using the estimated blur
h(x), apply the steepest descent method (Eq. (18)) to update
the estimated image.

By alternating between these steps, blind image restoration
is achieved.

Algorithm 3: Main Restoration Algorithm

1) Initialization: Set the observed image y(x) as
the initial estimate £ (x) of the true image.
Initial PSF Estimation: Given f(x) and y(x),
minimize the fidelity term in Eq. (11) using the
PSO procedure (Algorithm 2) to obtain the
initial estimated blur PSF coefficients.
Intermediate Image Restoration: Using the
estimated PSF A(x) and the observed image
y(x), apply the update procedure (Eq. (18)) for
a fixed number of iterations to compute an
intermediate restored image.

PSF Re-estimation: Regard the intermediate
restored image as the new estimate of the true
image, and re-estimate the blur PSF using the
PSO procedure (Algorithm 2).

Termination Check: Repeat steps 3 and 4 until
either no significant improvement is observed
in the image restoration step (Step 3), or the
maximum number of main loop iterations is
reached.

2)

3)

4)

5)

In steps 2 and 4, the swarm is initialized with uniformly
distributed values in [0, 1], including the best solution from the
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previous stage. To ensure smoothness, we can incorporate the
constraint std(Gb) < ¢ in step (2) (for example € = 0.07) and
std(Gb) denotes the standard deviation of the global best
solution coefficients. Under this alternating framework, each
step optimizes a quadratic cost function, resulting in a simple
and efficient algorithm. Moreover, by employing distinct
optimization techniques for image and blur estimation, the
scale ambiguity problem discussed in the work of You and
Kaveh [8] is effectively mitigated.

5. RESULTS AND DISCUSSIONS

This section presents the blind restoration of images
degraded by uniform blur under various conditions, including
different blur sizes and noise levels. The objective is to
demonstrate the effectiveness of the proposed method through
simulation examples and to analyze the quality of both the PSF
and image estimations across multiple degradation scenarios.
The Improved Signal-to-Noise Ratio (ISNR) is used to
evaluate restoration performance. ISNR is defined as [48]:

lly—rII%
I7-£11?

ISNR = 10logy, 24)

where, y, f, and f represent the degraded, true, and recovered
images respectively.

This study involves two principal simulation scenarios. The
first simulation compares the performance of our proposed
PSO variant with both the standard PSO [39] and the PSO-
AWDYV variant [45], a recent advancement in the field. The
second simulation evaluates the effectiveness of the adaptive
regularization model applied to image restoration, using a
consistent framework to enable fair comparisons with classical
established methods such as SDR [8] and PDR [9].

For all experiments, we set the following parameters based
on empirical tuning: K = 30 for PSO iterations, m = 20 for
swarm size, N, = 10 for main loop alternations, and N;= 8 for
image update iterations.

5.1 Simulation 1

In the first set of experiments, we use the well-known
“Cameraman” image (256>256 pixels, 8-bit grayscale) as the
original image (Figure 1(a)).

The original image is degraded by applying a 3>3 uniform
blur and adding Gaussian noise at SNR = 30 dB, resulting in
the image shown in Figure 1(b). To estimate both the PSF and
the original image, we apply the proposed algorithm to the
degraded image and repeat the process ten times. The only
prior knowledge is the PSF size. Each simulation performs a
total of 80 restoration iterations (Na = 10, N;= 8). Moreover,
the parameter settings are given as: ¢; = 2, ¢, =1 for the
acceleration coefficients, w=0.9 for the inertia weight, and (a,b)
=(1,0.5) for the hyperbolic tangent parameters. The PSO-
AWDV variant uses the parameter settings reported in [45].
And about the R-step, we put ¢ = 60 and y = 0.005, which
depends on the image at hand. While the others, namely « and
A, depend on the used SNR value. All parameters were
heuristically selected to optimize restoration performance. The
obtained results are presented in Table 1.

Where Y, h; denotes the sum of estimated PSF coefficients
per run, g;, denotes the standard deviation of those coefficients,
and MSE denotes the mean squared error between the



estimated and true blur kernels.

(c) Restore iageusing the prpsd method

Figure 1. Blind restoration results for the “Cameraman”
image degraded by a 3>3 uniform blur and additive white
Gaussian noise (AWGN) at 30 dB SNR

As illustrated in Table 1, the proposed PSO variant
consistently achieves the lowest standard deviation in PSF
coefficients (a3, ranging from 0.0039 to 0.0095), indicating
superior smoothness and stability in blur kernel estimation.
This smoothness directly contributes to the highest average
ISNR of 6.03 dB, along with the lowest ISNR standard
deviation of 0.10, confirming the method’s robustness and
reliability in image restoration. Moreover, in terms of MSE,
the table shows that our PSO variant achieves the lowest error,
reducing the MSE by nearly 74% compared to PSO-AWDV
and by about 30 times compared to Standard PSO. These
results demonstrate that our proposed PSO variant provides
the most accurate blur estimation among the three tested
versions, highlighting the effectiveness of the modifications
introduced. In comparison, the standard PSO exhibits
significantly higher variability in PSF estimation, with a;,
reaching up to 0.0721, which reflects poor smoothness and
instability. Consequently, it yields the lowest restoration
performance, with an average ISNR of 3.99 dB and a high

standard deviation of 1.44, indicating inconsistent results
across runs. The PSO-AWDV variant shows moderate
improvement over the standard PSO, with o;, values up to
0.0267, and achieves an average ISNR of 5.24 dB with a
standard deviation of 0.92. While it performs better than the
standard PSO, it remains less stable and less accurate than the
proposed method.

Overall, the proposed PSO demonstrates clear superiority in
both PSF estimation and restoration quality, combining
smooth kernel estimation with high accuracy and exceptional
consistency.
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Figure 2. Restoration dynamics for the “Cameraman” image
during the iterative process

Table 1. Results of the proposed method for the “Cameraman” image degraded by a 3 >3 uniform blur with 30 dB AWGN

PSO VARIANTS

E’,‘\lplfrg&er”t Standard PSO PSO-AWDV Our PSO Variant

ISNR S h A ISNR 3 Iy s ISNR 3 Iy .

1 58117 09988 0.0081 59331 10019 0.0095  6.126]  1.0012 _ 0.0050

2 52095 10009 00150 32780  1.0028  0.0267 59330  1.0011  0.0092

3 37923 10022 00318 58926  1.0020  0.0087 61366  1.0020  0.0066

4 21825 1.0020  0.0567 50248  1.0018  0.0228 62215  1.0017  0.0039

5 45550  1.0065 00292 61582 10016 00046  6.0487  1.0018  0.0071

6 58734 10022 00101 53202 1.0013 00185 59907 10014  0.0057

7 29327 1.0045 00551 47357 10014 00214 59844 10012  0.0065

8 47334 10040 00264 56745 10018 00105 59214  1.0015  0.0095

9 25687  1.0017 00721 43074 10018 00260 59745  1.0017  0.0081

10 22550  1.0040  0.0474 60600  1.0019  0.0052 59257  1.0019  0.0080
Average 3.9914 5.2384 6.0263
Std 1.4406 0.9212 0.1034

MSE 9.406-04 1.196-04 3.106-05
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Figure 2(a) depicts the evolution of ISNR throughout the
restoration process. The horizontal axis corresponds to the
number of iterations performed using the steepest descent
method in the R-step. The step size u is carefully selected to
ensure rapid convergence of the recursive update (Eq. (18))
while maximizing ISNR.

As shown, the results indicate that the iterative process
stabilizes within approximately 70 iterations. Figure 2(b)
illustrates the progression of the function max local_std(x),

which corresponds to the maximum local standard deviation
computed at each iteration over a 3>3 window centered at
pixel x in the restored image f (x). This metric reflects local
contrast and texture variations. By incorporating LTV into the
adaptive weight w, (x), the proposed method demonstrates its
ability to recover fine structural details and improve the
preservation of edges and textured regions.

As seen in the restored image in Figure 1(c), the proposed
approach achieves effective restoration by recovering fine
details while minimizing ringing artifacts and noise in relevant
areas of the image.

5.2 Simulation 2

This set of experiments explores the trade-off between data
fidelity and solution smoothness within the proposed adaptive
regularization framework. The analysis focuses on the
influence of two key parameters-a, which controls fidelity to
the observed data and A, which governs the strength of
regularization-on restoration performance under varying noise
conditions. Additionally, spatial adaptivity is achieved
through the weight function w,(x), which captures local
image characteristics by combining LTV and LSD, allowing
the method to adapt to diverse feature types across the image
domain.

To comprehensively evaluate the method’s performance,
four experimental scenarios are considered:

Noise-level sensitivity: Assessing robustness across a range
of SNR.

Image-type sensitivity: Evaluating restoration quality on
images with varying textures and frequency content.

Time complexity: Measuring runtime performance across
blur kernels and image sizes.

Comparative analysis: Benchmarking against existing
methods (SDR and PDR) under severe blur conditions.

5.2.1 Sensitivity to noise levels

To assess the algorithm’s robustness to noise, the original
“Cameraman” image Figure 1(a) is degraded using a 3>3
uniform blur and AWGN at SNR levels of 20, 30, 40, 50, and
60 dB. Some of corresponding degraded images are shown in
Figures 3(a), 3(b), and 3(c), while the restored results from the
final run of each scenario are presented in Figures 4(a), 4(b),
and 4(c).

Table 2. Restoration results using the proposed method for
the “Cameraman” imagedegraded by a 3>3 uniform blur
under varying levels of AWGN

SNR(@@B) a(wy) 4  AverageISNR (dB) osnr
20 300 0.2 3.2746 0.0519
30 3000 0.2 6.0263 0.1034
40 5000 0.08 8.6135 0.1118
50 5000 0.08 9.4424 0.1515
60 5000 0.08 9.5018 0.1221
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For each noise level, the algorithm is executed ten times,
and the average ISNR and its standard deviation are computed.
The results are provided in Table 2.

(c) SNR=60 dB

Figure 3. “Cameraman” image degraded by a 3>3 uniform
blur and AWGN at different SNR levels

The data reveal a clear trend: ISNR increases as noise
decreases, confirming the algorithm’s effectiveness in cleaner
environments. This behavior reflects the dynamic role of the
regularization parameters:

At higher SNRs, larger values of a and smaller values of 2
emphasize deblurring, allowing the algorithm to recover finer
details.

At lower SNRs, smaller « and larger 2 shift the focus toward
smoothing, helping to suppress noise and stabilize the solution.

These observations show the importance of tuning a and 1
according to the noise level to achieve optimal restoration
performance.

It is also noteworthy that, for SNR > 40 dB, the restored
images exhibit strong deblurring. However, ringing artifacts
may appear in smooth regions near sharp transitions such as
the boundary between the “Cameraman” and the camera
support in Figure 4(c). These artifacts are likely caused by
inaccuracies in blur estimation, compression effects, or
residual noise [18].



(c) SNR=60 dB

Figure 4. Blind restoration results of the degraded images in
Figure 3

5.2.2 Sensitivity to image characteristics

In this study, we assess the adaptability of the proposed
method to images with varying structural and textural
properties. Specifically, we apply the algorithm to the well-
known “Lena” and “Baboon” images, each sized 256256
pixels in 8-bit grayscale. Both images (Figure 5(a) and Figure
6(a)) are degraded using a 3>3 uniform blur and 30 dB AWGN,
as shown in Figure 5(b) and Figure 6(b).

The corresponding restored results are presented in Figure
5(c) and Figure 6(c), where the quantitative evaluations are
summarized in Table 3.

In this table, the proposed method exhibits strong detail
preservation despite the presence of prominent high-frequency
components—such as hair strands in “Baboon” and feather

(a) Original image

(b) Degraded image

textures in “Lena”—the proposed method demonstrates strong
detail preservation. This is primarily attributed to the
incorporation of LTV into the adaptive weight function w;, (x),
which enables spatially responsive regularization.

The parameter y, which modulates the behavior of w,(x), is
observed to be inversely proportional to the image variance,
allowing the method to adapt to varying texture complexity.

Table 3. Restoration results using the proposed method on
various images degraded by a 3>3 uniform blur and 30 dB

AWGN
Images Wy Y Average ISNR(dB)
Cameraman 0.0598 0.005 6.0263
Lena 0.0352 0.008 4.2805
Baboon 0.0272 0.08 45261

(a) Original image

’ (b) Degraded image

(c) Restored image using the proposed method

Figure 5. Blind restoration results for the “Lena” image
degraded by a 3>3 uniform blur and AWGN at 30 dB SNR

(c) Restored image using the proposed method

Figure 6. Blind restoration results for the “Baboon” image degraded by a 3 >3 uniform blur and AWGN at 30 dB SNR



Interestingly, the “Cameraman” image yields the highest
ISNR, which can be explained by its relatively simple
structure and lower frequency content. Surprisingly, “Baboon”
achieves a slightly higher ISNR than “Lena”, despite Lena’s
smoother appearance. This counterintuitive result may be due
to the presence of sharp transitions in Lena’s feather region,
which pose greater challenges for accurate restoration. These
plots confirm the algorithm’s ability to dynamically adapt its
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regularization strategy to preserve fine details in both textured
and edge-rich regions.

To further illustrate the method’s responsiveness to local
image features, Figures 7(a) and 7(b) visualize the evolution
of the maximum LSD during the restoration process for Lena
and Baboon, respectively. These plots confirm the algorithm’s
ability to dynamically adapt its regularization strategy to
preserve fine details in both textured and edge-rich regions.

10 20 30 40 50

Number of iterations
(b) For “Baboon” image

60 70 80

Figure 7. Evolution of the maximum LSD function, max local_std(x), during the iterative process
x

5.2.3 Runtime analysis

To evaluate the performance of the method in terms of
computational complexity, we report runtime statistics for the
“Lena” image at resolutions of 256>256 and 512>512 pixels.
Both images were degraded using blur kernels of sizes 3>3,
555 and 7x7. The runtime measurements were obtained on an
Intel Core i3-2310M CPU (2.1 GHz, 4 GB RAM, Windows 7)
and are summarized in Table 4.

Table 4. Runtime (in seconds) statistics illustrating the
scaling behavior of the modified PSO algorithm and the
gradient-based method with varying image and kernel sizes

Size of Kernel

Size of 33 5>6 77
image Our Gradient Our Gradient Our Gradient
PSO method PSO method PSO method
256>256 14 25 32 26 57 27
512>612 51 110 124 117 222 125

These results clearly illustrate the computational cost and
the scaling behavior of our method. From the table, we observe
that image size has a considerable impact on the runtime of
both  optimization methods, reflecting the higher
computational load required to process more pixels. In contrast,
blur size influences the runtime of the PSO algorithm much
more strongly than that of the gradient method, which shows
only a modest increase. As the PSF size grows, the number of
coefficients to be estimated also increases, thereby raising the
computational complexity, as is typical for metaheuristic
methods.

5.2.4 Comparison with existing methods
To benchmark the proposed method against existing
approaches, we perform blind deconvolution on the “Lena”
image degraded by uniform blur kernels of size 555 and 77,
under noiseless and 30 dB noise conditions (see Figure 8).
We compare our method with SDR and PDR, which use
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similar regularization schemes. The results are summarized in
Table 5, using ISNR as the evaluation metric. SDR and PDR
results are taken from the paper by Chen and Yap [9].

(a) 5> blur with SNR = 30
dB

(b) 5>& blur without noise

(c) 77 blur with SNR = 30
dB

(d) 7>7 blur without noise

Figure 8. “Lena” image degraded by uniform blur under
noiseless and SNR = 30 dB

In the noiseless scenario, the proposed method achieves the
highest ISNR values, significantly outperforming both SDR
and PDR. Under noisy conditions, it still surpasses SDR and
performs slightly better than PDR. These results highlight the
method’s robustness to blur severity and its ability to maintain
high restoration quality even in challenging environments.



Table 5. Blind deconvolution results for the “Lena” image
degraded by severe uniform blurs of various sizes, using the
SDR and PDR methods alongside the proposed algorithm

ISNR (Noise at 30 dB) ISNR (Noiseless)
Sizeof SDR PDR Proposed SDR PDR Proposed
PSF [8] [9] method [8] [9] method
5> 1.67 3.64 3.97 2.00 3.98 5.69
77 1.02  3.39 3.53 1.25 3.60 4.45

|

(d) Restoration from 7>7 blur without noise

Figure 9. Restored “Lena” images using the proposed
method, corresponding to the degradation cases in Figure 8

Although the ISNR values obtained with our method may
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appear relatively low in certain cases, the visual quality of the
restored images, particularly under low-noise conditions, is in
fact quite satisfactory. As shown in Figure 9, the visual quality
of the restored images is better than what the numerical
metrics alone may indicate, showing that our method works
well in real-world applications.

Overall, the experimental findings confirm the efficiency of
the proposed adaptive regularization framework. Specifically,
the method:

Balances fidelity and smoothness across a wide range of
noise levels.

Adapts dynamically to noise and image structure,
preserving fine details in textured and edge-rich regions.

Outperforms existing techniques under severe blur,
particularly in low-noise conditions.

These results confirm the effectiveness of the proposed PSO
variant and its suitability for high-quality blind image
restoration across diverse scenarios.

However, like most iterative methods, our approach has a
significant drawback in terms of execution time, which limits
its applicability to large images, complex blurs, and real-time
scenarios. This explains why metaheuristic methods are often
employed to identify blurs modeled by only a few parameters,
such as the standard deviation of a Gaussian blur or the angle
and length of a motion blur.

Another limitation of this method lies in its generalization
to more complex types of blurs, such as non-uniform or
spatially varying blur. Addressing this challenge remains
difficult in blur identification, as highlighted in several studies
(see, for example the study by Almeida and Figueiredo [46]).
Methods that perform well for a specific blur type often fail
for others, since they require adapting the identification
strategy. Even recent methods based on deep learning
encounter this limitation [21], as their performance is often
restricted to the blur types seen during training. Hybrid
identification methods based on metaheuristics, however, may
help mitigate this issue, as they allow the straightforward
incorporation of additional constraints and blur priors.

6. CONCLUSIONS

This work proposed a robust and adaptive framework for
blind image restoration, combining a space-adaptive
regularization model with a PSO strategy. The enhanced PSO
variant demonstrated clear advantages in estimating blur
kernels with smooth, accurate and stable parameters, as
evidenced by consistently low standard deviations in PSF
coefficients across multiple trials. This smoothness directly
enhances restoration quality, yielding the highest ISNR values
and the lowest variability among competing methods
(standard PSO and the recent PSO-AWDV variant). Such
stability in blur estimation ensures consistent and reliable
performance, even under varying noise levels.

Beyond optimization, the adaptive regularization model
plays a pivotal role in tailoring the restoration process to
different image and noise conditions. The fidelity weight « and
regularization parameter 4 were effectively tuned in relation to
SNR values, achieving a balanced trade-off between
deblurring and noise suppression. Moreover, the spatially
varying weight w, (x), governed by LTV and LSD, allowed
the method to respond dynamically to diverse image features,
preserving fine details in textured and edge-rich regions across
a range of degradation scenarios.



Comprehensive  experimental evaluations, including
comparisons with classical approaches such as SDR and PDR,
confirmed the effectiveness and versatility of the proposed
method. The results highlight its capability to handle fairly
severe blur and diverse image types. When the weighting
function parameters are selected appropriately based on to the
image characteristics, the method demonstrates high
efficiency, making it suitable for a wide range of practical
imaging applications. A key limitation of the method is its
computational complexity when processing large-scale
images and under severe blur conditions.

Future research could focus on extending the framework to
address non-uniform or spatially variant blur and exploring
hybrid approaches that incorporate deep learning to further
enhance flexibility and performance.
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